Gridded Flash Flood Risk Index Coupling Statistical Approaches and TOPLATS Land Surface Model for Mountainous Areas
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Land Surface Model
2.3. Statistical Model
3. Numerical Results
3.1. TOPLATS Results
3.2. Statical Flash Flood Risk Index Model
3.2.1. Factor Analysis
3.2.2. Linear Regression Analysis
3.2.3. Flash Flood Risk Index Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Korea Meteorological Administration. Heavy Rainfall Events Top 10; KMA Registered Pub. No. 11-136000-0008333-01; KMA (Korea Meteorological Administration): Seoul, Korea, 2011. (In Korean)
- Reed, S.; Schaake, J.; Zhang, Z. A distributed hydrologic model and threshold frequency-based method for flash flood forecasting at ungauged locations. J. Hydrol. 2007, 337, 402–420. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, R.; Guo, L.; Tian, J.; Zhang, X.; Ding, L.; Wang, C.; Shang, Y. Forecasting and Providing Warnings of Flash Floods for Ungauged Mountainous Areas Based on a Distributed Hydrological Model. Water 2017, 9, 776. [Google Scholar] [CrossRef]
- Sivapalan, M.; Takeuchi, K.; Franks, S.W.; Gupta, V.K.; Karambiri, H.; Lakshmi, V.; Liang, X.; Mendiondo, E.M.; O’connell, P.E.; Oki, T.; et al. IAHS Decade on Predictions in Ungauged Basins (PUB), 2003–2012: Shaping an exciting future for the hydrological sciences. Hydrol. Sci. J. 2003, 48, 857–880. [Google Scholar] [CrossRef] [Green Version]
- Hrachowitz, M.; Savenije, H.H.G.; Blöschl, G.; McDonnell, J.J.; Sivapalan, M.; Pomeroy, J.W.; Arheimer, B.; Blume, T.; Clark, M.P.; Ehret, U.; et al. A decade of Predictions in Ungauged Basins (PUB)—A review. Hydrol. Sci. J. 2013, 58, 1198–1255. [Google Scholar] [CrossRef]
- Razavi, T.; Coulibaly, P. An evaluation of regionalization and watershed classification schemes for continuous daily streamflow prediction in ungauged watersheds. Can. Water Resour. J. Rev. Can. Des. Ressour. Hydr. 2017, 42, 2–20. [Google Scholar] [CrossRef]
- Song, X.; Kong, F.; Zhu, Z. Application of Muskingum routing method with variable parameters in ungauged basin. Water Sci. Eng. 2011, 4, 1–12. [Google Scholar]
- Ruiz-Villanueva, V.; Díez-Herrero, A.; Bodoque, J.M.; Ballesteros Cánovas, J.A.; Stoffel, M. Characterization of flash floods in small ungauged mountain basins of Central Spain using an integrated approach. Catena 2013, 110, 32–43. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Skilodimou, H.D.; Chousianitis, K.; Youssef, A.M.; Pradhan, B. Suitability estimation for urban development using multi-hazard assessment map. Sci. Total Environ. 2017, 575, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Bathrellos, G.D.; Gaki-Papanastassiou, K.; Skilodimou, H.D.; Papanastassiou, D.; Chousianitis, K.G. Potential suitability for urban planning and industry development by using natural hazard maps and geological–geomorphological parameters. Env. Earth Sci. 2012, 66, 537–548. [Google Scholar] [CrossRef]
- Xia, J.; Falconer, R.A.; Lin, B.; Tan, G. Numerical assessment of flood hazard risk to people and vehicles in flash floods. Environ. Model. Softw. 2011, 26, 987–998. [Google Scholar] [CrossRef]
- Maidment, D.R. Conceptual Framework for the National Flood Interoperability Experiment. JAWRA J. Am. Water Resour. Assoc. 2017, 53, 245–257. [Google Scholar] [CrossRef]
