# Statistical and Numerical Assessments of Groundwater Resource Subject to Excessive Pumping: Case Study in Southwest Taiwan

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Study Area and Data

## 3. Methodology

#### 3.1. Statistical Assessment

#### 3.1.1. Trend Analysis

#### 3.1.2. Change-Point Analysis

#### 3.2. Numerical Assessment

#### 3.2.1. Groundwater Model: WASH123D

#### 3.2.2. Hydrogeological Analysis

#### 3.2.3. Mesh Generation

#### 3.2.4. Boundary Conditions

## 4. Results and Discussion

#### 4.1. Interannual Variations in Hydro-Meteorological Conditions

#### 4.2. Calibration/Validation of WASH123D

#### 4.3. Assessment of Unregulated/Illegal Pumping Using WASH123D

## 5. Conclusions and Recommendations

- At the annual scale, quasi-stationary rainfall is not able to provide enough recharge to the PAP aquifers with the observed decline of GLs, especially over the eastern-southeastern part. The decline, aggravated after the identified change points around 2005–2008, suggests a clear association with land subsidence.
- The pumping-free numerical experiment reveals significant discrepancies between simulated and observed GLs, and these discrepancies develop in both space and time. Our findings not only corroborate the evidence of unregulated/illegal pumping, but also propose a remote connection between pumping and land subsidence.

