Biological Diversity in Headwater Streams
Abstract
:1. Introduction
2. Characteristics and Functions
2.1. Characteristics of Headwater Streams
2.2. Use of Headwaters by Organisms—Functions
2.3. Variations across Landscapes
3. Species and Communities of Headwater Streams
3.1. Examples of Headwater Stream Communities
3.2. Species of Headwaters
3.2.1. Algae and Other Microbiota
3.2.2. Plants
3.2.3. Invertebrates
3.2.4. Amphibians
3.2.5. Fish
3.2.6. Others
3.3. Taxonomic Richness, Life History Traits and Diversification
4. Conservation and Stewardship and Future Research Directions
4.1. Threats from Land Use
4.2. Threats from Isolation
4.3. Global Change
4.4. Solutions
5. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- Gomi, T.; Sidle, R.; Richardson, J.S. Headwater and channel network -understanding processes and downstream linkages of headwater systems. BioScience 2002, 52, 905–916. [Google Scholar] [CrossRef]
- Di Cugno, N.; Robinson, C.T. Trophic structure of macroinvertebrates in alpine non-glacial streams. Fundam. Appl. Limnol. 2017, 190, 319–330. [Google Scholar] [CrossRef]
- Larson, D.M.; Dodds, W.K.; Jackson, K.E.; Whiles, M.R.; Kyle, R.; Winders, K.R. Ecosystem characteristics of remnant, headwater tallgrass prairie streams. J. Environ. Qual. 2013, 42, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.S.; Mackay, R.J. Lake outlets and the distribution of filter feeders: An assessment of hypotheses. Oikos 1991, 62, 370–380. [Google Scholar] [CrossRef]
- Moore, R.D.; Richardson, J.S. Progress towards understanding the structure, function, and ecological significance of small stream channels and their riparian zones. Can. J. Res. 2003, 33, 1349–1351. [Google Scholar] [CrossRef]
- Woods, R.; Sivapalan, M.; Duncan, M. Investigating the representative elementary area concept: An approach based on field data. Hydrol. Process. 1995, 9, 291–312. [Google Scholar] [CrossRef]
- Sakamaki, T.; Richardson, J.S. Nonlinear variation of stream-forest linkage along a stream-size gradient: An assessment using biogeochemical proxies of in-stream fine particulate organic matter. J. Appl. Ecol. 2013, 50, 1019–1027. [Google Scholar] [CrossRef]
- Feminella, J.W. Comparison of benthic macroinvertebrate assemblages in small streams along a gradient of flow permanence. J. N. Am. Benthol. Soc. 1996, 15, 651–669. [Google Scholar] [CrossRef]
- Dieterich, M.; Anderson, N.H. The invertebrate fauna of summer-dry streams in western Oregon. Arch. Hydrobiol. 2000, 147, 273–295. [Google Scholar] [CrossRef]
- Hewlett, J.D.; Nutter, W.L. The varying source area of streamflow from upland basins. In Proceedings of the Symposium on Interdisciplinary Aspects of Watershed Management, Bozeman, MT, USA, 3–6 August 1970; ASCE: New York, NY, USA; pp. 65–83. [Google Scholar]
- Meyer, J.L.; Wallace, J.B. Lost Linkages and Lotic Ecology: Rediscovering Small Streams. In Ecology: Achievement and Challenge, Proceedings of the 41st Symposium of the British Ecological Society; Press, M.C., Huntly, N.J., Levin, S., Eds.; Blackwell Scientific: Oxford, UK, 2001; pp. 295–317. [Google Scholar]
- Meyer, J.L.; Strayer, D.L.; Wallace, J.B.; Eggert, S.L.; Helfman, G.S.; Leonard, N.E. The contribution of headwater streams to biodiversity in river networks. J. Am. Water Resour. Assoc. 2007, 43, 86–103. [Google Scholar] [CrossRef]
- Richardson, J.S.; Danehy, R.J. A synthesis of the ecology of headwater streams and their riparian zones in temperate forests. For. Sci. 2007, 53, 131–147. [Google Scholar]
- Fagan, W.F. Connectivity, fragmentation, and extinction risk in dendritic metapopulations. Ecology 2002, 83, 3243–3249. [Google Scholar] [CrossRef]
- Covich, A.P.; Crowl, T.A.; Hein, C.L.; Townsend, M.J.; McDowell, W.H. Predator–prey interactions in river networks: Comparing shrimp spatial refugia in two drainage basins. Freshw. Biol. 2009, 54, 450–465. [Google Scholar] [CrossRef]
