Meteorological Factors Affecting Pan Evaporation in the Haihe River Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Canopy and k-means Clustering
2.2. Trend-Free Pre-Whitening Mann-Kendall Test (TFPW-MK)
2.3. Spearman Correlation Coefficient
3. Results
3.1. Trend and Significance Analysis
3.2. Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2001: The Science Basis, Contribution of Working Group I to the Third Assessment Report of Inter-Government Panel on Climate Change; The Press Syndicate of University of Cambridge: Cambridge, UK, 2001. [Google Scholar]
- IPCC. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; The Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2007. [Google Scholar]
- Roderick, M.L.; Farquhar, G.D. The cause of decreased pan evaporation over the past 50 years. Science 2002, 298, 1410–1411. [Google Scholar] [PubMed]
- Kang, S.Z. Towards water and food security in China. Chin. J. Eco Agric. 2014, 22, 880–885. (In Chinese) [Google Scholar]
- Gleick, P.H. Climate change, hydrology, and water resource. Rev. Geophys. 1989, 27, 329–344. [Google Scholar] [CrossRef]
- Limjirakan, B.S.; Limsakul, A. Trends in Thailand pan evaporation from 1970 to 2007. Atmos. Res. 2012, 108, 122–127. [Google Scholar] [CrossRef]
- Liu, X.M.; Zheng, H.X.; Liu, C.M.; Cao, Y.J. Sensitivity of the potential evapotranspiration to key climatic variables in the Haihe River Basin. Res. Sci. 2009, 31, 1470–1476. (In Chinese) [Google Scholar]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; De Jou, R.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef] [Green Version]
- Eagleman, J.R. Pan evaporation, potential and actual evapotranspiration. J. Appl. Meteorol. 1967, 6, 482–488. [Google Scholar] [CrossRef]
- Wang, S.Q.; Chen, N.X. Water Resources Evaluation and Management, 1st ed.; Water Resources and Electric Power Press: Beijing, China, 1996; ISBN 7-120-01998-8. (In Chinese) [Google Scholar]
- Jhajharia, D.; Shrivastava, S.K.; Sarkar, D.; Sarkar, S. Temporal characteristics of pan evaporation trends under the humid conditions of northeast India. Agric. For. Meteorol. 2009, 149, 763–770. [Google Scholar] [CrossRef]
- Azorin-Molina, C.; Vicente-Serrano, S.M.; Sanchez-Lorenzo, A.; McVicar, T.R.; Morán-Tejeda, E.; Revuelto, J.; Kenawy, A.E.; Martín-Hernández, N.; Tomas-Burguera, M. Atmospheric evaporative demand observations, estimates and driving factors in Spain (1961–2011). J. Hydrol. 2015, 523, 262–277. [Google Scholar] [CrossRef] [Green Version]
- Tabari, H.; Marofi, S. Changes of pan evaporation in the west of Iran. Water Resour. Manag. 2011, 25, 97–111. [Google Scholar] [CrossRef]
- Cohen, S.; Ianetz, A.; Stanhill, G. Evaporative climate changes at Bet Dagan, Israel, 1964–1998. Agric. For. Meteorol. 2002, 111, 83–91. [Google Scholar] [CrossRef]
- Silva, V.D.P.R.D. On climate variability in Northeast of Brazil. J. Arid Environ. 2004, 58, 575–596. [Google Scholar] [CrossRef]
- Peterson, T.C.; Golubev, V.S.; Groisman, P.Y. Evaporation losing its strength. Nature 1995, 377, 687–688. [Google Scholar] [CrossRef]