## Supplementary Materials

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Castle, S.L.; Thomas, B.F.; Reager, J.T.; Rodell, M.; Swenson, S.C.; Famiglietti, J.S. Groundwater depletion during drought threatens future water security of the Colorado River Basin. Geophys. Res. Lett.
**2014**, 41, 5904–5911. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Calow, R.C.; Robins, N.S.; Macdonald, A.M.; Macdonald, D.M.J.; Gibbs, B.R.; Orpen, W.R.G.; Mtembezeka, P.; Andrews, A.J.; Appiah, S.O. Groundwater management in drought-prone areas of Africa. Int. J. Water Resour. Dev.
**1997**, 13, 241–261. [Google Scholar] [CrossRef] - Chai, J.C.; Shen, S.L.; Zhu, H.H.; Zhang, X.L. Land subsidence due to groundwater drawdown in Shanghai. Géotechnique
**2004**, 54, 143–148. [Google Scholar] [CrossRef] - Phien-wej, N.; Giao, P.H.; Nutalaya, P. Land subsidence in Bangkok, Thailand. Eng. Geol.
**2006**, 82, 187–201. [Google Scholar] [CrossRef] - Nishikawa, T.; Siade, A.J.; Reichard, E.G.; Ponti, D.J.; Canales, A.G.; Johnson, T.A. Stratigraphic controls on seawater intrusion and implications for groundwater management, Dominguez Gap area of Los Angeles, California, USA. Hydrogeol. J.
**2009**, 17, 1699–1725. [Google Scholar] [CrossRef] - Petrone, K.C.; Hughes, J.D.; Biel, T.G.V.; Silberstein, R.P. Streamflow decline in southwestern Australia, 1950–2008. Geophys. Res. Lett.
**2010**, 37, L11401. [Google Scholar] [CrossRef] - Hughes, J.D.; Petrone, K.C.; Silberstein, R.P. Drought, groundwater storage and streamflow decline in southwestern Australia. Geophys. Res. Lett.
**2012**, 39, L03408. [Google Scholar] [CrossRef] - Khan, H.F.; Yang, Y.E.; Ringler, C.; Wi, S.; Cheema, M.J.M.; Basharat, M. Guiding groundwater policy in the Indus Basin of Pakistan using a physically based groundwater model. J. Water Resour. Plan. Manag.
**2017**, 143, 05016014. [Google Scholar] [CrossRef] - Domenico, P.A.; Schwartz, F.W. Physical and Chemical Hydrogeology; Wiley: New York, NY, USA, 1998; p. 506. [Google Scholar]
- Das, B.M. Principles of Geotechnical Engineering; Thomson-Engineering: New York, NY, USA, 2001. [Google Scholar]
- Kiely, G.; Albertson, J.D.; Parlange, M.B. Recent trends in diurnal variation of precipitation at Valentia on the west coast of Ireland. J. Hydrol.
**1998**, 207, 270–279. [Google Scholar] [CrossRef] [Green Version] - Yu, P.S.; Yang, T.C.; Kuo, C.C. Evaluating long-term trends in annual and seasonal precipitation in Taiwan. Water Resour. Manag.
**2006**, 20, 1007–1023. [Google Scholar] [CrossRef] - Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang.
**2013**, 100, 172–182. [Google Scholar] [CrossRef] - Gocic, M.; Trajkovic, S. Analysis of precipitation and drought data in Serbia over the period 1980–2010. J. Hydrol.
**2013**, 494, 32–42. [Google Scholar] [CrossRef] - Mahinthakumar, G.; Sayeed, M. Hybrid genetic algorithm–local search methods for solving groundwater source identification inverse problems. J. Water Resour. Plan. Manag.
**2005**, 131, 45–57. [Google Scholar] [CrossRef] - Ayvaz, M.T.; Karahan, H. A simulation/optimization model for the identification of unknown groundwater well locations and pumping rates. J. Hydrol.
**2008**, 357, 76–92. [Google Scholar] [CrossRef] - Sun, P.L.; Yang, C.C.; Lin, T.W. How to amend land subsidence treatment policies to solve coastal subsidence problems in Taiwan. Reg. Environ. Chang.
**2011**, 11, 679–691. [Google Scholar] [CrossRef] - Mann, H.B. Nonparametric tests against trend. Econometrica
**1945**, 13, 245–259. [Google Scholar] [CrossRef] - Kendall, M.G. Rank Correlation Methods; Hafner Pub. Co.: New York, NY, USA, 1962; p. 199. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc.
**1968**, 63, 1379–1389. [Google Scholar] [CrossRef] - Pettitt, A.N. A Non-parametric Approach to the Change-point Problem. J. R. Stat. Soc. Ser. C Appl. Stat.
**1979**, 28, 126–135. [Google Scholar] [CrossRef] - Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc.
**1952**, 47, 583–621. [Google Scholar] [CrossRef] - Yeh, G.T.; Cheng, H.P.; Cheng, J.R.; Lin, H.C.; Martin, W.D. A Numerical Model Simulating Water Flow and Contaminant and Sediment Transport in WAterSHed Systems of 1-D Stream-River Network, 2-D Overland Regime, and 3-D Subsurface Media (WASH123D: Version 1.0); U.S. Army Corps of Engineers: Vicksburg, MS, USA, 1998.
- Yeh, G.T.; Huang, G.B.; Cheng, H.P.; Zhang, F.; Lin, H.C.; Edris, E.; Richards, D. A First-Principle, Physics-Based Watershed Model: WASH123D; CRC Press: Boca Raton, FL, USA, 2005; Chapter 9; pp. 211–244. [Google Scholar]
- Yates, D.; Purkey, D.; Sieber, J.; Huber-Lee, A.; Galbraith, H.; West, J.; Herrod-Julius, S.; Young, C.; Joyce, B.; Rayej, M. Climate driven water resources model of the Sacramento Basin, California. J. Water Resour. Plan. Manag.
**2009**, 135, 303–313. [Google Scholar] [CrossRef] - Yeh, G.T.; Shih, D.S.; Cheng, J.R.C. An integrated media, integrated processes watershed model. Comput. Fluids
**2011**, 45, 2–13. [Google Scholar] [CrossRef] - Shih, D.S.; Yeh, G.T. Identified model parameterization, calibration, and validation of the physically distributed hydrological model WASH123D in Taiwan. J. Hydrol. Eng.
**2010**, 16, 126–136. [Google Scholar] [CrossRef] - Shih, D.S.; Liau, J.M.; Yeh, G.T. Model assessments of precipitation with a unified regional circulation rainfall and hydrological watershed model. J. Hydrol. Eng.
**2011**, 17, 43–54. [Google Scholar] [CrossRef] - Hsu, T.W.; Shih, D.S.; Li, C.Y.; Lan, Y.J.; Lin, Y.C. A study on coastal flooding and risk assessment under climate change in the mid-western coast of Taiwan. Water
**2017**, 9, 390. [Google Scholar] [CrossRef] - Wu, R.S.; Shih, D.S. Modeling hydrological impacts of groundwater level in the context of climate and land cover change. Terr. Atmos. Ocean. Sci.
**2018**, 29, 341–353. [Google Scholar] [CrossRef] - Ting, C.S.; Zhou, Y.; de Vries, J.J.; Simmers, I. Development of a preliminary ground water flow model for water resources management in the Pingtung Plain. Groundwater
**1998**, 36, 20–36. [Google Scholar] [CrossRef] - Yang, C.C. The Observation and Investigation of Cross Sections in the Valley of Donggang River and Gaoping River; Water Resources Agency: Taipei, Taiwan, 2015. (In Chinese)
- Li, M.H.; Jang, C.S.; Chen, C.J.; Shih, D.S. Applying Integrated Numerical Modeling of Surface Water and Subsurface Water to Study Groundwater Resources Management (3/3); Water Resources Agency: Taipei, Taiwan, 2016. (In Chinese)
- Lin, K.P.; Chou, P.C.; Shih, D.S. To study hydrological variabilities by using surface and groundwater coupled model–A case study of Pingtung plain, Taiwan. Procedia Eng.
**2016**, 154, 1034–1042. [Google Scholar] [CrossRef] - Hamon, R.W. Computation of direct runoff amounts from storm rainfall. Int. Assoc. Hydrol. Sci.
**1963**, 63, 52–62. [Google Scholar]