- Campbell Grant, E.H.; Nichols, J.D.; Lowe, W.H.; Fagan, W.F. Use of multiple dispersal pathways facilitates amphibian persistence in stream networks. Proc. Natl. Acad. Sci. USA 2010, 107, 6936–6940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, J.M.; Manther, P.B.; Sheldon, A.L.; Allendorf, F.W. Genetic structure of the stonefly, Yoraperla brevis, in populations: The extent of gene flow among adjacent montane streams. Freshw. Biol. 1999, 41, 63–72. [Google Scholar] [CrossRef]
- Finn, D.S.; Poff, N.L. Examining spatial concordance of genetic and species diversity patterns to evaluate the role of dispersal limitation in structuring headwater metacommunities. J. N. Am. Benthol. Soc. 2011, 30, 273–283. [Google Scholar] [CrossRef]
- Sterling, K.A.; Reed, D.H.; Noonan, B.P.; Warren, M.L., Jr. Genetic effects of habitat fragmentation and population isolation on Etheostoma raneyi (Percidae). Conserv. Genet. 2012, 13, 859–872. [Google Scholar] [CrossRef]
- Graça, M.A.S.; Ferreira, R.C.F.; Coimbra, C.N. Litter processing along a stream gradient: The role of invertebrates and decomposers. J. N. Am. Benthol. Soc. 2001, 20, 408–420. [Google Scholar] [CrossRef]
- Richardson, J.S.; Sato, T. Resource flows across freshwater-terrestrial boundaries and influence on processes linking adjacent ecosystems. Ecohydrology 2015, 8, 406–415. [Google Scholar] [CrossRef]
- Leberfinger, K.; Bohman, I.; Herrmann, J. The importance of terrestrial resource subsidies for shredders in open-canopy streams revealed by stable isotope analysis. Freshw. Biol. 2011, 56, 470–480. [Google Scholar] [CrossRef]
- Leach, J.A.; Lidberg, W.; Kuglerová, L.; Peralta-Tapia, A.; Ågren, A.M.; Laudon, H. Evaluating topography-based predictions of shallow lateral groundwater discharge zones for a boreal lake-stream system. Water Resour. Res. 2017, 53, 5375–5377. [Google Scholar] [CrossRef]
- Snyder, C.D.; Hitt, N.P.; Young, J.A. Accounting for groundwater in stream fish thermal habitat responses to climate change. Ecol. Appl. 2015, 25, 1397–1419. [Google Scholar] [CrossRef]
- Frauendorf, T.C.; Colón-Gaud, C.; Whiles, M.R.; Barnum, T.R.; Lips, K.R.; Pringle, C.M.; Kilham, S.S. Energy flow and the trophic basis of macroinvertebrate and amphibian production in a neotropical stream food web. Freshw. Biol. 2013, 58, 1340–1352. [Google Scholar] [CrossRef]
- Richardson, J.S. Life cycle phenology of common detritivores from a temperate rainforest stream. Hydrobiologia 2001, 455, 87–95. [Google Scholar] [CrossRef]
- Datry, T.; Fritz, K.; Leigh, C. Challenges, developments and perspectives in intermittent river ecology. Freshw. Biol. 2016, 61, 1171–1180. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Buffington, J.M. Channel-reach morphology in mountain drainage basins. Geol. Soc. Am. Bull. 1997, 109, 596–611. [Google Scholar] [CrossRef]
- Halwas, K.L.; Church, M.; Richardson, J.S. Variation in benthic macroinvertebrate assemblages among channel units in small, high gradient streams on Vancouver Island, British Columbia. J. N. Am. Benthol. Soc. 2005, 24, 478–494. [Google Scholar] [CrossRef]
- Schmera, D.; Arva, D.; Boda, P.; Bodis, E.; Bolgovics, A.; Borics, G.; Csercsa, A.; Deak, C.; Krasznai, E.A.; Lukacs, B.A.; et al. Does isolation influence the relative role of environmental and dispersal-related processes in stream networks? An empirical test of the network position hypothesis using multiple taxa. Freshw. Biol. 2018, 63, 74–85. [Google Scholar] [CrossRef]
- Balian, E.V.; Segers, H.; Lévèque, C.; Martens, K. The Freshwater Animal Diversity Assessment: An overview of the results. Hydrobiologia 2008, 595, 627–637. [Google Scholar] [CrossRef]