- Alfieri, L.; Velasco, D.; Thielen, J. Flash flood detection through a multi-stage probabilistic warning system for heavy precipitation events. Adv. Geosci. 2011, 29, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Alfieri, L.; Pappenberger, F.; Wetterhall, F. The extreme runoff index for flood early warning in Europe. Nat. Hazards Earth Syst. Sci. 2014, 14, 1505–1515. [Google Scholar] [CrossRef] [Green Version]
- Balica, S.F.; Popescu, I.; Beevers, L.; Wright, N.G. Parametric and physically based modeling techniques for flood risk and vulnerability assessment: A comparison. Environ. Model. Softw. 2013, 41, 84–92. [Google Scholar] [CrossRef]
- Davis, R.S. Flash flood forecast and detection methods. In Severe Convective Storms; Doswell, C.A., III, Ed.; American Meteorological Society: Boston, MA, USA, 2001; pp. 481–525. [Google Scholar]
- Doswell, C.A., III; Brooks, H.E.; Maddox, R.A. Flash flood forecasting: An ingredients-based methodology. Weather 1996, 11, 560–581. [Google Scholar] [CrossRef]
- Gichamo, Z.G.; Popescu, I.; Jonoski, A.; Solomatine, D.P. River cross section extraction from ASTER global DEM for flood modeling. Environ. Model. Softw. 2012, 31, 37–46. [Google Scholar] [CrossRef]
- Hartanto, I.M.; Beevers, L.; Popescu, L.; Wright, N.G. Application of a coastal modeling code in fluvial environments. Environ. Model. Softw. 2011, 26, 1685–1695. [Google Scholar] [CrossRef]
- Maddox, R.A.; Chappell, C.F.; Hoxit, L.R. Synoptic and meso-alpha aspects of flash flood events. Bull. Am. Meteorol. Soc. 1979, 60, 115–123. [Google Scholar] [CrossRef]
- Van, S.N.; Ronsyn, J.; Willems, P. A non-parametric data-based approach for probabilistic flood forecasting in support of uncertainty communication. Environ. Model. Softw. 2012, 33, 92–105. [Google Scholar]
- Georakakos, K.P. Real-time flash flood prediction. J. Geophys. Res. 1987, 92, 9615–9629. [Google Scholar] [CrossRef]
- Carpenter, T.M.; Georgakakos, K.P. GIS based Procedures in Support of Flash Flood Guidance; IHR Report No. 366; Iowa Institute of Hydraulic Research, The University of Iowa: Iowa City, IA, USA, 1993; pp. 1–27. [Google Scholar]
- Torgersen, G.; Rød, J.K.; Kvaal, K.; Bjerkholt, J.T.; Lindholm, O.G. Evaluating Flood Exposure for Properties in Urban Areas Using a Multivariate Modelling Technique. Water 2017, 9, 318. [Google Scholar] [CrossRef]
- Gigović, L.; Pamučar, D.; Bajić, Z.; Drobnjak, S. Application of GIS-Interval Rough AHP Methodology for Flood Hazard Mapping in Urban Areas. Water 2017, 9, 360. [Google Scholar] [CrossRef]
- Kauffeldt, A.; Wetterhall, F.; Pappenberger, F.; Salamon, P.; Thielen, J. Technical review of large-scale hydrological models for implementation in operational flood forecasting schemes on continental level. Environ. Model. Softw. 2016, 75, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Blöschl, G.; Reszler, C.; Komma, J. A spatially distributed flash flood forecasting model. Environ. Model. Softw. 2008, 23, 464–478. [Google Scholar] [CrossRef]
- Sweeney, T.L. Modernized Areal Flash Flood Guidance; NOAA Technical Memorandum NWS HYDRO44; Hydrologic Research Laboratory, National Weather Service, NOAA: Silver Spring, MD, USA, 1992; p. 21.