- Golubev, V.S.; Lawrimore, J.H.; Groisman, P.Y.; Speranskaya, N.A.; Zhuravin, S.A.; Menne, M.J.; Peterson, T.C.; Malone, R.W. Evaporation changes over the contiguous United States and the former USSR: A reassessment. Geophys. Res. Lett. 2001, 28, 2665–2668. [Google Scholar] [CrossRef] [Green Version]
- Roderick, M.L.; Farquhar, G.D. Changes in New Zealand pan evaporation since the 1970s. Int. J. Climatol. 2005, 25, 2031–2039. [Google Scholar] [CrossRef] [Green Version]
- Zuo, H.C.; Li, D.L.; Hu, Y.Q.; Bao, Y.; Lv, S.H. The relationship between climate change trends and its changes in evaporation observed by evaporating dishes in the past 40 years in China. Chin. Sci. Bull. 2005, 11, 1125–1130. (In Chinese) [Google Scholar]
- Sheng, Q. The Variation and Causes of Small Pan Evaporation over the Past 45 Years in China. Master’s Thesis, Nanjing University of Information Science & Technology, Nanjing, China, May 2006. (In Chinese). [Google Scholar]
- Liu, M.; Shen, Y.J.; Ceng, Y.; Liu, C.M. Changing trend of pan evaporation and its cause over the past 50 years in China. Acta Geogr. Sin. 2009, 64, 259–269. (In Chinese) [Google Scholar]
- Ren, G.Y.; Guo, J. Change in pan evaporation and the influential factors over China: 1956–2000. J. Nat. Res. 2006, 1, 31–44. (In Chinese) [Google Scholar]
- Tebakari, T.; Yoshitani, J.; Suvanpimol, C. Time-space trend analysis in pan evaporation over Kingdom of Thailand. J. Hydrol. Eng. 2005, 10, 205–215. [Google Scholar] [CrossRef]
- Oguntunde, P.G.; Abiodun, B.J.; Olukunle, O.J.; Olufayoa, A.A. Trends and variability in pan evaporation and other climatic variables at Ibadan, Nigeria, 1973–2008. Meteorol. Appl. 2012, 19, 464–472. [Google Scholar] [CrossRef]
- Roderick, M.L.; Farquhar, G.D. Changes in Australian pan evaporation from 1970–2002. Int. J. Climatol. 2004, 24, 1077–1090. [Google Scholar] [CrossRef]
- Jovanovic, B.; Jones, D.A.; Collins, D. A high-quality monthly pan evaporation data set for Australia. Clim. Chang. 2008, 87, 517–535. [Google Scholar] [CrossRef]
- Brutsaert, W.; Parlange, M.B. Hydrologic cycle explains the evaporation paradox. Nature 1998, 396, 30. [Google Scholar] [CrossRef]
- Lawrimore, J.; Peterson, T.C. Pan evaporation in dry and humid regions of the United States. J. Hydrometeorol. 2000, 1, 543–546. [Google Scholar] [CrossRef]
- Jaswal, A.K.; Rao, G.S.P.; De, U.S. Spatial and temporal characteristics of evaporation trends over India during 1971–2000. Mausam 2008, 59, 149–158. [Google Scholar]
- Burn, D.H.; Hesch, N.M. Trends in evaporation for the Canadian prairies. J. Hydrol. 2007, 336, 61–73. [Google Scholar] [CrossRef]
- Hoffman, M.T.; Cramer, M.D.; Gillson, L.; Wallace, M. Pan evaporation and wind run decline in the Cape Floristic Region of South Africa (1974–2005): Implications for vegetation responses to climate change. Clim. Chang. 2011, 109, 437–452. [Google Scholar] [CrossRef]
- Yang, H.; Yang, D. Climatic factors influencing changing pan evaporation across china from 1961 to 2001. J. Hydrol. 2012, 414, 184–193. [Google Scholar] [CrossRef]
- Cao, Y.Q.; Zhang, T.T.; Xu, D.; Yang, C.X. Analysis of evapotranspiration of temporal-space evolution in the Haihe Basin. Res. Sci. 2014, 36, 1489–1500. (In Chinese) [Google Scholar]