- Gilliam, J.F.; Fraser, D.F.; Alkins-Koo, M. Structure of a tropical stream fish community: A role for biotic interactions. Ecology 1993, 74, 1856–1870. [Google Scholar] [CrossRef]
- Moskowitz, D.; May, M. Adult tiger spiketail (Cordulegaster erronea Hagen) habitat use and home range observed via radio-telemetry with conservation recommendations. J. Insect Conserv. 2017, 21, 885–895. [Google Scholar] [CrossRef]
- Uno, H.; Power, M.E. Mainstem-tributary linkages by mayfly migration help sustain salmonids in a warming river network. Ecol. Lett. 2015, 18, 1012–1020. [Google Scholar] [CrossRef] [PubMed]
- Kanno, Y.; Letcher, B.H.; Coombs, J.A.; Nislow, K.H.; Whiteley, A.R. Linking movement and reproductive history of brook trout to assess habitat connectivity in a heterogeneous stream network. Freshw. Biol. 2014, 59, 142–154. [Google Scholar] [CrossRef]
- Jin, Y.H.; Bae, Y.J. The wingless stonefly family Scopuridae (Plecoptera) in Korea. Aquat. Insect 2005, 27, 21–34. [Google Scholar] [CrossRef]
- Tornwall, B.M.; Creed, R.P. Shifts in shredder communities and leaf breakdown along a disrupted stream continuum. Freshw. Sci. 2016, 35, 1312–1320. [Google Scholar] [CrossRef]
- Fraser, D.F.; Lamphere, B.A. Experimental evaluation of predation as a facilitator of invasion success in a stream fish. Ecology 2013, 94, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Sung, Y.-H.; Karraker, N.E.; Hau, B.C.H. Demographic evidence of illegal harvesting of an endangered Asian Turtle. Conserv. Biol. 2013, 27, 1421–1428. [Google Scholar] [CrossRef]
- White, J.C.; House, A.; Punchard, N.; Hannah, D.M.; Wilding, N.A.; Wood, P.J. Macroinvertebrate community responses to hydrological controls and groundwater abstraction effects across intermittent and perennial headwater streams. Sci. Total Environ. 2018, 610–611, 1514–1526. [Google Scholar] [CrossRef]
- Fisher, S.G.; Likens, G.E. Energy flow in Bear Brook, New Hampshire: An integrative approach to stream ecosystem metabolism. Ecol. Monogr. 1973, 43, 421–439. [Google Scholar] [CrossRef]
- Wallace, J.B. Larval retreat and food of Arctopsyche—With phylogenetic notes on feeding adaptations in Hydropsychidae larvae (Trichoptera). Ann. Entomol. Soc. Am. 1975, 68, 167–172. [Google Scholar] [CrossRef]
- Grubaugh, J.W.; Wallace, J.B.; Houston, E.S. Longitudinal changes of macroinvertebrate communities along an Appalachian stream continuum. Can. J. Fish. Aquat. Sci. 1996, 53, 896–909. [Google Scholar] [CrossRef]
- Stout, B.M.; Benfield, E.F.; Webster, J.R. Effects of a forest disturbance on shredder production in southern Appalachian headwater streams. Freshw. Biol. 1993, 29, 59–69. [Google Scholar] [CrossRef]
- Dudgeon, D. The ecology of tropical Asian rivers and streams in relation to biodiversity conservation. Ann. Rev. Ecol. Syst. 2000, 31, 239–263. [Google Scholar] [CrossRef]
- Boyero, L.; Ramírez, A.; Dudgeon, D.; Pearson, R.G. Are tropical streams really different? J. N. Am. Benthol. Soc. 2009, 28, 397–403. [Google Scholar] [CrossRef] [Green Version]
- Kurylyk, B.L.; MacQuarrie, K.T.B.; Linnansaari, T.; Cunjak, R.A.; Curry, R.A. Preserving, augmenting, and creating cold-water thermal refugia in rivers: Concepts derived from research on the Miramichi River, New Brunswick (Canada). Ecohydrology 2015, 8, 1095–1108. [Google Scholar] [CrossRef]
- Al-Chokhachy, R.; Schmetterling, D.; Clancy, C.; Saffel, P.; Kovach, R.; Nyce, L.; Liermann, B.; Fredenberg, W.; Pierce, R. Are brown trout replacing or displacing bull trout populations in a changing climate? Can. J. Fish. Aquat. Sci. 2016, 73, 1395–1404. [Google Scholar] [CrossRef]
- Welsh, H.H., Jr.; Hodgson, G.R. Amphibians as metrics of critical biological thresholds in forested headwater streams of the Pacific Northwest, U.S.A. Freshw. Biol. 2008, 53, 1470–1488. [Google Scholar] [CrossRef]