- Mogil, H.M.; Monro, J.C.; Groper, H.S. NWS’s flash flood warning and disaster preparedness programs. Bull. Am. Meteorol. Soc. 1978, 59, 60–69. [Google Scholar] [CrossRef]
- Skilodimou, H.; Livaditis, G.; Bathrellos, G.; Verikiou–Papaspiridakou, E. Investigating the flooding events of the urban regions of Glyfada and Voula, Attica, Greece: A contribution to Urban Geomorphology. Geogr. Ann. A 2003, 85, 197–204. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Karymbalis, E.; Skilodimou, H.D.; Gaki-Papanastassiou, K.; Baltas, E.A. Urban flood hazard assessment in the basin of Athens Metropolitan city, Greece. Environ. Earth Sci. 2016, 75, 319. [Google Scholar] [CrossRef]
- Hill, C.; Verjee, F.; Barrett, C. Flash Flood Early Warning System Reference Guide 2010; University Corporation for Atmospheric Research: Boulder, CO, USA, 2010; ISBN 978-0-615-37421-5. [Google Scholar]
- Smith, S.B.; Filiaggi, M.T.; Churma, M.; Roee, J.; Glaudemans, M.; Erb, R.; Xin, L. Flash flood monitoring and prediction in AWIPS Build 5 and beyond. In Proceedings of the 15th Conference on Hydrology, Long Beach, CA, USA, 9–14 January 2000. [Google Scholar]
- Bae, D.H.; Jung, I.W.; Chang, H. Long-term trend of precipitation and runoff in Korean river basins. Hydrol. Process. 2008, 22, 2644–2656. [Google Scholar] [CrossRef]
- Chang, H.; Kwon, W.T. Spatial variations of summer precipitation trends in South Korea, 1973–2005. Environ. Res. Lett. 2007, 2, 1–9. [Google Scholar] [CrossRef]
- Jung, I.W.; Bae, D.H.; Kim, G. Recent trends of mean and extreme precipitation in Korea. Int. J. Clim. 2011, 31, 359–370. [Google Scholar] [CrossRef]
- Lee, S.; Kwon, W.T. A variation of summer rainfall in Korea. J. Korean Geogr. Soc. 2004, 39, 819–832. [Google Scholar]
- Bae, D.H.; Kim, J.H. Development of Korea flash flood guidance system: (I) theory and system design. J. Korean Soc. Civ. Eng. 2007, 27, 237–243. [Google Scholar]
- Bae, D.H.; Kim, J.H. Development of Korea flash flood guidance system: (II) Component Development and System Analysis. J. Korean Soc. Civ. Eng. 2007, 27, 245–254. [Google Scholar]
- Famiglietti, J.S.; Wood, E.F. Application of multiscale water and energy balance models on a tallgrass prairie. Water Resour. Res. 1994, 30, 3061–3078. [Google Scholar] [CrossRef]
- Peters-Lidard, C.D.; Zion, M.S.; Wood, E.F. A soil-vegetation-atmosphere transfer scheme for modeling spatially variable water and energy balance processes. J. Geophys. Res. 1997, 102, 4303–4324. [Google Scholar] [CrossRef] [Green Version]
- Bell, V.A.; Moore, R.J. A grid-based distributed flood forecasting model for use with weather radar data: Part 2. Case studies. Hydrol. Earth Syst. Sci. Discuss. 1988, 2, 308–318. [Google Scholar] [CrossRef]
- Ji, H.S.; Lee, B.J.; Nam, K.Y.; Lee, C.K.; Jung, H.S. Evaluation of hydrological components simulated by water and energy balance. J. Korea Water Resour. Assoc. 2014, 47, 25–35. [Google Scholar] [CrossRef]
- Refsgaard, J.C.; Knudsen, J. Operational validation and intercomparison of different types of hydrological models. Water Resour. Res. 1996, 32, 2189–2202. [Google Scholar] [CrossRef]
- Lee, B.J.; Choi, Y.J. Evaluation of high-resolution hydrologic components based on TOPLATS land surface model. Atmosphere 2012, 22, 357–365. [Google Scholar] [CrossRef]
- Smith, M.B.; Seo, D.J.; Koren, V.I.; Reed, S.M.; Zhang, Z.; Duan, Q.; Moreda, F.; Cong, S. The distributed model intercomparison project (DMIP): Motivation and experimental design. J. Hydrol. 2004, 298, 4–26. [Google Scholar] [CrossRef]
