Ecological and Conservation Value of Small Standing-Water Ecosystems: A Systematic Review of Current Knowledge and Future Challenges
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Conservation and Ecological Assessment of SWEs over the Period 2004–2018
3.2. Narrative Trends in the Conservation and Ecological Assessment of SWEs over the Period 2013–2018
3.3. Comparison of Conservation and Ecological Assessment of SWEs, Rivers, and Lakes
3.4. SWEs in the Frame of the WFD Implementation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sharpley, A.N.; Bergström, L.; Aronsson, H.; Bechmann, M.; Bolster, C.H.; Börling, K.; Djodjic, F.; Jarvie, H.P.; Schoumans, O.F.; Stamm, C.; et al. Future agriculture with minimized phosphorus losses to waters: Research needs and direction. Ambio 2015, 44, 163–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wetzel, R.G. Land water interfaces: Metabolic and limnological regulators. Verh. Int. Ver. Limnol. 1990, 24, 6–24. [Google Scholar] [CrossRef]
- Schiemer, F.; Zalewski, M.; Thorpe, J.E. Land/Inland water ecotones: Intermediate habitats critical for conservation and management. Hydrobiologia 1995, 303, 259–264. [Google Scholar] [CrossRef]
- Søndergaard, M.; Jeppesen, E.; Jensen, J.P. Pond or lake: Does it make any difference? Arch. Hydrobiol. 2005, 162, 143–165. [Google Scholar] [CrossRef]
- Rosset, V.; Angelibert, S.; Arthaud, F.; Bornette, G.; Robin, J.; Wezel, A.; Vallod, D.; Oertli, B. Is eutrophication really a major impairment for small waterbody biodiversity? J. Appl. Ecol. 2014, 51, 415–425. [Google Scholar] [CrossRef] [Green Version]
- Bolpagni, R.; Bartoli, M.; Viaroli, P. Species and functional plant diversity in a heavily impacted riverscape: Implications for threatened hydro-hygrophilous flora conservation. Limnologica 2013, 43, 230–238. [Google Scholar] [CrossRef]
- Williams, P.; Whitfield, M.; Biggs, J.; Bray, S.; Fox, G.; Nicolet, P.; Sear, D. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol. Conserv. 2003, 115, 329–341. [Google Scholar] [CrossRef]
- Hunter, M.L., Jr.; Acuña, V.; Bauer, D.M.; Bell, K.P.; Calhoun, A.J.K.; Felipe-Lucia, M.R.; Fitzsimons, J.A.; González, E.; Kinnison, M.; Lindenmayer, D.; et al. Conserving small natural features with large ecological roles: A synthetic overview. Biol. Conserv. 2017, 211, 88–95. [Google Scholar] [CrossRef]
- Maynou, X.; Martín, R.; Aranda, D. The role of small secondary biotopes in a highly fragmented landscape as habitat and connectivity providers for dragonflies (Insecta: Odonata). J. Insect Conserv. 2017, 21, 517–530. [Google Scholar] [CrossRef]
- Hill, M.J.; Biggs, J.; Thornhill, I.; Briers, R.A.; Gledhill, D.G.; White, J.C.; Wood, P.J.; Hassall, C. Urban ponds as an aquatic biodiversity resource in modified landscapes. Glob. Chang. Biol. 2017, 23, 986–999. [Google Scholar] [CrossRef] [PubMed]
- Taxböck, L.; Linder, H.P.; Cantonati, M. To what extent are Swiss springs refugial habitats for sensitive and endangered diatom taxa? Water 2017, 9, 967. [Google Scholar] [CrossRef]
- Bagella, S.; Podani, J. A large-scale assessment of Isoetes histrix s.l. swards in the Mediterranean basin. Plant Sociol. 2017, 54, 129–136. [Google Scholar]
- Boix, D.; Caria, M.C.; Gascón, S.; Mariani, M.A.; Sala, J.; Ruhí, A.; Compte, J.; Bagella, S. Contrasting intra-annual patterns of six biotic groups with different dispersal mode and ability in Mediterranean temporary ponds. Mar. Freshw. Res. 2017, 68, 1044–1060. [Google Scholar] [CrossRef] [Green Version]