- Hughes, J.F.; Reynolds, J.B. Why do Arctic Grayling (Thymallus arcticus) get bigger as you go upstream. J. Fish. Aquat. Sci. 1994, 51, 2154–2163. [Google Scholar] [CrossRef]
- Miwa, T. Conditions controlling the timing of the autumn migration to hibernation sites in a Japanese headwater frog, Rana sakuraii. J. Zool. 2018, 304, 45–54. [Google Scholar] [CrossRef]
- Finn, D.S.; Bonada, N.; Murria, C.; Hughes, J.M. Small but mighty: Headwaters are vital to stream network biodiversity at two levels of organization. J. N. Am. Benthol. Soc. 2011, 30, 963–980. [Google Scholar] [CrossRef]
- Jacobsen, D. Contrasting patterns in local and zonal family richness of stream invertebrates along an Andean altitudinal gradient. Freshw. Biol. 2004, 49, 1293–1305. [Google Scholar] [CrossRef]
- Lujan, N.K.; Roach, K.A.; Jacobsen, D.; Winemiller, K.O.; Meza Vargas, V.; Rimarachín Ching, V.; Arana Maestre, J. Aquatic community structure across an Andes-to-Amazon fluvial gradient. J. Biogeogr. 2013, 40, 1715–1728. [Google Scholar] [CrossRef]
- Da Costa, I.D.; Petry, A.C.; Mazzoni, R. Responses of fish assemblages to subtle elevations in headwater streams in southwestern Amazonia. Hydrobiologia 2018, 809, 175–184. [Google Scholar] [CrossRef]
- Besemer, K.; Singer, G.; Quince, C.; Bertuzzo, E.; Sloan, W.; Battin, T.J. Headwaters are critical reservoirs of microbial diversity for fluvial networks. Proc. R. Soc. 2013, 280, 20131760. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, R.A.; Tejerina-Garro, F.L. Headwater-river gradient: Trait-based approaches show functional dissimilarities among tropical fish assemblages. Mar. Freshw. Res. 2018, 69, 574–584. [Google Scholar] [CrossRef]
- Wagner, R.; Marxsen, J.; Zwick, P. Central European Stream Ecosystems: The Long Term Study of the Breitenbach; Wiley-VCH: Hoboken, NJ, USA, 2011. [Google Scholar]
- Anderson, N.H.; Hansen, B.P. An Annotated Check List of Aquatic Insects Collected at Berry Creek, Benton County, Oregon 1960–1984; Occasional Publication Number 2; Systematic Entomology Laboratory, Department of Entomology, Oregon State University: Corvallis, OR, USA, 1987. [Google Scholar]
- Danehy, R.J.; Chan, S.S.; Lester, G.T.; Langshaw, R.B.; Turner, T.R. Periphyton and macroinvertebrate assemblage structure in headwaters bordered by mature, thinned and clearcut Douglas-fir stands. For. Sci. 2007, 53, 294–307. [Google Scholar]
- Hildrew, A.G. Sustained research on stream communities: A model system and the comparative approach. Adv. Ecol. Res. 2009, 41, 175–312. [Google Scholar]
- Poff, N.L.; Voelz, N.J.; Ward, J.V.; Lee, R.E. Algal colonization under four experimentally-controlled current regimes in a high mountain stream. J. N. Am. Benthol. Soc. 1990, 9, 303–318. [Google Scholar] [CrossRef]
- Morales, E.A.; Vis, M.L. Epilithic diatoms (Bacillariophyceae) from cloud forest and alpine streams in Bolivia, South America. Proc. Acad. Nat. Sci. Phila. 2007, 156, 123–155. [Google Scholar] [CrossRef] [Green Version]
- Majdi, N.; Traunspurger, W. Free-Living Nematodes in the Freshwater Food Web: A Review. J. Nematol. 2015, 47, 28–44. [Google Scholar]
- Schmid-Araya, J.M.; Hildrew, A.G.; Robertson, A.; Schmid, P.E.; Winterbottom, J. The importance of meiofauna in food webs: Evidence from an acid stream. Ecology 2002, 83, 1271–1285. [Google Scholar] [CrossRef]
- Clarke, A.; Mac Nally, R.; Bond, N.R.; Lake, P.S. Conserving macroinvertebrate diversity in headwater streams: The importance of knowing the relative contributions of alpha and beta diversity. Divers. Distrib. 2010, 16, 725–736. [Google Scholar] [CrossRef]
- Brown, B.L.; Swan, C.M. Dendritic network structure constrains metacommunity properties in riverine ecosystems. J. Anim. Ecol. 2010, 79, 571–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heino, J.; Gronroos, M.; Soininen, J.; Risto, V.; Muotka, T. Context dependency and metacommunity structuring in boreal headwater streams. Oikos 2012, 121, 537–544. [Google Scholar] [CrossRef]
