Cost of Urban Wastewater Treatment and Ecotaxes: Evidence from Municipalities in Southern Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
- The province of Jaén has 97 municipalities, 64 of which should have had a WWTP in place by 31 December 2005, as established in art. 4 of Directive 91/271/EEC; a requirement that has not been fulfilled.
- A total of 39 urban centres in the province of Jaén that generate an estimated load of 2000 p.e. (population equivalent: organic biodegradable load that has a five-day biochemical oxygen demand (BOD5) of 60 grams of oxygen per day) or more had built a WWTP by the end of 2017. Of these, six remain out of use, while 33 are in operation. Of these 33, a total of 23 are functioning properly (Table 1), in compliance with the requirements set out in Annex I of Directive 91/271/EEC; consequently, we can consider the composition of the treated wastewater in these WWTPs as homogeneous. In the province of Jaén, there is no more stringent regulation governing the quality of wastewater. These 23 WWTPs comprise the total population of the study.
- Of the 23 that are functioning properly, data were available for 18.
- There are also 23 population centres with a load of less than 2000 p.e. located in protected areas, according to the Department of Environment of the Junta de Andalucía, which have WWT facilities.
2.2. Municipal WWT Rates in the Province of Jaén
2.3. Empirical Study Procedure
2.4. Cost Analysis Method
- Remaining life = 0
- The initial cost of the facilities is the value of the investment, divided between industrial building (59.79%) and electrical and electronic equipment (40.21%). The associated percentages are derived from the average share of total costs of these two concepts in ten analysed WWTP projects.
- The straight-line depreciation method is applied to each type of asset. The maximum depreciation period for the industrial building is 68 years, according to the depreciation tables published by the Ministry of Finance and Public Administrations for 2017 [32].
- The estimated useful life for electrical and electronic equipment is 10 years, according to the Ministry of Finance and Public Administrations of Spain for 2017, a value that has been used in other papers [25].
- At the end of the useful life of the asset, the criterion of renewal accounting is followed as an alternative to depreciation. This entails assuming that the assets are maintained over time, even if the expenditure to maintain or repair the assets occurs in a specific financial year [30].
3. Results
3.1. Revenues from WWT Rates
3.2. Estimated Costs
3.3. Cost Recovery Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cheng, S. Heavy metal pollution in China: origin, pattern and control. Environ.Sci. Pollut. Res. 2003, 10, 192–198. [Google Scholar] [CrossRef]
- Kou, S.; Vincent, G.; Gonzalez, E.; Pitre, F.E.; Labrecque, M.; Brereton, N.J. the response of a 16s ribosomal RNA Gene fragment amplified community to Lead, Zinc, and Copper pollution in a Shanghai field trial. Front. Microbiol. 2018, 9, 366. [Google Scholar] [CrossRef] [PubMed]
- Gallego-Valero, L.; Moral-Pajares, E.; Román-Sánchez, I.M. The tax burden on wastewater and the protection of water ecosystems in EU countries. Sustainability 2018, 10, 212. [Google Scholar] [CrossRef]
- Rosenstock, M. Environmental Taxation within the European Union. Cyprus Econ. Policy Rev. 2014, 8, 113–123. [Google Scholar]
- Román-Sánchez, I.M.; Carra, I.; Sánchez-Pérez, J.A. Promoting environmental technology using sanitary tax: the case of agro-food industrial wastewater in Spain. Environ. Eng. Manage. J. 2014, 13, 961–969. [Google Scholar]
- Gallego-Valero, L.; Moral-Pajares, E.; Román-Sánchez, I.M.; Sánchez-Pérez, J.A. Analysis of environmental taxes to finance wastewater treatment in Spain: An opportunity for regeneration? Water 2018, 10, 226. [Google Scholar] [CrossRef]