**Figure 2.**Spatial locations of various stations, including groundwater level, streamflow, rainfall, and weather stations.

**Figure 3.**The (

**top**) panel illustrates the hydrogeological units (please refer to Table 1 for the definition of each unit), and the (

**bottom**) shows the 3D mesh over the PAP used for WASH123D simulations.

**Figure 4.**The (

**top**) and (

**bottom**) panel shows the spatial distribution of annual rainfall amounts (mean rainfall intensity) and the corresponding trend over the PAP.

**Figure 5.**The (

**top**) panel shows the spatial distribution of mean groundwater levels in Aquifers 1, 2, and 3-1, and the (

**bottom**) shows the estimated trends in the corresponding aquifers over the PAP.

**Figure 6.**Histograms of identified change points for each aquifer, representing frequency distributions of identified years when groundwater level series at any gauges experience a shift in the mean.

**Figure 7.**The (

**top**) and (

**bottom**) panel shows the estimated trends in groundwater levels prior (posterior) to the identified change points at each gauge.

**Figure 8.**Annual series of average effective precipitation and groundwater level anomalies in Aquifer 3-1 and corresponding linear trends.

**Figure 9.**Validation results of river stages in the Gaoping River (

**left**) and groundwater levels (

**right**) from 8 June–8 July of 2012 when Tropical Storm Talim affected Taiwan.

**Figure 10.**Comparisons between simulated and observed groundwater level series at selected sites along the downstream of the Gaoping River from 2003–2013.

**Figure 11.**As in Figure 10, but for the downstream of the Donggang and Linbian Rivers.

**Figure 12.**Evolution of the spatial patterns of groundwater level differences (simulated minus observed data) for the 10-year simulation.

**Figure 13.**Annual series of observed and simulated groundwater level anomalies and corresponding linear trends. GL, groundwater level.

**Table 1.**Hydrogeological units in the PAP and associated hydraulic conductivity (K) values used on this study.

Hydrogeological Unit | ID | Pumping Test Results | Lateral K | |||
---|---|---|---|---|---|---|

Name | Abbr. | No. Tests | Ave.K | Std. Log(K) | ||

Mud Layer | M | 13 | - | - | - | $7\times {10}^{-8}$ m/s |

Fluvial Deposit | F | 14 | - | - | - | $2\times {10}^{-5}$ m/s |

Aquifer 1/A1 | F1/A1 | 1 | 7 | $2.12\times {10}^{-3}$ m/s | 0.32 | $2\times {10}^{-3}$ m/s |

Aquifer 1/A2 | F1/A2 | 2 | 8 | $5.69\times {10}^{-4}$ m/s | 0.33 | $7\times {10}^{-4}$ m/s |

Aquifer 1/B | F1/B | 3 | 13 | $3.31\times {10}^{-4}$ m/s | 0.5 | $4\times {10}^{-4}$ m/s |

Aquifer 1/C | F1/C | 4 | 13 | $2.32\times {10}^{-4}$ m/s | 0.75 | $1.9\times {10}^{-4}$ m/s |

Aquifer 2/A1 | F2/A1 | 5 | 4 | $9.84\times {10}^{-4}$ m/s | 0.06 | $1\times {10}^{-3}$ m/s |

Aquifer 2/A2 | F2/A2 | 6 | 18 | $8.39\times {10}^{-4}$ m/s | 0.44 | $6\times {10}^{-4}$ m/s |