- Soininen, J. Environmental and spatial control of freshwater diatoms—A review. Diatom Res. 2007, 22, 473–490. [Google Scholar] [CrossRef]
- Hlúbiková, D.; Novais, M.H.; Dohet, A.; Hoffmann, L.; Ector, L. Effect of riparian vegetation on diatom assemblages in headwater streams under different land uses. Sci. Total Environ. 2014, 475, 234–247. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.; Sabater, S.; Beardall, J. Benthic microalgae colonization in streams of differing riparian cover and light availability. J. Phycol. 2004, 40, 1004–1012. [Google Scholar] [CrossRef]
- Haslam, S.M. River Plants: The Macrophytic Vegetation of Watercourses; Cambridge University: New York, NY, USA, 1978. [Google Scholar]
- Sheath, R.G.; Burkholder, J.M.; Hambrook, J.A.; Hogeland, A.M.; Hoy, E.; Kane, M.E.; Morison, M.O.; Steinman, A.D.; Van Alstyne, K.L. Characteristics of softwater streams in Rhode Island. III. Distribution of macrophytic vegetation in a small drainage basin. Hydrobiologia 1986, 140, 183–191. [Google Scholar] [CrossRef]
- Baattrup-Pedersen, A.; Larsen, S.E.; Riis, T. Composition and richness of macrophyte communities in small Danish streams—Influence of environmental factors and weed cutting. Hydrobiologia 2003, 495, 171–179. [Google Scholar] [CrossRef]
- Fritz, K.M.; Glime, J.M.; Hribljan, J.; Greenwood, J.L. Can bryophytes be used to characterize hydrologic permanence in forested headwater streams? Ecol. Indic. 2009, 9, 681–692. [Google Scholar] [CrossRef]
- Suren, A.M. Bryophyte distribution patterns in relation to macro-, meso-, and micro-scale variables in South Island, New Zealand streams. N. Z. J. Mar. Freshw. Res. 1996, 30, 501–523. [Google Scholar] [CrossRef]
- Suren, A.M.; Ormerod, S.J. Aquatic bryophytes in Himalayan streams: Testing a distribution model in a highly heterogeneous environment. Freshw. Biol. 1998, 40, 697–716. [Google Scholar] [CrossRef]
- Wiggins, G.B.; Mackay, R.J. Some relationships between systematics and trophic ecology in Nearctic aquatic insects, with special reference to Trichoptera. Ecology 1978, 59, 1211–1220. [Google Scholar] [CrossRef]
- Dudgeon, D.; Richardson, J.S. Dietary variations of predaceous caddisfly larvae (Trichoptera: Rhyacophilidae, Polycentropodidae and Arctopsychidae) from British Columbian streams. Hydrobiologia 1988, 160, 33–43. [Google Scholar] [CrossRef]
- Edington, J.M.; Hildrew, A.G. Experimental observations relating to the distribution of net-spinning Trichoptera in streams. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 1973, 18, 1549–1558. [Google Scholar] [CrossRef]
- Wiggins, G.B.; Richardson, J.S. Biosystematics of Eocosmoecus, a new Nearctic caddisfly genus (Trichoptera: Limnephilidae; Dicosmoecinae). J. N. Am. Benthol. Soc. 1989, 8, 355–369. [Google Scholar] [CrossRef]
- Adams, M.J.; Bury, R.B. The endemic headwater stream amphibians of the American Northwest: Associations with environmental gradients in a large forested preserve. Glob. Ecol. Biogeogr. 2002, 11, 169–178. [Google Scholar] [CrossRef]
- Olson, D.H.; Anderson, P.D.; Frissell, C.A.; Welsh, H.H., Jr.; Bradford, D.F. Biodiversity management approaches for stream–riparian areas: Perspectives for Pacific Northwest headwater forests, microclimates, and amphibians. For. Ecol. Manag. 2007, 246, 81–107. [Google Scholar] [CrossRef]
- Thomaz, A.T.; Arcila, D.; Ortí, G.; Malabarba, L.R. Molecular phylogeny of the subfamily Stevardiinae Gill, 1858 (Characiformes: Characidae): Classification and the evolution of reproductive traits. BMC Evol. Biol. 2015, 15, 146. [Google Scholar]