- Bao, Z.X.; Yan, X.L.; Wang, G.Q.; Liu, C.S.; He, R.M. Mechanism of effect of meteorological factors in paradox theory of pan evaporation of Haihe River basin. J. Water Res. Water Eng. 2014, 25, 1–7. (In Chinese) [Google Scholar]
- Li, X.C. Spatio-Temporal Variation of Actual Evapotranspiration in the Pearl, Haihe and Tarim River Basins of China. Ph.D. Thesis, Nanjing University of Information Science & Technology, Nanjing, China, May 2013. (In Chinese). [Google Scholar]
- Liu, M.; Shen, Y.J. Change trend of hydrological elements in Haihe River Basin over the last 50 years. J. China Hydrol. 2010, 30, 74–77. (In Chinese) [Google Scholar]
- Rong, Y.S.; Zhang, X.N.; Jiang, H.Y.; Bai, L.Y. Pan evaporation change and its impact on water cycle over the upper reach of the Yangtze River. Chin. J. Geophys. 2012, 55, 2889–2897. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, F.N.; Zhao, M.; Wang, Y.; Zhang, P.F. Variation characteristics of reference evapotranspiration and pan evaporation during 1960–2009 in Shiyang River Basin. J. Arid Meteorol. 2014, 32, 560–568. (In Chinese) [Google Scholar]
- Li, L.P.; Li, Y.Y.; Liu, M.C. Change trend of pan evaporation and its causes in Shiyang River Basin during 1961–2005. J. Desert Res. 2012, 32, 832–841. (In Chinese) [Google Scholar]
- Zhang, T.T. Analysis on Pan Evaporation Trend And Its Impacted Factors in Xiangjiang River Basin. Master’s Thesis, Hunan Normal University, Changsha, China, May 2013. (In Chinese). [Google Scholar]
- Rong, Y.S.; Zhou, Y.; Wang, W. Analysis of pan evaporation changes in the Huaihe River basin. Adv. Water Sci. 2011, 22, 15–22. (In Chinese) [Google Scholar]
- Xie, P.; Chen, X.H.; Wang, Z.L.; Xie, Y.W. Comparison of actual evapotranspiration and pan evaporation. Acta Geogr. Sin. 2009, 64, 270–277. (In Chinese) [Google Scholar]
- Wang, Z.L.; Qin, J.X.; Chen, X.H. Variation characteristics and impact factors of pan evaporation in Pearl River Basin. Trans. CSAE 2010, 26, 73–77. (In Chinese) [Google Scholar]
- Qiu, X.F.; Liu, C.M.; Zeng, Y. Changes of evaporation in the recent 40 years over the Yellow River Basin. J. Nat. Res. 2003, 18, 437–441. (In Chinese) [Google Scholar]
- Huang, Y.; Wang, Y. Analysis on temporal spatial distribution and inter-annual change of the evaporation capacity in Yunnan Province. Hydrology 2003, 23, 36–40. (In Chinese) [Google Scholar]
- Xu, Z.X.; He, W.L. Analysis on the long-term trend of pan evaporation in the Yellow River Basin over the past 40 years. Hydrology 2005, 06, 6–11. (In Chinese) [Google Scholar]
- Song, M.B.; Chen, J.Q.; Zhang, X.J.; Zhang, W.J. Pan evaporation trend in Yangtze River Basin from 1951 to 2000. Water Res. Prot. 2011, 27, 24–27. (In Chinese) [Google Scholar]
- Zheng, H.; Liu, X.; Liu, C.; Dai, X.; Zhu, R. Assessing contributions to pan evaporation trends in Haihe River Basin, China. J. Geophys. Res. Atmos. 2009, 114, D24105. [Google Scholar] [CrossRef]
- Hao, Z.C.; Yan, L.Z.; Ju, Q.; Dunzhu, J.C. Spatiotemporal characteristics of climate variation in different kinds of landforms of Haihe River Basin. Res. Soil Water Conserv. 2014, 21, 56–60. (In Chinese) [Google Scholar]