- Bolpagni, R.; Piotti, A. Hydro-hygrophilous vegetation diversity and distribution patterns in riverine wetlands in an agricultural landscape: A case study from the Oglio River (Po Plain, Northern Italy). Phytocoenologia 2015, 45, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Bolpagni, R.; Piotti, A. The importance of being natural in a human-altered riverscape: Role of wetland type in supporting habitat heterogeneity and the functional diversity of vegetation. Aquat. Conserv. Mar. Freshw. Ecosyst. 2016, 26, 1168–1183. [Google Scholar] [CrossRef]
- Calhoun, A.J.K.; Mushet, D.M.; Bell, K.P.; Boix, D.; Fitzsimons, J.A.; Isselin-Nondedeu, F. Temporary wetlands: Challenges and solutions to conserving a ‘disappearing’ ecosystem. Biol. Conserv. 2017, 211, 3–11. [Google Scholar] [CrossRef]
- Cantonati, M.; Segadelli, S.; Tran, H.; Ogata, K.; Gerecke, R.; Sanders, D.; Rott, E.; Gargini, A.; Celico, F.; Filippini, M. Petrying Springs: A global review on ambient Limestone-Precipitating Springs (LPS): Hydrogeological setting, ecology and conservation. Sci. Total Environ. 2016, 568, 624–637. [Google Scholar] [CrossRef] [PubMed]
- Feld, C.K.; Birk, S.; Eme, D.; Gerisch, M.; Hering, D.; Kernan, M.; Maileht, K.; Mischke, U.; Ott, I.; Pletterbauer, F.; et al. Disentangling the effects of land use and geo-climatic factors on diversity in European freshwater ecosystems. Ecol. Ind. 2016, 60, 71–83. [Google Scholar] [CrossRef] [Green Version]
- McGoff, E.; Dunn, F.; Cachazo, L.M.; Williams, P.; Biggs, J.; Nicolet, P.; Ewald, N.C. Finding clean water habitats in urban landscapes: Professional researcher vs citizen science approaches. Sci. Total Environ. 2017, 581–582, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Hunter, M.L., Jr. Conserving small natural features with large ecological roles: An introduction and definition. Biol. Conserv. 2017, 211, 1–2. [Google Scholar] [CrossRef]
- Davis, J.A.; Kerezsy, A.; Nicol, S. Springs: Conserving perennial water is critical in arid landscapes. Biol. Conserv. 2017, 211, 30–35. [Google Scholar] [CrossRef]
- Indermuehle, N.; Oertli, B.; Biggs, J.; Cereghino, R.; Grillas, P.; Hull, A.; Nicolet, P.; Scher, O. Pond conservation in Europe: The European Pond Conservation Network (EPCN). Verh. Int. Verein. Limnol. 2008, 30, 446–448. [Google Scholar] [CrossRef]
- Klopper, R.; Lubbe, S.; Rugbeer, H. The matrix method of literature review. Alternation 2007, 14, 262–276. [Google Scholar]
- Rosset, V.; Simaika, J.P.; Arthaud, F.; Bornette, G.; Vallod, D.; Samways, M.J.; Oertli, B. Comparative assessment of scoring methods to evaluate the conservation value of pond and small lake biodiversity. Aquat. Conserv. Mar. Freshw. Ecosys. 2013, 23, 23–36. [Google Scholar] [CrossRef]
- Fuentes-Rodríguez, F.; Juan, M.; Gallego, I.; Lusi, M.; Fenoy, E.; León, D.; Peñalver, P.; Toja, J.; Casas, J.J. Diversity in Mediterranean farm ponds: Trade-offs and synergies between irrigation modernisation and biodiversity conservation. Freshw. Biol. 2013, 58, 63–78. [Google Scholar] [CrossRef]
- Tóth, A.; Horváth, Z.; Vad, C.F.; Zsuga, K.; Nagy, S.A.; Boros, E. Zooplankton of the european soda pans: Fauna and conservation of a unique habitat type. Int. Rev. Hydrobiol. 2014, 99, 255–276. [Google Scholar] [CrossRef]
- Briers, R.A. Invertebrate communities and environmental conditions in a series of urban drainage ponds in eastern Scotland: Implications for biodiversity and conservation value of SUDS. Clean Soil Air Water 2014, 42, 193–200. [Google Scholar] [CrossRef]