- Jones, P.E.; Augspurger, J.; Closs, G.P. Landscape-scale life-history gradients in New Zealand freshwater fish. Freshw. Biol. 2017, 62, 570–581. [Google Scholar] [CrossRef]
- Zbinden, Z.D.; Matthews, W.J. Beta diversity of stream fish assemblages: Partitioning variation between spatial and environmental factors. Freshw. Biol. 2017, 62, 1460–1471. [Google Scholar] [CrossRef]
- Miranda, R.; Tobes, I.; Gaspar, S.; Peláez-Rodríguez, M. Patterns in the distribution of fish assemblages and their association with habitat variables in the Suaza River on its way through the Cueva de los Guácharos National Park, Colombia. Écoscience 2018, 25, 85–95. [Google Scholar] [CrossRef]
- Esnaola, A.; Gonzalez-Esteban, J.; Elosegi, A.; Arrizabalaga-Escudero, A.; Aihartza, J. Need for speed: Preference for fast-flowing water by the endangered semi-aquatic Pyrenean desman (Galemys pyrenaicus) in two contrasting streams. Aquat. Conserv. Mar. Freshw. Ecosyst. 2018, 28, 600–609. [Google Scholar] [CrossRef]
- Swan, C.M.; Brown, B.L. Metacommunity theory meets restoration: Isolation may mediate how ecological communities respond to stream restoration. Ecol. Appl. 2017, 27, 2209–2219. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.M. Constraints on recovery: Using molecular methods to study connectivity of aquatic biota in rivers and streams. Freshw. Biol. 2007, 52, 616–631. [Google Scholar] [CrossRef]
- Thomaz, A.T.; Christie, M.R.; Knowles, L.L. The architecture of river networks can drive the evolutionary dynamics of aquatic populations. Evolution 2016, 70, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Ron, S.R.; Mueses-Cisneros, J.J.; Gutiérrez-Cárdenas, P.D.A.; Rojas-Rivera, A.; Lynch, R.L.; Duarte Rocha, C.F.; Galarza, G. Systematics of the endangered toad genus Andinophryne (Anura: Bufonidae): Phylogenetic position and synonymy under the genus Rhaebo. Zootaxa 2015, 3947, 347–366. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.A.; Gill, B.A.; Encalada, A.C.; Flecker, A.S.; Funk, W.C.; Guayasamin, J.M.; Kondratieff, B.C.; Poff, N.L.; Thomas, S.A.; Zamudio, K.R.; et al. Climate variability predicts thermal limits of aquatic insects across elevation and latitude. Funct. Ecol. 2017, 31, 2118–2127. [Google Scholar] [CrossRef]
- Currie, D.C.; Craig, D.A. Feeding strategies of larval black flies. In Black Flies: Ecology, Population Management, and Annotated World List; Kim, K.C., Merritt, R.W., Eds.; Pennsylvania State University: State College, PA, USA, 1987; pp. 155–170. [Google Scholar]
- Kuglerová, L.; Maher Hasselquist, E.; Richardson, J.S.; Sponseller, R.A.; Kreutzweiser, D.P.; Laudon, H. Management perspectives on Aqua incognita: Connectivity and cumulative effects of small natural and artificial streams in boreal forests. Hydrol. Process. 2017, 31, 4238–4244. [Google Scholar] [CrossRef]
- Wipfli, M.S.; Gregovich, D.P. Export of invertebrates and detritus from fishless headwater streams in southeastern Alaska: Implications for downstream salmonid production. Freshw. Biol. 2002, 47, 957–969. [Google Scholar] [CrossRef]
- Lowe, W.H.; Likens, G.E. Moving headwater streams to the head of the class. BioScience 2005, 55, 196–197. [Google Scholar] [CrossRef]
- Wipfli, M.S.; Richardson, J.S.; Naiman, R.J. Ecological linkages between headwaters and downstream ecosystems: Transport of organic matter, invertebrates, and wood down headwater channels. J. Am. Water Resour. Assoc. 2007, 43, 72–85. [Google Scholar] [CrossRef]
- Pond, G.J.; Fritz, K.M.; Johnson, B.R. Macroinvertebrate and organic matter export from headwater tributaries of a central Appalachian stream. Hydrobiologia 2016, 779, 75–91. [Google Scholar] [CrossRef]
- Louhi, P.; Mykra, H.; Paavola, R.; Huusko, A.; Vehanen, T.; Maki-Petays, A.; Muotka, T. Twenty years of stream restoration in Finland: Little response by benthic macroinvertebrate communities. Ecol. Appl. 2011, 21, 1950–1961. [Google Scholar] [CrossRef] [PubMed]
