Effects of Different Land Uses (Abandoned Farmland, Intensive Agriculture and Forest) on Soil Hydrological Properties in Southern Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.2.1. Plot Description
2.2.2. Soil Property Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cantón, Y.; Solé-Benet, A.; De Vente, J.; Boix-Fayos, C.; Calvo-Cases, A.; Asensio, C.; Puigdefábregas, J. A review of runoff generation and soil erosion across scales in semiarid south-eastern Spain. J. Arid Environ. 2011, 75, 1254–1261. [Google Scholar] [CrossRef] [Green Version]
- Fortugno, D.; Boix-Fayos, C.; Bombino, G.; Denisi, P.; Quiñonero Rubio, J.M.; Tamburino, V.; Zema, D.A. Adjustments in channel morphology due to land-use changes and check dam installation in mountain torrents of Calabria (southern Italy). Earth Surface Process. Landf. 2017, 42, 2469–2483. [Google Scholar] [CrossRef]
- García-Ruiz, J.M. The effects of land uses on soil erosion in Spain: A review. Catena 2010, 81, 1–11. [Google Scholar] [CrossRef]
- Nunes, A.N.; De Almeida, A.C.; Coelho, C.O. Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal. Appl. Geogr. 2011, 31, 687–699. [Google Scholar] [CrossRef]
- Dunjó, G.; Pardini, G.; Gispert, M. The role of land use-land cover on runoff generation and sediment yield at a microplot scale, in a small Mediterranean catchment. J. Arid Environ. 2004, 57, 239–256. [Google Scholar] [CrossRef]
- Grimm, M.; Jones, R.; Montanarella, L. Soil Erosion Risk in Europe; European Commission; Institute for Environment and Sustainability; European Soil Bureau: Hannover, Germany, 2011. [Google Scholar]
- Yassoglou, N.; Montanarella, L.; Govers, G.; Van Lynden, G.; Jones, R.J.A.; Zdruli, P. Soil Erosion in Europe. Technical Report for DG XI; European Soil Bureau: Hannover, Germany, 1998. [Google Scholar]
- Cheng, Q. Soil erosion and ecological reestablishment in the Nianchu river valley in Tibet. Chin. J. Ecol. 2002, 21, 74–77. [Google Scholar]
- Nunes, A.N.; Coelho, C.O.A.; De Almeida, A.C.; Figueiredo, A. Soil erosion and hydrological response to land abandonment in a central inland area of Portugal. Land Degrad. Dev. 2010, 21, 260–273. [Google Scholar] [CrossRef]
- Trasar-Cepeda, C.; Leirós, M.C.; Gil-Sotres, F. Hydrolytic enzyme activities in agricultural and forest soils. Some implications for their use as indicators of soil quality. Soil Biol. Biochem. 2008, 40, 2146–2155. [Google Scholar] [CrossRef] [Green Version]
- Lucas-Borja, M.E.; Calsamiglia, A.; Fortesa, J.; García-Comendador, J.; Guardiola, E.L.; García-Orenes, F.; Gago, J.; Estrany, J. The role of wildfire on soil quality in abandoned terraces of three Mediterranean micro-catchments. CATENA 2018, 170, 246–256. [Google Scholar] [CrossRef]
- Solé-Benet, A. Spain. In Soil Erosion in Europe; Boardman, J., Poesen, J., Eds.; John Wiley & Sons: Chichester, UK, 2006; pp. 311–346. [Google Scholar]
- Lasanta, T.; Garcìa-Ruiz, J.M.; Pérez-Rontomé, C.; Sancho-Marcén, C. Runoff and sediment yield in a semi-arid environment: The effect of the land management after farmland abandonment. CATENA 2000, 38, 265–278. [Google Scholar] [CrossRef]
- MacDonald, D.; Crabtree, J.R.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Lazpita, J.G.; Gibon, A. Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. J. Environ. Manag. 2000, 59, 47–69. [Google Scholar] [CrossRef] [Green Version]
- Burke, S.M.; Thornes, J.B. A thematic review of EU Mediterranean desertification research in Frameworks III and IV: Preface. Adv. Environ. Monit. Model 2004, 1, 1–14. [Google Scholar]
- Lucas-Borja, M.E.; Zema, D.A.; Carrà, B.G.; Cerdà, A.; Plaza-Alvarez, P.A.; Cózar, J.S.; Gonzalez-Romero, J.; Moya, D.; de las Heras, J. Short-term changes in infiltration between straw mulched and non-mulched soils after wildfire in Mediterranean forest ecosystems. Ecol. Eng. 2018, 122, 27–31. [Google Scholar] [CrossRef]
- Trabaud, L. Man and fire: Impacts on Mediterranean vegetation. In Mediterranean-Type Shrublands; di Castri, F., Goodall, D.W., Specht, R.L., Eds.; Elsevier: Amsterdam, The Netherlands, 1996; pp. 523–537. [Google Scholar]
- Cerdà, A.; Doerr, S.H. Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils. Hydrol. Process. 2007, 21, 2325–2336. [Google Scholar] [CrossRef]
- Markus, F.; Hannes, F.; William, A.J.; Leuenberger, J. Susceptibility of soils to preferential flow of water: A field study. Water Resour. Res. 1994, 30, 1945–1954. [Google Scholar]