- World Health Organization. UN-Water Global Analysis and Assessment of Sanitation and Drinking-Water (GLAAS) 2014 Report: Investing in Water and Sanitation: Increasing Access, Reducing Inequalities; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Jouravlev, A.; Lentini, E.; Yurquina, A.; Fernández, D. Contabilidad Regulatoria, Sustentabilidad Financiera y Gestión Mancomunada: Temas Relevantes en Servicios de Agua y Saneamiento; Comisión Económica para América Latina y el Caribe (CEPAL): Santiago, Chile, 2009. [Google Scholar]
- Molinos-Senante, M.; Hernández-Sancho, F.; Sala-Garrido, R. Economic feasibility study for wastewater treatment: A cost–benefit analysis. Sci. Total Environ. 2010, 408, 4396–4402. [Google Scholar] [CrossRef] [PubMed]
- Theregowda, R.; Hsieh, M.K.; Walker, M.E.; Landis, A.E.; Abbasian, J.; Vidic, R.; Dzombak, D.A. Life cycle costs to treat secondary municipal wastewater for reuse in cooling systems. J. Water Reuse Desalin. 2013, 3, 224–238. [Google Scholar] [CrossRef] [Green Version]
- Oh, K.S.; Poh, P.E.; Chong, M.N.; Gouwanda, D.; Lam, W.H.; Chee, C.Y. Optimizing the in-line ozone injection and delivery strategy in a multistage pilot-scale greywater treatment system: System validation and cost-benefit analysis. J. Environ. Chem. Eng. 2015, 3, 1146–1151. [Google Scholar] [CrossRef]
- De la Cruz, N.; Esquius, L.; Grandjean, D.; Magnet, A.; Tungler, A.; De Alencastro, L.F.; Pulgarín, C. Degradation of emergent contaminants by UV, UV/H2O2 and neutral photo-Fenton at pilot scale in a domestic wastewater treatment plant. Water Res. 2013, 47, 5836–5845. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, A.; Romano, G.; Leardini, C.; Martini, M. Measuring the efficiency of wastewater services through data envelopment analysis. Water Sci. Technol. 2015, 71, 1845–1851. [Google Scholar] [CrossRef] [PubMed]
- Castellet, L.; Molinos-Senante, M. Efficiency assessment of wastewater treatment plants: A data envelopment analysis approach integrating technical, economic, and environmental issues. J. Environ. Manag. 2016, 167, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Gómez, T.; Gémar, G.; Molinos-Senante, M.; Sala-Garrido, R.; Caballero, R. Assessing the efficiency of wastewater treatment plants: A double-bootstrap approach. J. Cleaner Prod. 2017, 164, 315–324. [Google Scholar] [CrossRef]
- Molinos-Senante, M.; Hernández-Sancho, F.; Sala-Garrido, R. Cost-benefit analysis of water-reuse projects for environmental purposes: A case study for Spanish wastewater treatment plants. J. Environ. Manag. 2011, 92, 3091–3097. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Rodríguez, L.; Oller, I.; Klamerth, N.; Agüera, A.; Rodríguez, E.M.; Malato, S. Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents. Water Res. 2013, 47, 1521–1528. [Google Scholar] [CrossRef] [PubMed]
- Organisation for Economic Co-operation and Development. Pricing of Water Services; Organisation for Economic Co-operation and Development (OECD): Paris, France, 1987. [Google Scholar]
- Organisation for Economic Co-operation and Development. Household Water Pricing in OCDE Countries, París: Environment Policy Committee; Organisation for Economic Co-operation and Development (OECD): Paris, France, 1999. [Google Scholar]
- Organisation for Economic Co-operation and Development. Environmental Performance Reviews (1st Cycle): Conclusions & Recommendations 32 Countries (1993–2000); Organisation for Economic Co-operation and Development (OECD): Paris, France, 2001. [Google Scholar]
- Gawel, E. Article 9 Water Framework Directive: Do We Really Need to Calculate Environmental and Resource Costs? Helmholtz-Zentrum für Umweltforschung (UFZ): Leipzig, Germany, 2014. [Google Scholar]
- Ortíz, E.J. La experiencia de Holanda y Alemania en el uso de cargos por vertimientos de aguas residuales como instrumento para el control de la contaminación hídrica. Elementos para decidir los parámetros a ser tenidos en consideración. Economía y Desarrollo 2005, 4, 55–87. [Google Scholar]
- Perman, R.; Ma, Y.; McGilvray, J.; Common, M. Natural Resource and Environmental Economics; Pearson Education Limited: Glasgow, Scotland, 2003. [Google Scholar]
- Boletín Oficial de la Provincia de Jaén. Ordenanzas sobre las tasas de depuración. Available online: https://bop.dipujaen.es/ (accessed on 15 December 2017).
