Change Drivers and Impacts in Arctic Wetland Landscapes—Literature Review and Gap Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Research Directions
3.2. Research Gaps
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Häder, D.-P.; Kumar, H.D.; Smith, R.C.; Worrest, R.C. Aquatic ecosystems: Effects of solar ultraviolet radiation and interactions with other climatic change factors. In: United Nations Environmental Program: Environmental Effects of Ozone Depletion and its Interactions with Climate Change: 2002 Assessment. Photochem. Photobiol. Sci. 2003, 2, 39–50. [Google Scholar] [CrossRef]
- Michel, C.; Bluhm, B.; Gallucci, V.; Gaston, A.J.; Gordillo, F.J.L.; Gradinger, R.; Hopcroft, R.; Jensen, N.; Mustonen, T.; Niemi, A.; et al. Biodiversity of Arctic marine ecosystems and responses to climate change. Biodiversity 2012, 13, 200–214. [Google Scholar] [CrossRef]
- Wrona, F.J.; Prowse, T.D.; Reist, J.D.; Hobbie, J.E.; Levesque, L.M.J.; Vincent, W.F. Climate impacts on Arctic freshwater ecosystems and fisheries: Background, rational and approach of the Arctic Climate Impact Assessment (ACIA). AMBIO 2006, 35, 326–329. [Google Scholar] [CrossRef]
- Wrona, F.J.; Prowse, T.D.; Reist, J.D.; Hobbie, J.E.; Levesque, L.M.J.; Vincent, W.F. Key findings, science gaps and policy recommendations. AMBIO 2006, 35, 411–415. [Google Scholar] [CrossRef]
- The Romsar Convention. Ramsar Focuses on Arctic Wetlands. Available online: https://www.ramsar.org/news/ramsar-focuses-on-arctic-wetlands (accessed on 20 February 2019).
- Cohen-Shacham, E.; Walters, G.M.; Maginnis, S.; Janzen, C. Nature-Based Solutions to Address Global Societal Challenges; IUCN: Gland, Switzerland, 2016; pp. 1–32. [Google Scholar]
- The Ramsar Convention. Wetland Ecosystem Services Factsheet 0—An Introduction. Available online: https://www.ramsar.org/sites/default/files/documents/library/services_00_e.pdf (accessed on 31 March 2019).
- Davidson, N.C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 2014, 65, 934–941. [Google Scholar] [CrossRef]
- Davidson, N.C.; Fluet-Chouinard, E.; Finlayson, C.M. Global extent and distribution of wetlands: Trends and issues. Mar. Freshw. Res. 2018, 69, 620–627. [Google Scholar] [CrossRef]
- Destouni, G.; Jaramillo, F.; Prieto, C. Hydroclimatic shifts driven by human water use for food and energy production. Nat. Clim. Chang. 2013, 3, 213–217. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Lüthi, D.; Litschi, M.; Schär, C. Land–atmosphere coupling and climate change in Europe. Nature 2006, 443, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, J.M.; Bring, A.; Peterson, G.D.; Gordon, L.J.; Destouni, G. Opportunities and limitations to detect climate-related regime shifts in inland Arctic ecosystems through eco-hydrological monitoring. Environ. Res. Lett. 2011, 6, 014015. [Google Scholar] [CrossRef] [Green Version]
- Thorslund, J.; Jarsjö, J.; Jaramillo, F.; Jawitz, J.W.; Manzoni, S.; Basu, N.B.; Chalov, S.R.; Cohen, M.J.; Creed, I.F.; Goldenberg, R.; et al. Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecol. Eng. 2017, 108, 489–497. [Google Scholar] [CrossRef]
- Bring, A.; Destouni, G. Hydro-climatic changes and their monitoring in the Arctic: Observation-model comparisons and prioritization options for monitoring development. J. Hydrol. 2013, 492, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, J.M.; Lyon, S.W.; Destouni, G. Thermokarst lake, hydrological flow and water balance indicators of permafrost change in Western Siberia. J. Hydrol. 2012, 464–465, 459–466. [Google Scholar] [CrossRef]
- Streletskiy, D.A.; Tananaev, N.I.; Opel, T.; Shiklomanov, N.I.; Nyland, K.E.; Streletskaya, I.D.; Tokarev, I.; Shiklomanov, A.I. Permafrost hydrology in changing climatic conditions: Seasonal variability of stable isotope composition in rivers in discontinuous permafrost. Environ. Res. Lett. 2015, 10, 095003. [Google Scholar] [CrossRef]