- Guo, J.; Ren, G.Y. Recent change of pan evaporation and possible climate factors over the Huang-Huai-Hai watershed, China. Adv. Water Sci. 2005, 16, 666–672. (In Chinese) [Google Scholar]
- Mac Queen, J.B. Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June–18 July 1965 and 27 December 1965–7 January 1966; Volume 1, pp. 281–297. [Google Scholar]
- Guha, S.; Rastogi, R.; Shim, K. Cure: An efficient clustering algorithm for large databases. Inf. Syst. 2001, 26, 35–58. [Google Scholar] [CrossRef]
- Zhang, T.; Ramakrishnan, R.; Livny, M. BIRCH: An efficient data clustering method for very large database. In Proceedings of the 1996 ACM SIGMOD International Conference on Management of data, Montreal, QC, Canada, 4–6 June 1996; Volume 25, pp. 103–114. [Google Scholar]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Measures; Charles Griffin: London, UK, 1975. [Google Scholar]
- Kottegoda, N.T. Stochastic Water Resources Technology; Wiley: New York, NY, USA, 1980; ISBN 978-1-349-03467-3. [Google Scholar]
- Burn, D.H.; Elnur, M.A.H. Detection of hydrologic trends and variability. J. Hydrol. 2002, 55, 107–122. [Google Scholar] [CrossRef]
- Abdul Aziz, O.I.; Burn, D.H. Trends and variability in the hydrological regime of the Mackenzie River Basin. J. Hydrol. 2006, 319, 282–294. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. Changes in extreme precipitation in Texas. J. Geophys. Res. Atmos. 2010, 115, D14. [Google Scholar] [CrossRef]
- Von Storch, H. Misuses of statistical analysis in climate research. In Analysis of Climate Variability: Applications of Statistical Techniques; Von Storch, H., Navarra, A., Eds.; Springer: New York, NY, USA, 1995; pp. 11–26. [Google Scholar]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis, I. Nederlands Akad. Wetensch. Proc. 1950, 53, 386–392. [Google Scholar]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis, II. Nederlands Akad. Wetensch. Proc. 1950, 53, 52–525. [Google Scholar]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis, III. Nederlands Akad. Wetensch. Proc. 1950, 53, 1397–1412. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef]
- Demaree, G.R.; Nicolis, C. Onset of Sahelian drought viewed as a fluctuation-induced transition. Q. J. R. Meteorol. Soc. 1990, 116, 221–238. [Google Scholar] [CrossRef]
- Burn, D.H. Hydrologic effects of climatic change in west-central Canada. J. Hydrol. 1994, 160, 53–70. [Google Scholar] [CrossRef]
- Gan, T.Y. Hydroclimatic trends and possible climatic warming in the Canadian Prairies. Water Resour. Res. 1998, 34, 3009–3015. [Google Scholar] [CrossRef] [Green Version]
- Spearman’s Rank Correlation Coefficient. Available online: https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient (accessed on 20 January 2019).
- Myers, J.L.; Well, A.D. Research Design and Statistical Analysis, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2003; ISBN 0-8058-4037-0. [Google Scholar]
- Maritz, J.S. Distribution-Free Statistical Methods, 1st ed.; Chapman & Hall: New York, NY, USA, 1981; ISBN 978-0-412-15940-4. [Google Scholar]