- Doerr, S.H.; Shakesby, R.A.; Walsh, R.P.D. Soil hydrophobicity in north-west Europe: Its occurrence and implications for modelling soil hydrological response. In Second Inter-Celtic Colloquium on Hydrology and the Management of Water Resources, 3–7 July; British Hydrological Society Occasional Paper; British Hydrological Society: London, UK, 2000; Volume 11, pp. 211–218. [Google Scholar]
- Doerr, S.H.; Shakesby, R.A.; Walsh, R.P.D. Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth-Sci. Rev. 2000, 51, 33–65. [Google Scholar] [CrossRef]
- Taumer, K.; Stoffregen, H.; Wessolek, G. Seasonal dynamics of preferential flow in a water repellent soil. Vadose Zone, J. 2006, 5, 405–411. [Google Scholar] [CrossRef]
- McKissock, I.; Gilkes, R.J.; Harper, R.J.; Carter, D.J. Relationships of water repellency to soil properties for different spatial scales of study. Aust. J. Soil Res. 1998, 36, 495–507. [Google Scholar] [CrossRef]
- Brevik, E.C.; Cerdà, A.; Mataix-Solera, J.; Pereg, L.; Quinton, J.N.; Six, J.; Van Oost, K. The interdisciplinary nature of SOIL. Soil 2015, 1, 117–129. [Google Scholar] [CrossRef] [Green Version]
- DeBano, L.F. The effect of hydrophobic substances on water movement in soil during infiltration. Proc. Soil Sci. Soc. Am. 1971, 35, 340–343. [Google Scholar] [CrossRef]
- Doerr, S.H.; Ferreira, A.J.D.; Walsh, R.P.D.; Shakesby, R.A.; Leighton-Boyce, G.; Coelho, C.O.A. Soil water repellency as a potential parameter in rainfall-runoff modelling: Experimental evidence at point to catchment scales from Portugal. Hydrol. Process. 2003, 17, 363–377. [Google Scholar] [CrossRef]
- Cerdà, A.; Doerr, S.H. Influence of vegetation recovery on soil hydrology and erodibility following fire: An 11-year investigation. Int. J. Wildland Fire 2005, 14, 423–437. [Google Scholar] [CrossRef]
- Eynard, A.; Schumacher, T.E.; Lindstrom, M.J.; Malo, D.D. Effects of agricultural management systems on soil organic carbon in aggregates of Ustolls and Usterts. Soil Tillage Res. 2005, 81, 253–263. [Google Scholar] [CrossRef]
- Wallis, M.G.; Horne, D.J. Soil water repellency. In Advances in Soil Science; Stewart, B.A., Ed.; Springer: New York, NY, USA, 1992; Volume 20, pp. 91–146. [Google Scholar]
- Blanco-Canqui, H. Does no-till farming induce water repellency to soils? Soil Use Manag. 2011, 27, 2–9. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Extent of soil water repellency under long-term notill soils. Geoderma 2009, 149, 171–180. [Google Scholar] [CrossRef]
- García-Moreno, J.; Gordillo-Rivero, Á.J.; Zavala, L.M.; Jordán, A.; Pereira, P. Mulch application in fruit orchards increases the persistence of soil water repellency during a 15-years period. Soil Tillage Res. 2013, 130, 62–68. [Google Scholar] [CrossRef]
- Romero Diaz, A.; Barbera, G.G.; Lopez Bermudez, F. Relationship between soil erosion, rainfall and vegetation cover in the semiarid environment of south east of Iberian Peninsula. In Proceedings of the Conference on Erosion and Land Degradation in the Mediterranean, Aveiro, Portugal, 14–18 June 1995; pp. 59–73. [Google Scholar]
- Vacca, A.; Loddo, S.; Ollesch, G.; Puddu, R.; Serra, G.; Tomasi, D.; Aru, A. Measurement of runoff and soil erosion in three areas under different land use in Sardinia (Italy). CATENA 2000, 40, 69–92. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 2006, 15, 259–263. [Google Scholar] [CrossRef]
- FAO-UNESCO. Soil Map of the World, 1:5,000,000; UNESCO: Paris, France, 1981. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Update 2015; World Soil Resources Report 106; FAO: Rome, Italy, 2015; p. 188. [Google Scholar]
- Guitián, F.; Carballas, T. Técnicas de análisis de suelos; Ed. Pico Sacro: Santiago de Compostela, Spain, 1976. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Part 3; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Eds.; SSSA Book Series; American Society of Agronomy: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Hedo, J.; Lucas-Borja, M.E.; Wic, B.; Andrés Abellán, M.; De las Heras, J. Experimental site and season over-control the effect of Pinus halepensis in microbial properties of soil under semiarid and dry conditions. J. Arid Environ. 2015, 116, 44–52. [Google Scholar] [CrossRef]
- Bremmer, J.M.; Mulvaney, C.S. Nitrogen—Total. In Methods of Soil Analysis; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; Circular 939; U.S. Department of Agriculture: Washington, DC, USA, 1954; pp. 1–19.