- Beven, K.; Quinn, P.; Romanowicz, R.; Rreer, J.; Fisher, J.; Lamb, R. TOPMODEL and GRIDDATB, A Users Guide to the Distribution Versions (94.03); CRES Technical Report TR110/94; Lancaster University: Lancaster, UK, 1994. [Google Scholar]
- Bormann, H. Impact of spatial data resolution on simulated catchment water balances and model performance of the multi-scale TOPLATS model. Hydrol. Earth Syst. Sci. 2006, 10, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Monteith, J.L. Evaporation and environment. In The State and Movement of Water in Living Organism; Fogy, G.T., Ed.; Cambridge University Press: Cambridge, UK, 1965; pp. 205–234. [Google Scholar]
- Milly, P.C.D. An event-based simulation model of moisture and energy fluxes at a bare soil surface. Water Resour. Res. 1986, 22, 1680–1692. [Google Scholar] [CrossRef]
- Gardner, W.R. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci. 1985, 85, 228–239. [Google Scholar] [CrossRef]
- Brooks, R.J.; Corey, A.T. Hydraulic Properties of Porous Media; Hydrology Paper 3; Colorado State University: Fort Collins, CO, USA, 1964. [Google Scholar]
- Sivapalan, M.; Beven, K.; Wood, E.F. On hydrologic similarity. 2. A scaled model of storm turnoff production. Water Resour. Res. 1987, 23, 2266–2278. [Google Scholar] [CrossRef]
- Beven, K.J.; Lamb, R.; Quinn, P.F.; Romanowicz, R.; Freer, J. TOPMODEL. In Computer Models of Watershed Hydrology; Singh, V.P., Ed.; Water Resources Publications: Colorado, CO, USA, 1995; pp. 627–668. [Google Scholar]
- Rawls, W.J.; Brakensiek, D.L. Prediction of soil water properties for hydrological modeling. In Watershed Management in the Eighties; Jones, E., Ward, T.J., Eds.; ASCE: Denver, CO, USA, 1985; pp. 293–299. [Google Scholar]
- Famiglietti, J.S.; Wood, E.F. Multiscale modelling of spatially variable water and energy balance processes. Water Resour. Res. 1994, 30, 3061–3078. [Google Scholar] [CrossRef]
- McDonnell, J.J. Where does water go when it rains? Moving beyond the variable source area concept of rainfall-runoff response. Hydrol. Process. 2003, 17, 1869–1875. [Google Scholar] [CrossRef]
- Smith, G.E. Development of a Flash Flood Potential Index Using Physiographic Data Sets within a Geographic Information System; University of Utah: Salt Lake City, UT, USA, 2010. [Google Scholar]
- Davis, R.S. The Flash Flood (FF) Index: Estimating Flash Flood Severity. In Proceedings of the Symposium on Managing the Extremes, Floods and Droughts, Environmental and Water Resources; Institute of American Society of Civil Engineers: Roanoke, VA, USA, 2002. [Google Scholar]
- Clark, R.A.; Gourley, J.J.; Flamig, Z.L.; Hong, Y.; Clark, E. CONUS-wide evaluation of National Weather Service flash flood guidance products. Weather 2014, 29, 377–392. [Google Scholar] [CrossRef]
- Schroeder, A.J.; Gourley, J.J.; Hardy, J.; Henderson, J.J.; Parhi, P.; Rahmani, V.; Reed, K.A.; Schumacher, R.S.; Smith, B.K.; Taraldsen, M.J. The development of a flash flood severity index. J. Hydrol. 2016, 541, 523–532. [Google Scholar] [CrossRef] [Green Version]
- Sung, T.J.; Si, K.J. Methodology; Hakjisa: Seoul, Korea, 2014. [Google Scholar]
- Warner, R.M. Applied Statistics: From Bivariate through Multivariate Techniques; Sage Publications: Los Angeles, CA, USA, 2008. [Google Scholar]
- Chatterjee, S.; Hadi, A.S. Regression Analysis by Example; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
Case | Date | Report Time | Coordinate (long, lat) | Type | Casualties |