Aquifer 2/B | F2/B | 7 | 15 | $2.69\times {10}^{-4}$ m/s | 0.38 | $3\times {10}^{-4}$ m/s |

Aquifer 2/C | F2/C | 8 | 4 | $2.27\times {10}^{-4}$ m/s | 0.23 | $5\times {10}^{-5}$ m/s |

Aquifer 3-1/A | F3-1/A | 9 | 30 | $1.91\times {10}^{-4}$ m/s | 0.5 | $5\times {10}^{-4}$ m/s |

Aquifer 3-1/B | F3-1/B | 10 | 12 | $1.86\times {10}^{-4}$ m/s | 0.59 | $2\times {10}^{-4}$ m/s |

Aquifer 3-1/C | F3-1/C | 17 | 5 | $4.31\times {10}^{-4}$ m/s | 0.48 | $4\times {10}^{-5}$ m/s |

Aquifer 3-2 | F3-2 | 11 | 16 | $5.13\times {10}^{-4}$ m/s | 0.55 | $5\times {10}^{-4}$ m/s |

Aquitards | T1–T3 | 15 | - | - | - | $1\times {10}^{-8}$ m/s |

Lingkou Cg † | LK | 12 | - | - | - | $2\times {10}^{-5}$ m/s |

Bedrock | R | 16 | - | - | - | $1\times {10}^{-8}$ m/s |

Channels (1D) | Land Surfaces (2D) |
---|---|

$\mathit{Mn}$ | $\mathit{Mn}$ |

0.028–0.040 | Agricultural (0.20) |

Forestry (0.30) | |

Traffic (0.10) | |

Water (0.05) | |

Building (0.10) | |

Other (0.15) |

Year | Hengchun | Kaohsiung | Year | Hengchun | Kaohsiung |
---|---|---|---|---|---|

1981 | 25.21 | 25.00 | 1998 | 26.06 | 25.83 |

1982 | 24.82 | 24.83 | 1999 | 25.12 | 25.19 |

1983 | 24.90 | 24.76 | 2000 | 25.32 | 25.13 |

1984 | 24.54 | 24.33 | 2001 | 25.20 | 25.16 |

1985 | 24.72 | 24.22 | 2002 | 25.44 | 25.66 |

1986 | 24.21 | 24.43 | 2003 | 25.27 | 25.43 |

1987 | 25.30 | 25.16 | 2004 | 25.12 | 25.22 |

1988 | 25.16 | 24.87 | 2005 | 25.05 | 25.05 |

1989 | 24.77 | 24.95 | 2006 | 25.90 | 25.68 |

1990 | 25.12 | 25.13 | 2007 | 25.77 | 25.46 |

1991 | 25.14 | 25.34 | 2008 | 25.37 | 25.14 |

1992 | 24.95 | 24.88 | 2009 | 25.40 | 25.35 |

1993 | 25.20 | 25.11 | 2010 | 25.37 | 25.44 |

1994 | 25.37 | 25.21 | 2011 | 24.72 | 24.95 |

1995 | 24.95 | 24.65 | 2012 | 25.48 | 25.43 |

1996 | 24.97 | 24.83 | 2013 | 25.56 | 25.55 |

1997 | 24.97 | 24.98 | 2014 | 25.59 | 25.59 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Shih, D.-S.; Chen, C.-J.; Li, M.-H.; Jang, C.-S.; Chang, C.-M.; Liao, Y.-Y.
Statistical and Numerical Assessments of Groundwater Resource Subject to Excessive Pumping: Case Study in Southwest Taiwan. *Water* **2019**, *11*, 360.
https://doi.org/10.3390/w11020360

**AMA Style**

Shih D-S, Chen C-J, Li M-H, Jang C-S, Chang C-M, Liao Y-Y.
Statistical and Numerical Assessments of Groundwater Resource Subject to Excessive Pumping: Case Study in Southwest Taiwan. *Water*. 2019; 11(2):360.
https://doi.org/10.3390/w11020360

**Chicago/Turabian Style**

Shih, Dong-Sin, Chia-Jeng Chen, Ming-Hsu Li, Cheng-Shin Jang, Che-Min Chang, and Yuan-Ya Liao.
2019. "Statistical and Numerical Assessments of Groundwater Resource Subject to Excessive Pumping: Case Study in Southwest Taiwan" *Water* 11, no. 2: 360.
https://doi.org/10.3390/w11020360