- Thomas, G.W. Exchangeable Cations. In Methods of Soil Analysis; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 159–165. [Google Scholar]
- Decagon Devices. Minidisk Infiltrometer User’s Manual Version 10; Decagon Devices: Pullman, WA, USA, 2012. [Google Scholar]
- Zhang, R. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Sci. Soc. Am. J. 1997, 61, 1024–1030. [Google Scholar] [CrossRef]
- Doerr, S.H. On standardizing the ‘water drop penetration time’ andthe ‘molarity of an ethanol droplet’ techniques to classify soil hydrophobicity: A case study using medium textured soils. Earth Surf. Process. Landf. 1998, 23, 663–668. [Google Scholar] [CrossRef]
- Plaza-Álvarez, P.A.; Lucas-Borja, M.E.; Sagra, J.; Zema, D.A.; González-Romero, J.; Moya, D.; De las Heras, J. Changes in soil hydraulic conductivity after prescribed fires in Mediterranean pine forests. J. Environ. Manag. 2019, 232, 1021–1027. [Google Scholar] [CrossRef]
- Zema, D.A.; Bombino, G.; Andiloro, S.; Zimbone, S.M. Irrigation of energy crops with urban wastewater: Effects on biomass yields, soils and heating values. Agric. Water Manag. 2012, 115, 55–65. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 13th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Cerdà, A. Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrol. Process. 1998, 12, 1031–1042. [Google Scholar] [CrossRef]
- Cerdà, A. Postfire dynamics of erosional processes under Mediterranean climatic conditions. Zeitschrift fur Geomorphologie 1998, 42, 373–398. [Google Scholar]
- Doerr, S.H.; Shakesby, R.A.; Dekker, L.W.; Ritsema, C.J. Occurrence, prediction and hydrological effects of water repellency amongst major soil and land-use types in a humid temperate climate. Eur. J. Soil Sci. 2006, 57, 741–754. [Google Scholar] [CrossRef]
- DeBano, L.F. Water repellency in soils: A historical overview. J. Hydrol. 2000, 231–232, 4–32. [Google Scholar] [CrossRef]
- Dekker, L.W.; Ritsema, C.J. Variation in water content and wetting patterns in Dutch water repellent peaty clay and clayey peat soils. CATENA 1996, 28, 89–105. [Google Scholar] [CrossRef]
- Doerr, S.H.; Ritsema, C.J.; Dekker, L.W.; Scott, D.F.; Carter, D. Water repellence of soils: New insights and emerging research needs. Hydrol. Process. Int. J. 2007, 21, 2223–2228. [Google Scholar] [CrossRef]
- Hallett, P.D.; Gaskin, R.E. An introduction to soil water repellency. In Proceedings of the 8th International Symposium on Adjuvants for Agrochemicals (ISAA2007), Columbus, OH, USA, 6–9 August 2007; International Society for Agrochemical Adjuvants: Wageningen, The Netherlands, 2007. [Google Scholar]
- Woche, S.K.; Goebel, M.O.; Kirkham, M.B.; Horton, R.; Van der Ploeg, R.R.; Bachmann, J. Contact angle of soils as affected by depth texture and land management. Eur. J. Soil Sci. 2005, 56, 239–251. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Doerr, S.H. Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forests in southeastern Spain. Geoderma 2004, 118, 77–88. [Google Scholar] [CrossRef]
- Granged, A.J.P.; Zavala, L.M.; Jordàn, A.; Munoz-Rojas, M.; Mataix-Solera, J. Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia). Geoderma 2011, 167–168, 125–134. [Google Scholar] [CrossRef]