- Hill, M.J.; Wood, P.J. The macroinvertebrate biodiversity and conservation value of garden and field ponds along a rural-urban gradient. Fund. Appl. Limnol. 2014, 185, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Bazzanti, M. Pond macroinvertebrates of the Presidential Estate of Castelporziano (Rome): A review of ecological aspects and selecting indicator taxa for conservation. Rend. Lincei 2015, 26, 337–343. [Google Scholar] [CrossRef]
- Wissinger, S.A.; Oertli, B.; Rosset, V. Invertebrate communities of alpine ponds. In Invertebrates in Freshwater Wetlands: An International Perspective on Their Ecology; Batzer, D., Boix, D., Eds.; Springer: Basel, Switzerland, 2016; pp. 55–103. ISBN 978-3-319-24978-0. [Google Scholar]
- Harabiš, F.; Tichanek, F.; Tropek, R. Dragonflies of freshwater pools in lignite spoil heaps: Restoration management, habitat structure and conservation value. Ecol. Eng. 2013, 55, 51–61. [Google Scholar] [CrossRef]
- Hill, M.J.; Ryves, D.B.; White, J.C.; Wood, P.J. Macroinvertebrate diversity in urban and rural ponds: Implications for freshwater biodiversity conservation. Biol. Conserv. 2016, 201, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Ilg, C.; Oertli, B. Effectiveness of amphibians as biodiversity surrogates in pond conservation. Conserv. Biol. 2017, 31, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Manenti, R.; Zanetti, N.; Pennati, R.; Scarì, G. Factors driving semi-aquatic predator occurrence in traditional cattle drinking pools: Conservation issues. J. Limnol. 2017, 76, 34–40. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, H.; Hilaire, S.; Mesléard, F. Temporary pond ecosystem functioning shifts mediated by the exotic red swamp crayfish (Procambarus clarkii): A mesocosm study. Hydrobiologia 2016, 767, 333–345. [Google Scholar] [CrossRef]
- Brand, R.F.; du Preez, P.J.; Brown, L.R. High altitude montane wetland vegetation classification of the Eastern Free State, South Africa. S. Afr. J. Bot. 2013, 88, 223–236. [Google Scholar] [CrossRef] [Green Version]
- Klaus, J.M.; Noss, R.F. Specialist and generalist amphibians respond to wetland restoration treatments. J. Wildl. Manag. 2016, 80, 1106–1119. [Google Scholar] [CrossRef]
- Cottet, M.; Piégay, H.; Bornette, G. Does human perception of wetland aesthetics and healthiness relate to ecological functioning? J. Environ. Manag. 2013, 128, 1012–1022. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jiang, M.; Dong, G.; Zhang, Z.; Wang, X. Ecosystem Service Comparison before and after Marshland Conversion to Paddy Field in the Sanjiang Plain, Northeast China. Wetlands 2017, 37, 593–600. [Google Scholar] [CrossRef]
- Acuña, V.; Hunter, M.; Ruhi, A. Managing temporary streams and rivers as unique rather than second-class ecosystems. Biol. Conserv. 2017, 211, 12–19. [Google Scholar] [CrossRef]
- Brans, K.I.; Engelen, J.M.T.; Souffreau, C.; De Meester, L. Urban hot-tubs: Local urbanization has profound effects on average and extreme temperatures in ponds. Landsc. Urban Plan. 2018, 176, 22–29. [Google Scholar] [CrossRef]
- Edwards, B.A.; Meg Southee, F.; McDermid, J.L. Using climate and a minimum set of local characteristics to predict the future distributions of freshwater fish in Ontario, Canada, at the lake-scale. Glob. Ecol. Conserv. 2016, 8, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, P.; Globevnik, L. Small Water Bodies: Importance, Threats and Knowledge Gaps. Biol. Environ. 2014, 114B, 281–287. [Google Scholar]
- Möckel, S. Small Water Bodies and the Incomplete Implementation of the Water Framework Directive in Germany. JEEPL 2013, 10, 262–275. [Google Scholar] [CrossRef]
- Van den Broeck, M.; Waterkeyn, A.; Rhazi, L.; Grillas, P.; Brendonck, L. Assessing the ecological integrity of endorheic wetlands, with focus on Mediterranean temporary ponds. Ecol. Indic. 2015, 54, 1–11. [Google Scholar] [CrossRef]