- Elmore, A.J.; Kaushal, S.S. Disappearing headwaters: Patterns of stream burial due to urbanization. Front. Ecol. Environ. 2008, 6, 308–312. [Google Scholar] [CrossRef]
- Stammler, K.L.; Yates, A.G.; Bailey, R.C. Buried streams: Uncovering a potential threat to aquatic ecosystems. Landsc. Urban Plan. 2013, 114, 37–41. [Google Scholar] [CrossRef]
- Beaulieu, J.J.; Mayer, P.M.; Kaushal, S.S.; Pennino, M.J.; Arango, C.P.; Balz, D.A.; Canfield, T.J.; Elonen, C.M.; Fritz, K.M.; Hill, B.H.; et al. Effects of urban stream burial on organic matter dynamics and reach scale nitrate retention. Biogeochemistry 2014, 121, 107–126. [Google Scholar] [CrossRef] [Green Version]
- Palmer, M.A.; Bernhardt, E.S.; Schlesinger, W.H.; Eshleman, K.N.; Foufoula-Georgiou, E.; Hendryx, M.S.; Lemly, A.D.; Likens, G.E.; Loucks, O.L.; Power, M.E.; et al. Mountaintop Mining Consequences. Science 2010, 327, 148–149. [Google Scholar] [CrossRef]
- Beechie, T.; Richardson, J.S.; Gurnell, A.M.; Negishi, J. Watershed processes, human impacts, and process-based restoration. In Stream and Watershed Restoration: A Guide to Restoring Riverine Processes and Habitats; Roni, P., Beechie, T., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 11–49. [Google Scholar]
- Palmer, M.A.; Hondula, K.L.; Koch, B.J. Ecological restoration of streams and rivers: Shifting strategies and shifting goals. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 247–269. [Google Scholar] [CrossRef]
- Bouska, W.W.; Paukert, C.P. Road crossing designs and their impact on fish assemblages of Great Plains streams. Trans. Am. Fish. Soc. 2010, 139, 214–222. [Google Scholar] [CrossRef]
- Nathan, L.R.; Welsh, A.B.; Vokoun, J.C. Watershed-level brook trout genetic structuring: Evaluation and application of riverscape genetics models. Freshw. Biol. 2019, 64, 405–420. [Google Scholar] [CrossRef]
- Macher, J.-N.; Rozenberg, A.; Pauls, S.U.; Tollrian, R.; Wagner, R.; Leese, F. Assessing the phylogeographic history of the montane caddisfly Thremma gallicum using mitochondrial and restriction-site-associated DNA (RAD) markers. Ecol. Evol. 2015, 5, 648–662. [Google Scholar] [CrossRef] [PubMed]
- Isaak, D.J.; Luce, C.; Horan, D.L.; Chandler, G.L.; Wollrab, S.P.; Nagel, D.E. Global warming of Salmon and Trout rivers in the Northwestern US: Road to ruin or path through purgatory? Trans. Am. Fish. Soc. 2018, 147, 566–587. [Google Scholar] [CrossRef]
- Baumann, R.W.; Kondratieff, B.C. The stonefly genus Lednia in North America (Plecoptera: Nemouridae). Illiesia 2010, 6, 315–327. [Google Scholar]
- Leibowitz, S.G.; Wigington, P.J., Jr.; Rains, M.C.; Downing, D.M. Non-navigable streams and adjacent wetlands: Addressing science needs following the Supreme Court’s Rapanos decision. Front. Ecol. Environ. 2008, 6, 366–373. [Google Scholar] [CrossRef]
- Marshall, J.C.; Acuña, V.; Allen, D.C.; Bonada, N.; Boulton, A.J.; Carlson, S.M.; Dahm, C.N.; Datry, T.; Leigh, C.; Negus, P.; et al. Protecting US river health by maintaining the legal status of their temporary waterways. Science 2018, 361, 856–857. [Google Scholar] [PubMed]
- Richardson, J.S.; Naiman, R.J.; Bisson, P.A. How did fixed-width buffers become standard practice for protecting freshwaters and their riparian areas from forest harvest practices? Freshw. Sci. 2012, 31, 232–238. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Difference from Other Freshwaters | Influence | Conservation Issue |
---|---|---|---|
Edge: Area | Highest with the possible exception of springs | High sensitivity to conditions along stream edges | Most vulnerable to catchment alterations |