- González-Peñaloza, F.A.; Cerdà, A.; Zavala, L.M.; Jordán, A.; Giménez-Morera, A.; Arcenegui, V. Do conservative agriculture practices increase soil water repellency? A case study in citrus-cropped soils. Soil Tillage Res. 2012, 124, 233–239. [Google Scholar] [CrossRef]
- Hallett, P.D. A brief overview of the causes, impacts and amelioration of soil water repellency—A review. Soil Water Res. 2008, 3, 521–528. [Google Scholar] [CrossRef]
- Dekker, L.W.; Doerr, S.H.; Oostindie, K.; Ziogas, A.K.; Ritsema, C.J. Water repellency and critical soil water conent in a dune sand. Soil Sci. Soc. Am. J. 2001, 65, 1667–1674. [Google Scholar] [CrossRef]
- Verheijen, F.G.A.; Cammeraat, L.H. The association between three dominant shrub species and water repellent soils along a range of soil moisture contents in semi-arid Spain. Hydrol. Process. 2007, 21, 2310–2316. [Google Scholar] [CrossRef]
- Cammeraat, E.L.; Cerdà, A.; Imeson, A.C. Ecohydrological adaptation of soils following land abandonment in a semi-arid environment. Ecohydrology 2010, 3, 421–430. [Google Scholar] [CrossRef]
- Cerdà, A. The effect of patchy distribution of Stipa tenacissima L. on runoff and erosion. J. Arid Environ. 1997, 36, 37–51. [Google Scholar] [CrossRef]
- Keesstra, S.; Pereira, P.; Novara, A.; Brevik, E.C.; Azorin-Molina, C.; Parras-Alcántara, L.; Jordán, A.; Cerdà, A. Effects of soil management techniques on soil water erosion in apricot orchards. Sci. Total Environ. 2016, 551, 357–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Megahan, W.F.; Molitor, D.C. Erosional effects of wildfire and logging in Idaho. In Proceedings of the Symposium on Watershed Management, American Society of Civil Engineers, Cogan, UT, USA, 14–16 August 1975; pp. 423–444. [Google Scholar]
- Prosser, I.P.; Williams, L. The effect of wildfire on runoff and erosion in native Eucalyptus forest. Hydrol. Process. 1998, 12, 251–265. [Google Scholar] [CrossRef]
- Lesschen, J.P.; Cammeraat, L.H.; Kooijman, A.M.; van Wesemael, B. Development of spatial heterogeneity in vegetation and soil properties after land abandonment in a semi-arid ecosystem. J. Arid Environ. 2008, 72, 2082–2092. [Google Scholar] [CrossRef]
- Moody, J.A.; Shakesby, R.A.; Robichaud, P.R.; Cannon, S.H.; Martin, D.A. Current research issues related to post-wildfire runoff and erosion processes. Earth Sci. Rev. 2013, 122, 10–37. [Google Scholar] [CrossRef]
- Shakesby, R.A. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth Sci. Rev. 2011, 105, 71–100. [Google Scholar] [CrossRef]
Land Use * | Sand (%) | Silt (%) | Clay (%) | Bulk Density (g cm−3) | Rock (%) | Herbal Cover (%) | Bare Soil (%) | Dead Woody Matter (%) |
---|---|---|---|---|---|---|---|---|
IA | 46.0 ± 9.9 b | 35.3 ± 8.7 a | 18.7 ± 9.7 ab | 1.25 ± 0.2 a | 14.2 ± 2.9 a | 1.0 ± 0.7 b | 72.8 ± 3.8 a | 33.3 ± 5.7 b |
AF | 32.9 ± 12.2 b | 39.8 ± 7.9 a | 27.7 ± 6.8 a | 1.10 ± 0.3 b | 3.1 ± 2.2 b | 32.4 ± 4.9 a | 31.1 ± 2.8 b | 12.8 ± 5.7 c |
FO | 70.0 ± 10.1 a | 19.5 ± 9.5 b | 10.3 ± 6.7 b | 0.83 ± 0.2 c | 10.0 ± 2.2 ab | 29.5 ± 5.5 a | 1.3 ± 0.5 c | 59.1 ± 6.6 a |