- Spearman’s correlation. Available online: http://www.statstutor.ac.uk/resources/uploaded/spearmans.pdf (accessed on 20 January 2019).
- Wei, F.Y. Modern Climate Statistical Diagnosis and Prediction Technology, 2nd ed.; China Meteorological Press: Beijing, China, 2007; ISBN 9787502942991. (In Chinese) [Google Scholar]
- Salinger, M.J.; Griffiths, G.M. Trends in New Zealand daily temperature and rainfall extremes. Int. J. Climatol. 2001, 21, 1437–1452. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.H.; Xu, M.; Henderson, M.; Gong, W.G. A spatial analysis of pan evaporation trends in China, 1955–2000. J. Geophys. Res. Atmos. 2004, 109, D15102. [Google Scholar] [CrossRef]
- Liu, X.M.; Luo, Y.Z.; Zhang, D.; Zhang, M.H.; Liu, C.M. Recent changes in pan-evaporation dynamics in China. Geophys. Res. Lett. 2011, 38, 142–154. [Google Scholar] [CrossRef]
- Liu, M.; Shen, Y.J.; Zeng, Y.; Liu, C.M. Trend in pan evaporation and its attribution over the past 50 years in China. J. Geogr. Sci. 2010, 20, 557–568. [Google Scholar] [CrossRef]
- Kaiser, D.P.; Qian, Y. Decreasing trends in sunshine duration over China for 1954–1998: Indication of increased haze pollution? Geophys. Res. Lett. 2002, 29, 38-1–38-4. [Google Scholar] [CrossRef]
- Yildirim, U.; Yilmaz, I.O.; Akinoglu, B.G. Trend analysis of 41 years of sunshine duration data for Turkey. Turk. J. Eng. Environ. Sci. 2013, 37, 286–305. [Google Scholar] [CrossRef]
- Niroula, N.; Kobayashi, K.; Xu, J. Sunshine duration is declining in Nepal across the period from 1987 to 2010. J. Agric. Meteorol. 2015, 71, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Lei, X.; Zhang, Y.; Wang, M.; Xiang, L. Sunshine duration variability in Haihe River Basin, China, during 1966–2015. Water 2017, 9, 770. [Google Scholar] [CrossRef]
- Wang, Y.; Wild, M.; Sánchez-Lorenzo, A.; Manara, V. Urbanization effect on trends in sunshine duration in china. Ann. Geophys. 2017, 35, 839–851. [Google Scholar] [CrossRef]
- Pan, W. Interdecadal Variation of Haze Days over China and the Atmospheric Causes in Recent 50 Years. Master’s Thesis, Chinese Academy of Meteorological Sciences, Beijing, China, April 2017. (In Chinese). [Google Scholar]
- Liu, X.M.; Zheng, H.X.; Zhang, M.H.; Liu, C.M. Identification of dominant climate factor for pan evaporation trend in the Tibetan Plateau. J. Geogr. Sci. 2011, 21, 594–608. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Ding, Y.H.; He, J.H.; Yu, J. An updating analysis of the climate change in China in recent 50 years. Acta Meteorol. Sin. 2004, 62, 228–236. (In Chinese) [Google Scholar]
- Shen, Y.J.; Liu, C.M.; Liu, M.; Zeng, Y.; Tian, C.Y. Change in pan evaporation over the past 50 years in the arid region of China. Hydrol. Process. 2010, 24, 225–231. [Google Scholar] [CrossRef]
Sub-Regions | Climate Type | Number of Meteorological Stations | Ratio of Meteorological Stations (%) |
---|---|---|---|
I | Temperate monsoon climate | 7 | 16 |
II | Temperate continental climate | 7 | 16 |
III | 7 | 16 | |
IV | Temperate monsoon climate | 5 | 12 |
V | 9 | 20 | |
VI | 9 | 20 |