- Núñez, G.; Fernández-Aláez, C.; Fernández-Aláez, M.; Trigal, C. Proposal of a typology of Spanish mountain lakes and ponds using the composition of functional groups of macrophytes. Limnetica 2015, 34, 507–526. [Google Scholar]
- Saulnier-Talbot, E.; Lavoie, I. Uncharted waters: The rise of human-made aquatic environments in the age of the “Anthropocene”. Anthropocene 2018, 23, 29–42. [Google Scholar] [CrossRef]
- Ignar, S.; Grygoruk, M. Wetlands and Water Framework Directive: Protection, Management and Climate Change. In Wetlands and Water Framework Directive; Ignar, S., Grygoruk, M., Eds.; Springer: Basel, Switzerland, 2015; pp. 1–7. ISBN 978-3-319-13764-3. [Google Scholar] [Green Version]
- Sønderup, M.J.; Egemose, S.; Hansen, A.S.; Grudinina, A.; Madsen, M.H.; Flindt, M.R. Factors affecting retention of nutrients and organic matter in stormwater ponds. Ecohydrology 2018, 9, 796–806. [Google Scholar] [CrossRef]
- Land, M.; Granéli, W.; Grimvall, A.; Hoffmann, C.C.; Mitsch, W.J.; Tonderski, K.S.; Verhoeven, J.T.A. How effective are created or restored freshwater wetlands for nitrogen and phosphorus removal? A systematic review. Environ. Evid. 2016, 5, 5. [Google Scholar] [CrossRef]
- Arheimer, B.; Pers, B.C. Lessons learned? Effects of nutrient reductions from constructing wetlands in 1996–2006 across Sweden. Ecol. Eng. 2017, 103, 404–414. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, F.; Olesen, J.E.; Børgesen, C.D.; Tornbjerg, H.; Thodsen, H.; Dalgaard, T. Potential benefits of farm scale measures versus landscape measures for reducing nitrate loads in a Danish catchment. Sci. Total Environ. 2018, 637, 318–335. [Google Scholar] [CrossRef] [PubMed]
- Blankenberg, A.-G.B.; Haarstad Ketil, K.; Paruch, A.M. Agricultural runoff in Norway: The problem, the regulations, and the role of wetlands. In The Role of Natural and Constructed Wetlands in Nutrient Cycling and Retention on the Landscape; Vymazal, J., Ed.; Springer: Basel, Switzerland, 2015; pp. 137–147. ISBN 978-3-319-08176-2. [Google Scholar]
- Oertli, B.; Céréghino, R.; Hull, A.; Miracle, R. Pond conservation: From science to practice. Hydrobiologia 2009, 634, 1–9. [Google Scholar] [CrossRef]
- Serrano, L.; Reina, M.; Quintana, X.D.; Romo, S.; Olmo, C.; Soria, J.; Blanco, S.; Fernández-Aláez, C.; Fernández-Aláez, M.; Caria, M.C.; et al. A new tool for the assessment of severe anthropogenic eutrophication in small shallow water bodies. Ecol. Indic. 2017, 76, 324–334. [Google Scholar] [CrossRef]
- Bagella, S.; Gascón, S.; Filigheddu, R.; Cogoni, A.; Boix, D. Mediterranean Temporary Ponds: New challenges from a neglected habitat. Hydrobiologia 2016, 782, 1–10. [Google Scholar] [CrossRef]
- Stanley, E.H.; Fisher, S.G.; Grimm, N.B. Ecosystem expansion and contraction in streams. Bioscience 1997, 47, 427–435. [Google Scholar] [CrossRef]
- von Schiller, D.; Acuña, V.; Graeber, D.; Martí, E.; Ribot, M.; Sabater, S.; Timoner, X.; Tockner, K. Contraction, fragmentation and expansion dynamics determine nutrient availability in a Mediterranean forest stream. Aquat. Sci. 2011, 73, 485–497. [Google Scholar] [CrossRef] [Green Version]
- Harper, L.R.; Buxton, A.S.; Rees, H.C.; Bruce, K.; Brys, R.; Halfmaerten, D.; Read, D.S.; Watson, H.V.; Sayer, C.D.; Jones, E.P.; et al. Prospects and challenges of environmental DNA (eDNA) monitoring in freshwater ponds. Hydrobiologia 2018. [Google Scholar] [CrossRef]
Feature | Cat | Explanation | SWEs | Rs | Ls | |
---|---|---|---|---|---|---|