- Barberá, R.; Costa, A.; Alegre, A. Los costes de los servicios urbanos del agua. Un análisis necesario para el establecimiento y control de tarifas. Hacienda Pública Española 2008, 186, 123–155. [Google Scholar]
- Confederación Hidrográfica del Guadalquivir. Plan Hidrológico de la Demarcación Hidrográfica del Guadalquivir (2015–2021). Anejo n° 9. Recuperación de costes de los servicios del agua; Ministerio de Agricultura: Alimentación y Medio Ambiente, 2015. [Google Scholar]
- EEA. Data and Maps. Available online: https://www.eea.europa.eu/es (accessed on 15 December 2017).
- Stiglitz, J.E. La economía del sector público (Vol. 24). Antoni Bosch Editor: Barcelona, Spain, 2003. [Google Scholar]
- Instituto Tecnológico Geominero de España. Atlas Hidrológico de la Provincia de Jaén. Available online: http://aguas.igme.es/igme/publica/libro76/lib76.htm (accessed on 15 December 2017).
- Pelejero, L. La amortización del inmovilizado en contabilidad pública. Auditoría pública: Revista de los Organos Autónomos de Control Externo 1997, 10, 47–52. [Google Scholar]
- Diputación Provincial de Toledo. Available online: http://www.diputoledo.es/global/10/ver_pdf/25139 (accessed on 15 December 2017).
- Agencia Tributaria. Impuesto Sobre Sociedades. Tabla de Coeficientes de Amortización Lineal. Available online: https://www.agenciatributaria.es/ (accessed on 15 December 2017).
- Instituto Nacional de Estadística. Indicadores sobre el agua. Available online: http://www.ine.es/jaxi/Tabla.htm?path=/t26/p069/p03/serie/l0/&file=01001.px&L =0 (accessed on 15 December 2017).
- Berbel, J.; Martin-Ortega, J.; Mesa, P. A cost-effectiveness analysis of water-saving measures for the water framework directive: the case of the Guadalquivir River Basin in Southern Spain. Water Resour. Manag. 2011, 25, 623–640. [Google Scholar] [CrossRef]
- United Nations Water. Informe Mundial de Las Naciones Unidas Sobre el Desarrollo de los Recursos Hídricos, 2017: Aguas Residuales: el Recurso no Explotado; UNESCO: Paris, France, 2017. [Google Scholar]
- European Parliament and European Union Council. Decisión n. 1386/2013/UE relativa al Programa General de Acción de la Unión en materia de Medio Ambiente hasta 2020 “Vivir bien, respetando los límites de nuestro planeta”; European Parliament and Council: Brussels, Belgium, 2013. [Google Scholar]
- European Parliament and European Union Council. Reglamento n. 1301/2013 de 17 de diciembre de 2013 sobre el Fondo Europeo de Desarrollo Regional y sobre disposiciones específicas relativas al objetivo de inversión en crecimiento y empleo y por el que se deroga el Reglamento (CE) n. 1080/2006; European Parliament and Council: Brussels, Belgium, 2013. [Google Scholar]
- García, M.A. Fijación de precios para el servicio municipal de suministro de agua: un ejercicio de análisis de bienestar. Hacienda Pública Española 2005, 172, 119–144. [Google Scholar]
WWTP Situation | Number | Percentage |
---|---|---|
Without WWTP | 25 | 39.03% |
Abandoned | 6 | 9.38% |
Non-compliant operation 1 | 10 | 15.63% |
Compliant operation | 23 | 35.94% |
Total | 64 | 100.00% |
Descriptive Elements | Description | |
---|---|---|
Population | Sampling units | WWTPs of the province of Jaén in operation in 2017 in accordance with the ARU Directive |
Total population | 23 WWTPs | |