Grading Standards | Correlation Degree |
---|---|
no correlation | |
very week | |
weak | |
moderate | |
strong | |
very strong | |
1.00 | monotonic correlation |
Time | Sub-Regions | Tmean | Tmax | Tmin | Pmean | RHmean | SDmean | Umean | Epan |
---|---|---|---|---|---|---|---|---|---|
Spring | I | 3.04 * | 2.24 * | 4.58 * | 1.24 | −0.15 | −3.71 * | −7.04 * | −4.00 * |
II | 3.58 * | 2.46 * | 5.14 * | 2.06 * | −0.75 | −2.63 * | −5.69 * | −2.61 * | |
III | 3.38 * | 1.91 | 3.86 * | 1.02 | −0.90 | −2.48 * | −7.29 * | −3.16 * | |
IV | 3.60 * | 2.79 * | 2.89 * | 0.50 | −2.43 * | −2.19 * | −3.41 * | −1.29 | |
V | 3.25 * | 0.84 | 5.59 * | 0.90 | −0.49 | −2.31 * | −6.17 * | −3.45 * | |
VI | 3.86 * | 2.24 * | 5.84 * | 1.97 * | −1.59 | −2.86 * | −6.57 * | −3.28 * | |
Summer | I | 1.77 | 1.44 | 3.28 * | −2.73 * | −1.00 | −4.70 * | −5.24 * | −2.07 * |
II | 3.18 * | 2.59 * | 5.15 * | −2.28 * | −2.07 * | −2.86 * | −2.58 * | 0.10 | |
III | 3.06 * | 2.34 * | 4.95 * | −1.92 | −1.96 | −2.99 * | −6.31 * | −0.17 | |
IV | 1.39 | 1.19 | 3.03 * | −1.57 | −0.94 | −5.50 * | 0.55 | −2.26 * | |
V | 0.50 | −1.37 | 3.65 * | 0.18 | 0.15 | −5.77 * | −5.89 * | −4.62 * | |
VI | 1.86 | 0.64 | 4.33 * | −2.19 * | −2.21 * | −5.62 * | −5.67 * | −3.25 * | |
Autumn | I | 1.66 | 1.67 | 3.15 * | 0.72 | 0.67 | −5.02 * | −6.27 * | −3.31 * |
II | 3.20 * | 2.14 * | 4.90 * | 1.20 | −1.69 | −3.76 * | −4.55 * | 0.07 | |
III | 2.94 * | 2.33 * | 3.76 * | 0.90 | −0.03 | −3.70 * | −6.37 * | −0.70 | |
IV | 2.71 * | 2.88 * | 2.36 * | −1.04 | −1.84 | −3.40 * | −1.32 | −0.20 | |
V | 3.09 * | 1.77 | 3.75 * | −1.52 | −2.64 * | −3.58 * | −6.14 * | −1.41 | |
VI | 2.63 * | 1.82 | 4.08 * | 0.25 | −2.68 * | −4.82 * | −5.29 * | −2.43 * | |
Winter | I | 4.08 * | 2.58 * | 5.25 * | 0.22 | 1.79 | −4.45 * | −6.79 * | −2.98 * |
II | 4.12 * | 2.79 * | 5.42 * | 0.87 | 0.25 | −3.38 * | −5.52 * | 2.07 * | |
III | 3.83 * | 2.99 * | 4.37 * | 0.07 | 0.12 | −4.10 * | −5.94 * | −0.52 | |
IV | 4.55 * | 2.59 * | 5.40 * | 0.85 | 0.64 | −4.94 * | −4.55 * | −1.51 | |
V | 4.13 * | 1.20 | 5.81 * | 0.42 | −0.49 | −4.30 * | −5.92 * | −2.23 * | |
VI | 4.40 * | 2.46 * | 5.60 * | −1.16 | −0.85 | −3.93 * | −6.27 * | −1.78 |
Time | Sub- regions | Tmean (°C/10a) | Tmax (°C/10a) | Tmin (°C/10a) | Pmean (mm/10a) | RHmean (%/10a) | SDmean (h/10a) | Umean (m/s/10a) | Epan (mm/10a) |
---|---|---|---|---|---|---|---|---|---|
Interannual | I | 0.3 | 0.2 | 0.4 | −22.50 | 0.20 | −0.27 | −0.16 | −55.2 |
II | 0.4 | 0.3 | 0.5 | −5.02 | −0.35 | −0.13 | −0.15 | −11.7 | |
III | 0.4 | 0.3 | 0.5 | −4.07 | −0.30 | −0.17 | −0.28 | −24.4 | |
IV | 0.3 | 0.3 | 0.3 | −23.49 | −0.71 | −0.29 | −0.05 | −30.7 | |
V | 0.3 | 0.1 | 0.4 | −5.35 | −0.56 | −0.31 | −0.17 | −82.6 | |
VI | 0.3 | 0.2 | 0.5 | −19.71 | −0.78 | −0.32 | −0.16 | −65.7 | |
Spring | I | 0.3 | 0.3 | 0.4 | 3.84 | −0.10 | −0.24 | −0.21 | −21.8 |
II | 0.4 | 0.3 | 0.6 | 4.03 | −0.31 | −0.13 | −0.19 | −14.2 | |
III | 0.3 | 0.2 | 0.4 | 2.40 | −0.40 | −0.17 | −0.36 | −18.1 | |
IV | 0.3 | 0.3 | 0.3 | 1.66 | −1.38 | −0.17 | −0.06 | −12.7 | |
V | 0.3 | 0.1 | 0.5 | 3.65 | −0.34 | −0.17 | −0.19 | −32.7 | |
VI | 0.4 | 0.3 | 0.6 | 5.50 | −0.90 | −0.21 | −0.23 | −27.7 | |