---|---|---|---|---|---|
1 | 9 July 2009 | 13:44 | (126.96, 37.44) | valley | isolation: 3 |
2 | 9 July 2009 | 12:46 | (126.80, 37.53) | heavy rain | isolation: 11 |
3 | 14 July 2009 | 13:40 | (126.80, 37.53) | Stream | isolation: 4 |
4 | 10 August 2010 | 17:21 | (126.94, 37.64) | valley | isolation: 32 |
5 | 10 August 2010 | 18:33 | (126.90, 37.57) | heavy rain | wet vehicle: 3 |
6 | 14 August 2010 | 22:40 | (127.14, 38.21) | heavy rain | rescue |
7 | 15 August 2010 | 14:05 | (127.43, 37.88) | valley | rescue: 52 |
8 | 15 August 2010 | 19:13 | (127.39, 38.07) | valley | rescue: 100 |
9 | 2 September 2010 | 15:12 | (127.32, 37.96) | stream | isolation: 16 |
10 | 10 September 2010 | 13:55 | (127.43, 37.60) | stream | isolation: 2 |
11 | 11 September 2010 | 07:02 | (127.44, 37.86) | stream | isolation: 10 |
12 | 11 September 2010 | 19:16 | (127.54, 37.33) | stream | isolation: 24 |
13 | 12 September 2010 | 10:46 | (126.99, 37.71) | valley | isolation: 20 |
14 | 21 September 2010 | 21:17 | (127.09, 37.43) | valley | isolation: 5 |
15 | 21 September 2010 | 13:55 | (126.99, 37.57) | valley | isolation: 9 |
16 | 21 September 2010 | 18:47 | (127.38, 37.72) | valley | isolation: 4 |
17 | 25 July 2011 | 20:07 | (126.99, 37.45) | stream | isolation: 12 |
18 | 26 July 2011 | 18:24 | (127.25, 37.42) | stream | missing: 2 |
19 | 27 July 2011 | 10:05 | (127.26, 37.42) | stream | death: 1 |
20 | 27 July 2011 | 14:03 | (127.34, 37.39) | stream | death: 1 |
21 | 27 July 2011 | 14:15 | (127.74, 37.28) | stream | death: 1 |
22 | 27 July 2011 | 16:20 | (127.58, 37.56) | landslide | burying: 1 |
23 | 27 July 2011 | 09:50 | (127.17, 37.32) | stream | missing: 1 |
24 | 27 July 2011 | 16:45 | (126.70, 37.80) | stream | missing: 1 |
25 | 27 July 2011 | 16:45 | (127.32, 37.96) | landslide | missing: 1 |
26 | 27 July 2011 | 18:32 | (127.00, 37.66) | landslide | death: 2, injury: 3 |
27 | 27 July 2011 | 22:29 | (127.67, 37.54) | landslide | death: 3, injury: 2, bury: 2 |
28 | 31 July 2011 | 17:25 | (126.95, 37.48) | valley | isolation: 4 |
29 | 31 July 2011 | 18:07 | (127.15, 37.60) | valley | isolation: 7 |
30 | 3 August 2011 | 17:34 | (127.02, 38.09) | valley | isolation: 3 |
31 | 12 August 2011 | 16:33 | (127.23, 37.79) | heavy rain | isolation: 7 |
32 | 14 August 2011 | 12:41 | (127.30, 37.54) | heavy rain | isolation: 80 |
33 | 13 July 2012 | 20:33 | (127.61, 37.58) | stream | isolation: 1 |
34 | 15 July 2012 | 14:10 | (127.43, 37.88) | stream | isolation: 3 |
35 | 19 July 2012 | 09:56 | (127.44, 37.86) | stream | isolation: 1 |
36 | 15 August 2012 | 13:36 | (126.99, 37.71) | valley | isolation: 12 |
37 | 15 August 2012 | 13:59 | (126.99, 37.71) | valley | isolation: 18 |
38 | 15 August 2012 | 15:34 | (127.00, 37.66) | valley | isolation: 8 |
Model Part | Process | Approach |
---|---|---|
Interception | Storage approach: storage capacity is proportional to leaf area index | |
Potential evapotranspiration (PET) | Penman Monteith equation [49] (plant specific PET) | |
Actual evapotranspiration | Reduction of PET by actual soil moisture status (alternative: solving energy balance equation) | |
Local SVAT1 | Infiltration | Infiltration capacity after Milly [50] (depending on soil properties and soil water status) |
Infiltration excess runoff | Difference between rainfall rate and infiltration capacity | |
Saturation excess runoff Percolation Capillary rise Lower boundary condition | Contributing areas derived from TOPM ODEL; approach based on the soils topographic index Gravity driven drainage Capillary rise from local water table on Gardner [51] using Brooks and Corey parameters [52] Top of capillary fringe | |