Sampling elements | Maximum Person responsible for the administration of the WWTP or chosen representative | |
Scope | Province of Jaén | |
Temporary reference period | Year 2017 | |
Execution time | 1 March 2018 to 5 July 2018 | |
Sampling | Sample size | 23 surveys |
Valid surveys | 18 surveys | |
Approximate sample error | 11.01 percent, for p = q = 0.5 and a confidence level of 95.5 percent |
WWTP Capacity | Number | Percentage |
---|---|---|
Less than 10,000 p.e. | 3 | 16.67% |
Between 10,001 and 20,000 p.e. | 8 | 44.44% |
Between 20,001 and 30,000 p.e. | 3 | 16.67% |
Between 30,001 and 40,000 p.e. | 1 | 5.56% |
Between 40,001 and 50,000 p.e. | 1 | 5.56% |
More than 50,000 p.e. | 2 | 11.11% |
Total | 18 | 100.00% |
General Questions | |
Type of treatment | Management system of the WWTP |
Year of operation | Volume of water billed |
Funding entities | Volume of treated water |
Equivalent load | Destination of treated water |
Cost of operation, without VAT | |
Questions about Fixed Costs Amount in € | Questions about Variable Costs Amount in € |
Facilities maintenance | Electricity |
Equipment maintenance | Reagent consumption |
Personnel | Disposal of hazardous waste |
Management (laboratory, private office) | Disposal of nonhazardous waste |
Services contracted from other companies | Sludge management |
Fixed charge for electricity connection | Other variable costs (diesel and others) |
Average | Minimum | Maximum | |
---|---|---|---|
Fixed operating and maintenance costs | 0.17 | 0.09 | 0.19 |
Variable operating and maintenance costs | 0.08 | 0.06 | 0.08 |
Operating and maintenance costs | 0.25 | 0.14 | 0.27 |
Depreciation | 0.06 | 0.03 | 0.26 |
Total cost | 0.31 | 0.17 | 0.53 |
Coefficient of variation | 34.06% |
Average | Minimum | Maximum | |
---|---|---|---|
Fixed operating and maintenance costs | 0.23 | 0.15 | 0.31 |
Variable operating and maintenance costs | 0.18 | 0.10 | 0.19 |
Operating and maintenance costs | 0.41 | 0.25 | 0.50 |
Depreciation | 0.10 | 0.06 | 0.38 |
Total cost | 0.51 | 0.30 | 0.88 |
Coefficient of variation | 27.27% |
Total Costs (Number of Municipalities) | Operating and Maintenance Costs (Number of Municipalities) | |
---|---|---|
CRI > 100 | 3 | 4 |
100 > CRI > 75 | 8 | 13 |
70 > CRI< 50 | 3 | 0 |
CRI< 50 | 4 | 1 |
Total | 18 | 18 |
CRI Average | 75 | 90 |
Coefficient of Variation | 34.24 | 25.52 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moral Pajares, E.; Gallego Valero, L.; Román Sánchez, I.M. Cost of Urban Wastewater Treatment and Ecotaxes: Evidence from Municipalities in Southern Europe. Water 2019, 11, 423. https://doi.org/10.3390/w11030423
Moral Pajares E, Gallego Valero L, Román Sánchez IM. Cost of Urban Wastewater Treatment and Ecotaxes: Evidence from Municipalities in Southern Europe. Water. 2019; 11(3):423. https://doi.org/10.3390/w11030423
Chicago/Turabian StyleMoral Pajares, Encarnación, Leticia Gallego Valero, and Isabel María Román Sánchez. 2019. "Cost of Urban Wastewater Treatment and Ecotaxes: Evidence from Municipalities in Southern Europe" Water 11, no. 3: 423. https://doi.org/10.3390/w11030423
APA StyleMoral Pajares, E., Gallego Valero, L., & Román Sánchez, I. M. (2019). Cost of Urban Wastewater Treatment and Ecotaxes: Evidence from Municipalities in Southern Europe. Water, 11(3), 423. https://doi.org/10.3390/w11030423