- Lindwall, F.; Svendsen, S.S.; Nielsen, C.S.; Michelsen, A.; Rinnan, R. Warming increases isoprene emissions from an arctic fen. Sci. Total Environ. 2016, 553, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Morison, M.Q.; Macrae, M.L.; Petrone, R.M.; Fishback, L. Seasonal dynamics in shallow freshwater pond-peatland hydrochemical interactions in a subarctic permafrost environment. Hydrol. Process. 2017, 31, 462–475. [Google Scholar] [CrossRef]
- Pavon-Jordan, D.; Santangeli, A.; Lehikoinen, A. Effects of flyway-wide weather conditions and breeding habitat on the breeding abundance of migratory boreal waterbirds. J. Avian Biol. 2017, 48, 988–996. [Google Scholar] [CrossRef] [Green Version]
- van der Kolk, H.J.; Heijmans, M.M.P.D.; van Huissteden, J.; Pullens, J.W.M.; Berendse, F. Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw. Biogeosciences 2016, 13, 6229–6245. [Google Scholar] [CrossRef]
- Kalantari, Z. Wetlands as large-scale nature-based solutions: Protecting Kristianstad city from flooding and reduce nutrients before rivers reach the Baltic Sea. In Proceedings of the TERRAenVISION, Barcelona, Spain, 29 January–2 February 2018. [Google Scholar]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerda, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610, 997–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erwin, K.L. Wetlands and global climate change: The role of wetland restoration in a changing world. Wetlands Ecol. Manag. 2009, 17, 71–84. [Google Scholar] [CrossRef]
- Roux, D.J.; Rogers, K.H.; Biggs, H.C.; Ashton, P.J.; Sergeant, A. Bridging the science-management divide: Moving from unidirectional knowledge transfer to knowledge interfacing and sharing. Ecol. Soc. 2006, 11, 4. [Google Scholar] [CrossRef]
- Galatowitsch, S.M. Natural and anthropogenic drivers of wetland change. In The Wetland Book; Finlayson, C., Milton, G., Prentice, R., Davidson, N., Eds.; Springer: Dordrecht, The Netherland, 2016; pp. 1–10. [Google Scholar]
- Calmels, F.; Froese, D.G.; Clavano, W.R.; Burn, C.R. Cryostratigraphic record of permafrost degradation and recovery following historic (1898–1992) surface disturbances in the Klondike region, central Yukon Territory. Can. J. Earth Sci. 2012, 49, 938–952. [Google Scholar] [CrossRef]
- Cameron, E.A.; Lantz, T.C. Persistent changes to ecosystems following winter road construction and abandonment in an area of discontinuous permafrost, Nahanni National Park Reserve, Northwest Territories, Canada. Arct. Antarct. Alp. Res. 2017, 49, 259–276. [Google Scholar] [CrossRef]
- Raynolds, M.K.; Walker, D.A. Effects of deglaciation on circumpolar distribution of arctic vegetation. Can. J. Remote Sens. 2009, 35, 118–129. [Google Scholar] [CrossRef]
- Pendea, I.F.; Ponomareva, V.; Bourgeois, J.; Zubrow, E.B.W.; Portnyagin, M.; Ponkratova, I.; Harmsen, H.; Korosec, G. Late Glacial to Holocene paleoenvironmental change on the northwestern Pacific seaboard, Kamchatka Peninsula (Russia). Quat. Sci. Rev. 2017, 157, 14–28. [Google Scholar] [CrossRef]
- Weedon, J.T.; Kowalchuk, G.A.; Aerts, R.; Freriks, S.; Röling, W.F.M.; van Bodegom, P.M. Compositional stability of the bacterial community in a climate-sensitive Sub-Arctic peatland. Front. Microbiol. 2017, 8, 317. [Google Scholar] [CrossRef]
- Quin, A.; Jaramillo, F.; Destouni, G. Dissecting the ecosystem service of large-scale pollutant retention: The role of wetlands and other landscape features. AMBIO 2015, 44 (Suppl. 1), 127–137. [Google Scholar] [CrossRef] [Green Version]