TOPMODEL | Spatial distribution of water table depths base flow | Soils-topographic index [53] Exponential decay function; maximum depth flow is base flow at basin saturation |
Time (UTC) | PCP (mm/h) | RUN (mm/h) | SWS (%) |
---|---|---|---|
21 July 2011 13:00 | 19.39 | 10.25 | 35.77 |
21 July 2011 14:00 | 13.45 | 6.14 | 35.58 |
21 July 2011 15:00 | 5.57 | 2.22 | 34.85 |
21 July 2011 16:00 | 4.0 | 1.07 | 34.60 |
Rainfall | Runoff | |||||
---|---|---|---|---|---|---|
Short | Mid | Long | Short | Mid | Long | |
1 h | 0.90 | 0.26 | −0.06 | 0.86 | 0.40 | 0.06 |
2 h | 0.93 | −0.03 | 0.13 | 0.94 | 0.11 | 0.19 |
3 h | 0.64 | 0.59 | 0.01 | 0.34 | 0.89 | 0.26 |
4 h | 0.1 | 0.82 | 0.43 | 0.34 | 0.08 | 0.84 |
5 h | 0.15 | 0.54 | 0.71 | 0.08 | 0.29 | 0.92 |
6 h | −0.04 | 0.13 | 0.93 | 0.02 | 0.10 | 0.94 |
Eigenvalue | 2.1 | 1.4 | 1.56 | 1.86 | 1.06 | 2.54 |
Variance explained (%) | 35.0% | 23.3% | 26.0% | 31.0% | 17.7% | 42.3% |
Total variance explained | 84.3% | 84.3% |
Run | ||||
B | SE | t | P | |
short | 0.037 | 0.007 | 5.502 | 0.001 |
mid | −0.011 | 0.013 | −0.873 | 0.389 |
long | 0.014 | 0.014 | 1.012 | 0.318 |
, , | ||||
Rainfall | ||||
B | SE | t | P | |
short | 0.025 | 0.003 | 7.356 | 0.001 |
mid | 0.022 | 0.011 | 2.077 | 0.045 |
long | 0.007 | 0.009 | 0.812 | 0.422 |
, , |
Case | Cell No. | Preceding Time | RRT | |||||
---|---|---|---|---|---|---|---|---|
−6 | −5 | −4 | −3 | −2 | −1 | 0 | ||
1 | 65399 | 1 | 1 | 1 | 1 | 2 | ||
2 | 61222 | 1 | 1 | 1 | 2 | 2 | ||
3 | 63154 | 1 | ||||||
4 | 57716 | 1 | 2 | |||||
5 | 59952 | |||||||
6 | 38852 | 1 | 1 | |||||
7 | 50725 | |||||||
8 | 43991 | |||||||
9 | 50725 | |||||||
10 | 45909 | 1 | 2 | 1 | ||||
11 | 59036 | 1 | 1 | |||||
12 | 51043 | |||||||
13 | 51043 | |||||||
14 | 68008 | 2 | 2 | 2 | 2 | 2 | ||
15 | 55158 | 1 | 2 | 2 | ||||
16 | 65089 | 1 | 2 | 2 | 2 | |||
17 | 60281 | |||||||
18 | 55834 | 1 | 2 | 2 | ||||
19 | 64440 | 2 | 2 | 2 | 2 | 2 | 1 | |
20 | 66386 | 1 | 1 | 1 | 1 | |||
21 | 67991 | 1 | 1 | 1 | 1 | |||
22 | 67029 | 1 | 1 | 1 | ||||
23 | 71227 | 1 | 1 | 1 | ||||
24 | 60972 | 1 | 1 | 1 | 2 | 2 | 1 | |
25 | 68296 | 2 | 2 | 2 | 2 | 1 | ||
26 | 51614 | 2 | 2 | 2 | ||||
27 | 45911 | 1 | 2 | 2 | 2 | 2 | 2 | 1 |
28 | 55158 | 1 | 1 | 1 | ||||
29 | 57081 | 1 | 1 | |||||
30 | 57081 | 1 | ||||||
31 | 60659 | |||||||
32 | 63798 | |||||||
33 | 59335 | |||||||
34 | 42042 | |||||||
35 | 52301 | 1 | 1 | |||||
36 | 60306 | 2 | 2 | 2 | ||||
37 | 51043 | 1 | 2 | 1 | ||||
38 | 60656 | 1 | 2 | 2 | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, B.-J.; Kim, S. Gridded Flash Flood Risk Index Coupling Statistical Approaches and TOPLATS Land Surface Model for Mountainous Areas. Water 2019, 11, 504. https://doi.org/10.3390/w11030504
Lee B-J, Kim S. Gridded Flash Flood Risk Index Coupling Statistical Approaches and TOPLATS Land Surface Model for Mountainous Areas. Water. 2019; 11(3):504. https://doi.org/10.3390/w11030504
Chicago/Turabian StyleLee, Byong-Ju, and Sangil Kim. 2019. "Gridded Flash Flood Risk Index Coupling Statistical Approaches and TOPLATS Land Surface Model for Mountainous Areas" Water 11, no. 3: 504. https://doi.org/10.3390/w11030504
APA StyleLee, B.-J., & Kim, S. (2019). Gridded Flash Flood Risk Index Coupling Statistical Approaches and TOPLATS Land Surface Model for Mountainous Areas. Water, 11(3), 504. https://doi.org/10.3390/w11030504