2004–2018 | 2013–2018 | 2013–2018 | 2013–2018 | |||
Topic matching | If the topic of selected papers meets with the target themes | 326 | 111 | 107 | 46 | |
Habitat matching | If the habitat analyzed by selected papers meets with the target habitats | 187 | 76 | 76 | 32 | |
Habitat dimension matching | If the habitat dimensions meet with the dimensional threshold (≤ 10 ha) | 149 | 80 | |||
Habitat type | bog | Bogs | 3 | 2 | ||
chn | Channels (artificial hydro-system) | 1 | ||||
dit | Ditches | 4 | ||||
lak | Lakes | 18 | ||||
obx | Oxbow lakes | 2 | 2 | |||
pol | Pools | 15 | 6 | |||
pon | Ponds | 58 | 36 | |||
riv | Rivers | 44 | ||||
ric | Rice paddies | 4 | 3 | |||
sla | Swallow lakes | 2 | 1 | |||
sma | Small lakes | 9 | 4 | |||
str | Streams | 12 | ||||
swa | Swamps | 1 | 1 | |||
wet | Wetlands | 30 | 13 | |||
Biotic target | alg | Algae | 4 | 3 | 2 | 3 |
amp | Amphibians | 10 | 7 | |||
bac | Bacteria | 2 | 1 | |||
bir | Birds (including waterbirds) | 4 | 3 | 2 | ||
eco | Ecosystem | 12 | 6 | 6 | 2 | |
fau | Fauna | 7 | 4 | 7 | ||
fis | Fish | 3 | 1 | 14 | 3 | |
flo | Flora, including also riparian species | 23 | 12 | 7 | ||
mac | Macrophytes | 22 | 9 | 1 | 8 | |
mam | Mammalians | 1 | 1 | |||
veg | Vegetation | 10 | 6 | 2 | ||
zoo | Zoobenthos (including invertebrates) | 51 | 28 | 24 | 5 | |
Geographical location | Afr | Africa | 4 | 3 | 5 | 1 |
Asi | Asia | 12 | 9 | 11 | 2 | |
Aus | Australia | 9 | 2 | 5 | 3 | |
Eur | Europe | 75 | 42 | 22 | 15 | |
Glo | Global | 2 | 1 | |||
NAm | North America | 13 | 4 | 6 | 3 | |
SAm | South America | 4 | 2 | 7 | ||
Type of research | App | Applied research | 85 | 57 | 46 | 13 |
Bas | Basic research | 71 | 41 | 18 | 10 | |
Ind | Indexation | 10 | 3 | 4 | 2 | |
Lab | Laboratory research | 2 | 1 | 1 | 1 | |
Mod | Modelling | 1 | 1 | 1 | 1 | |
Rev | Review | 1 | ||||
Target issues | Ali_inv | Alien invasive species controls | 3 | 1 | 6 | 1 |
CC | Climate change drivers | 1 | 1 | 1 | 1 | |
Com_iss | Competition issues, including predation | 3 | 2 | 1 | 1 | |
Div | Diversity, including communities’ composition and structure | 100 | 52 | 50 | 17 | |
Dyn_iss | Dynamic issues | 7 | 4 | 2 | ||
Eco_fun | Ecological functions/services, including recreational uses | 13 | 5 | 5 | 2 | |
Env_det | Environmental determinants, including trophic ones | 82 | 44 | 44 | 8 | |
Hum_det | Human determinants, including impairing factors, human impacts | 46 | 19 | 37 | 5 | |
Met_app | Methodological approaches | 7 | 7 | 4 | 3 | |
Met_int | Metabolic interactions/metabolism/food webs | 2 | 2 | |||
Spa_arr | Spatial arrangement, spatial patterns | 87 | 47 | 47 | 16 | |
Res | Restoration programs, including problems, shortcomings and challenges | 17 | 8 | 5 | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolpagni, R.; Poikane, S.; Laini, A.; Bagella, S.; Bartoli, M.; Cantonati, M. Ecological and Conservation Value of Small Standing-Water Ecosystems: A Systematic Review of Current Knowledge and Future Challenges. Water 2019, 11, 402. https://doi.org/10.3390/w11030402
Bolpagni R, Poikane S, Laini A, Bagella S, Bartoli M, Cantonati M. Ecological and Conservation Value of Small Standing-Water Ecosystems: A Systematic Review of Current Knowledge and Future Challenges. Water. 2019; 11(3):402. https://doi.org/10.3390/w11030402
Chicago/Turabian StyleBolpagni, Rossano, Sandra Poikane, Alex Laini, Simonetta Bagella, Marco Bartoli, and Marco Cantonati. 2019. "Ecological and Conservation Value of Small Standing-Water Ecosystems: A Systematic Review of Current Knowledge and Future Challenges" Water 11, no. 3: 402. https://doi.org/10.3390/w11030402