Land Use * | pH (-) | OM (%) | C (%) | N (%) | P (ppm) | K (meq/100 g) | Na (meq/100 g) |
IA | 8.7 ± 0.7 a | 0.98 ± 1.0 b | 0.56 ± 0.2 b | 0.05 ± 0.01 a | 21.7 ± 6.3 a | 0.5 ± 0.1 b | 0.32 ± 0.11 a |
AF | 8.5 ± 0.7 a | 2.7 ± 0.9 a | 1.5 ± 0.5 a | 0.10 ± 0.05 a | 8.1 ± 2.1 b | 0.8 ± 0.2 a | 0.35 ± 0.10 a |
FO | 8.7 ± 0.6 a | 2.2 ± 0.8 a | 1.3 ± 0.5 a | 0.08 ± 0.03 a | 7.4 ± 1.1 b | 0.2 ± 0.1 c | 0.10 ± 0.05 b |
Land Use * | Ca (meq/100 g) | Mg (meq/100 g) | C/N | K/Mg | Ca/Mg | CEC (meq/100 g) | EC (mS/cm) |
IA | 32.1 ± 5.9 b | 1.3 ± 0.3 a | 11.9 ± 3.7 a | 0.3 ± 0.1 a | 24.1 ± 5.9 b | 9.9 ± 3.8 ab | 0.21 ± 0.03 a |
AF | 41.5 ± 7.9 a | 1.6 ± 0.3 a | 14.2 ± 3.5 a | 0.5 ± 0.1 a | 25.8 ± 6.2 b | 16.3 ± 5.3 a | 0.21 ± 0.02 a |
FO | 32.2 ± 9.4 a | 0.7 ± 0.2 b | 16.3 ± 8.2 a | 0.3 ± 0.1 a | 43.9 ± 7.7 a | 6.8 ± 3.8 b | 0.24 ± 0.04 a |
Soil Parameter * | Degree of Freedoms | F-Ratio | P-Value |
---|---|---|---|
SWC | 2 | 28.9 | <0.05 |
SWR (soil surface) | 53.7 | ||
SWR (−2 cm) | 34.7 | ||
SHC | 10.5 |
Soil Properties (Original Variables) | PCs | |
---|---|---|
PC1 (51%) | PC2 (37%) | |
Rock | 0.111 | 0.113 |
Vegetation cover | −0.102 | −0.263 |
Bare soil | 0.088 | 0.347 |
Dead woodymatter | −0.070 | −0.268 |
Bulk density | 0.009 | 0.306 |
Sand content | 0.269 | −0.202 |
Silt content | −0.244 | 0.245 |
Clay content | −0.293 | 0.141 |
pH | 0.311 | 0.054 |
Electrical conductivity | −0.312 | 0.051 |
Organic matter | −0.191 | −0.304 |
Total nitrogen content | −0.247 | −0.237 |
Phosphorous content | 0.097 | 0.365 |
Potassium content | −0.307 | 0.089 |
Sodium content | −0.230 | 0.264 |
Calcium content | −0.311 | −0.059 |
Magnesium content | −0.263 | 0.214 |
Total carbon content | −0.193 | −0.303 |
Cation Exchange Capacity | −0.310 | 0.070 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucas-Borja, M.E.; Zema, D.A.; Plaza-Álvarez, P.A.; Zupanc, V.; Baartman, J.; Sagra, J.; González-Romero, J.; Moya, D.; de las Heras, J. Effects of Different Land Uses (Abandoned Farmland, Intensive Agriculture and Forest) on Soil Hydrological Properties in Southern Spain. Water 2019, 11, 503. https://doi.org/10.3390/w11030503
Lucas-Borja ME, Zema DA, Plaza-Álvarez PA, Zupanc V, Baartman J, Sagra J, González-Romero J, Moya D, de las Heras J. Effects of Different Land Uses (Abandoned Farmland, Intensive Agriculture and Forest) on Soil Hydrological Properties in Southern Spain. Water. 2019; 11(3):503. https://doi.org/10.3390/w11030503
Chicago/Turabian StyleLucas-Borja, Manuel Esteban, Demetrio Antonio Zema, Pedro Antonio Plaza-Álvarez, Vesna Zupanc, Jantiene Baartman, Javier Sagra, Javier González-Romero, Daniel Moya, and Jorge de las Heras. 2019. "Effects of Different Land Uses (Abandoned Farmland, Intensive Agriculture and Forest) on Soil Hydrological Properties in Southern Spain" Water 11, no. 3: 503. https://doi.org/10.3390/w11030503
APA StyleLucas-Borja, M. E., Zema, D. A., Plaza-Álvarez, P. A., Zupanc, V., Baartman, J., Sagra, J., González-Romero, J., Moya, D., & de las Heras, J. (2019). Effects of Different Land Uses (Abandoned Farmland, Intensive Agriculture and Forest) on Soil Hydrological Properties in Southern Spain. Water, 11(3), 503. https://doi.org/10.3390/w11030503