Shading | High probability of shading by vegetation (trees, shrubs or herbs) or topographic shading | Reduces thermal inputs and may restrict primary production | Removal of vegetation due to land use |
Temperatures | Less variation (cooler in summer, warmer in winter), close to groundwater temperatures | Provides habitat for cool, stenothermic organisms | Land use can remove the vegetative cover leading to warming and loss of cool-water and cold-water species |
Discharge | Highly responsive to runoff generation, i.e., “flashy” peak flows; less capacity to buffer against droughts | Disappearance of surface flows and loss of larger-bodied species | In dry years, populations may go locally extinct |
Energy sources | Allochthonous, at least in forested areas | Detritus-based food webs, including dissolved organic carbon (DOC) | Impacted by forestry and other land-use changes that alter types of inputs |
Chemistry | More similar to groundwater | Often but not always oligotrophic | Low productivity and perhaps small local populations |
Geomorphology | Colluvial to alluvial but may have very small sediment grain sizes depending on slope and geology | Morphology depends on gradients, parent material and peak flows | Disruption of structure can take centuries to recover, including changes in large wood supply. |
Disturbance regimes | Low frequency but high intensity structural changes as debris flows (depending on slope); excessively low flows (see discharge) | Punctuated shifts and long periods to recover | Sensitive to land-use changes that modify peak and minimum discharges |
Ecological Process | Characteristic | Example | Citation |
---|---|---|---|
Enemy-free space | None or few large-bodied predators | Anablepsoides hartii | [32] |
Lack of competition | Headwaters may be unsuitable for some species of competitors | Gammarus sp. or Juga sp. | [9] |
Unique physical and chemical niche space | Physically stable, low variation in flows and temperatures in forest sites; chemical imprint of groundwater | Cordulegaster spp. | [33] |
Seasonal environmental refuge, e.g., thermal, flow | Move to cooler sites during warm periods | Steelhead trout Oncorhynchus mykiss | [34] |
Breeding and rearing sites | Small habitats with physical and biological processes resulting in higher survival and growth rates (likely coupled with lower predation) | Brook trout, Salvelinus fontinalis Atya shrimp | [15,35] |
Detrital-based food web | High retention of detritus due to modest flows and high inputs | Scoparidae stoneflies | [36,37] |
Site | Taxonomic Diversity | Comments | Source |
---|---|---|---|
Breitenbach, Germany | >1831 taxa, including >1556 invertebrates, 135 algae, 140 ciliates | Long-term study | [58] |
Broadstone, England | 131 invertebrate taxa, mostly identified to species | Increased richness over 40 years of study as stream recovered from acidification | [61] |
Corvallis, Oregon, USA | 204 aquatic insect taxa in 7 “summer-dry” headwater streams | Described 13 new species | [9] |
Coweeta Hydrological Laboratory, North Carolina, USA | >290 invertebrate taxa | Three headwater streams | [12] |
Alabama | >171 taxa of invertebrates | Combined for 6 headwater streams | [8] |
Oregon, USA | 72 species of single-celled algae | Mostly diatoms | [60] |
Bolivia | 172 species of single-celled algae | Mostly diatoms | [63] |
Colorado, USA | 88 species of single-celled algae | Diatoms and Chlorophyta dominant | [62] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richardson, J.S. Biological Diversity in Headwater Streams. Water 2019, 11, 366. https://doi.org/10.3390/w11020366
Richardson JS. Biological Diversity in Headwater Streams. Water. 2019; 11(2):366. https://doi.org/10.3390/w11020366
Chicago/Turabian StyleRichardson, John S. 2019. "Biological Diversity in Headwater Streams" Water 11, no. 2: 366. https://doi.org/10.3390/w11020366