- Azcárate, J.; Balfors, B.; Bring, A.; Destouni, G. Strategic environmental assessment and monitoring: Arctic key gaps and bridging pathways. Environ. Res. Lett. 2013, 8, 044033. [Google Scholar] [CrossRef] [Green Version]
- Howison, R.A.; Olff, H.; van de Koppel, J.; Smit, C. Biotically driven vegetation mosaics in grazing ecosystems: The battle between bioturbation and biocompaction. Ecol. Monogr. 2017, 87, 363–378. [Google Scholar] [CrossRef]
- Bartlein, P.J.; Edwards, M.E.; Hostetler, S.W.; Shafer, S.L.; Anderson, P.M.; Brubaker, L.B.; Lozhkin, A.V. Early-Holocene warming in Beringia and its mediation by sea-level and vegetation changes. Clim. Past 2015, 11, 1197–1222. [Google Scholar] [CrossRef]
- Bombonato, L.; Gerdol, R. Manipulating snow cover in an alpine bog: Effects on ecosystem respiration and nutrient content in soil and microbes. Clim. Chang. 2012, 114, 261–272. [Google Scholar] [CrossRef]
Category | Name | Description: Current Status and Changes in … |
---|---|---|
Wetland-related landscape characteristics | Plant communities and biodiversity | Vegetation composition, regime shifts, biodiversity, plant performance (production, growth, above- and below-ground biomass, resistance, species competition). |
Animal communities | Animal population and species, animal size/productivity/distribution in the landscape, migration pathways. | |
Carbon cycling | Carbon exchanges among soil, water, atmosphere, plants, including carbon-based greenhouse gases and compounds in animal and plant tissues. | |
Nutrient cycling | Nutrient exchanges among soil, water, atmosphere, plants, including nitrogen- and phosphorus-based greenhouse gases and compounds in animal and plant tissues. | |
Water cycling | Hydrology aspects, water and hydrogen and oxygen isotope exchanges among land and atmosphere (precipitation, evapotranspiration), runoff fluxes and storage changes. | |
Water quality | Contaminant/pollutant concentrations, water quality effects on ecosystems and organisms. | |
Energy (heat) balance | Heat balance and exchanges among land and atmosphere. | |
Soil and sediment properties | Moisture/temperature/microorganisms/organic matter in the soil, permafrost and frozen layers, sediment/fossil assessments of historic changes. | |
Wetland extent/distribution in the landscape | Area of water bodies, mapping and modeling of wetland landscapes, formation of peatlands. | |
Human drivers | Climate change | Climate parameters, global warming, sea level rise, future climate projections. |
Land-use change | Urban/agricultural/industrial developments in wetland landscapes. | |
Nutrient-pollutant loading | Wastewater discharges to wetlands for treatment purposes, solid wastes in landfills, agricultural fertilization, heavy metal loads. | |
Herbivore grazing | Grazing by native and non-native (migrant) herbivore species. | |
Management plans | Protection and restoration efforts, flow regulation plans in wetland landscapes. | |
Natural drivers | Natural processes within soil/water/atmosphere, plant and animal communities, interactions among components and processes in wetland landscapes. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seifollahi-Aghmiuni, S.; Kalantari, Z.; Land, M.; Destouni, G. Change Drivers and Impacts in Arctic Wetland Landscapes—Literature Review and Gap Analysis. Water 2019, 11, 722. https://doi.org/10.3390/w11040722
Seifollahi-Aghmiuni S, Kalantari Z, Land M, Destouni G. Change Drivers and Impacts in Arctic Wetland Landscapes—Literature Review and Gap Analysis. Water. 2019; 11(4):722. https://doi.org/10.3390/w11040722
Chicago/Turabian StyleSeifollahi-Aghmiuni, Samaneh, Zahra Kalantari, Magnus Land, and Georgia Destouni. 2019. "Change Drivers and Impacts in Arctic Wetland Landscapes—Literature Review and Gap Analysis" Water 11, no. 4: 722. https://doi.org/10.3390/w11040722