Summer | I | 0.1 | 0.1 | 0.2 | −33.14 | −0.25 | −0.39 | −0.08 | −13.7 |
II | 0.3 | 0.3 | 0.4 | −13.95 | −0.82 | −0.14 | −0.04 | 0.5 | |
III | 0.3 | 0.2 | 0.3 | −9.60 | −0.79 | −0.20 | −0.17 | −1.4 | |
IV | 0.1 | 0.1 | 0.2 | −13.00 | −0.34 | −0.45 | 0.02 | −17.9 | |
V | 0.0 | −0.1 | 0.2 | 1.07 | 0.05 | −0.52 | −0.13 | −40.0 | |
VI | 0.1 | 0.1 | 0.3 | −26.22 | −0.80 | −0.50 | −0.10 | −24.7 | |
Autumn | I | 0.1 | 0.1 | 0.2 | 2.45 | 0.17 | −0.27 | −0.12 | −8.7 |
II | 0.3 | 0.2 | 0.5 | 2.89 | −0.50 | −0.11 | −0.10 | 0.3 | |
III | 0.3 | 0.2 | 0.4 | 2.81 | −0.03 | −0.16 | −0.25 | −2.8 | |
IV | 0.2 | 0.3 | 0.2 | −6.67 | −1.09 | −0.26 | −0.03 | −0.8 | |
V | 0.2 | 0.2 | 0.4 | −9.48 | −1.42 | −0.28 | −0.14 | −5.9 | |
VI | 0.2 | 0.2 | 0.4 | 1.67 | −1.11 | −0.31 | −0.12 | −9.0 | |
Winter | I | 0.5 | 0.4 | 0.6 | 0.16 | 0.81 | −0.20 | −0.19 | −4.5 |
II | 0.6 | 0.4 | 0.8 | 0.28 | 0.08 | −0.09 | −0.23 | 3.8 | |
III | 0.6 | 0.5 | 0.7 | 0.04 | 0.10 | −0.17 | −0.35 | −1.0 | |
IV | 0.5 | 0.4 | 0.6 | 0.71 | 0.41 | −0.32 | −0.12 | −4.2 | |
V | 0.5 | 0.2 | 0.7 | 0.45 | −0.35 | −0.35 | −0.19 | −8.0 | |
VI | 0.6 | 0.3 | 0.7 | −0.87 | −0.49 | −0.26 | −0.19 | −3.6 |
Time | Sub-Regions | Tmean | Tmax | Tmin | Pmean | RHmean | SDmean | Umean |
---|---|---|---|---|---|---|---|---|
Interannual | I | 0.01 | 0.22 | −0.35 * | −0.46 * | −0.68 * | 0.75 * | 0.46 * |
II | 0.26 | 0.40 * | 0.00 | −0.64 * | −0.57 * | 0.51 * | 0.12 | |
III | 0.05 | 0.15 | −0.11 | −0.52 * | −0.55 * | 0.44 * | 0.43 * | |
IV | 0.14 | 0.29 * | −0.13 | −0.31 * | −0.47 * | 0.61 * | 0.59 * | |
V | −0.06 | 0.37 * | −0.48 * | −0.38 * | −0.33 * | 0.83 * | 0.73 * | |
VI | −0.16 | 0.19 | −0.45 * | −0.40 * | −0.22 | 0.76 * | 0.62 * | |
Spring | I | 0.18 | 0.33 * | −0.20 | −0.68 * | −0.71 * | 0.84 * | 0.55 * |
II | 0.13 | 0.30 * | −0.19 | −0.69 * | −0.66 * | 0.68 * | 0.48 * | |
III | 0.09 | 0.27 | −0.20 | −0.50 * | −0.67 * | 0.62 * | 0.61 * | |
IV | 0.45 * | 0.65 * | 0.09 | −0.73 * | −0.73 * | 0.86 * | 0.68 * | |
V | 0.46 * | 0.72 * | −0.05 | −0.66 * | −0.72 * | 0.84 * | 0.60 * | |
VI | 0.22 | 0.46 * | −0.18 | −0.78 * | −0.63 * | 0.84 * | 0.65 * | |
Summer | I | 0.63 * | 0.71 * | 0.12 | −0.42 * | −0.81 * | 0.72 * | 0.43 * |
II | 0.68 * | 0.79 * | 0.30 * | −0.64 * | −0.83 * | 0.64 * | 0.34 * | |
III | 0.59 * | 0.74 * | 0.15 | −0.66 * | −0.89 * | 0.58 * | 0.12 | |
IV | 0.61 * | 0.71 * | 0.08 | −0.48 * | −0.78 * | 0.59 * | 0.33 * | |
V | 0.52 * | 0.76 * | −0.09 | −0.50 * | −0.69 * | 0.82 * | 0.71 * | |
VI | 0.48 * | 0.66 * | −0.03 | −0.36 * | −0.58 * | 0.78 * | 0.53 * | |
Autumn | I | 0.02 | 0.17 | −0.32 * | −0.53 * | −0.70 * | 0.70 * | 0.53 |
II | 0.40 * | 0.49 * | 0.16 | −0.60 * | −0.61 * | 0.43 * | 0.09 | |
III | 0.19 | 0.37 * | −0.09 | −0.56 * | −0.81 * | 0.62 * | 0.30 * | |
IV | 0.14 | 0.59 * | −0.35 * | −0.65 * | −0.83 * | 0.76 * | 0.59 * | |
V | 0.11 | 0.53 * | −0.39 * | −0.54 * | −0.68 * | 0.81 * | 0.35 * | |
VI | −0.10 | 0.24 | −0.44 * | −0.49 * | −0.53 * | 0.77 * | 0.55 * | |
Winter | I | 0.16 | 0.40 * | −0.01 | −0.60 * | −0.62 * | 0.68 * | 0.36 * |
II | 0.68 * | 0.72 * | 0.62 * | −0.36 * | −0.46 * | 0.35 * | −0.01 | |
III | 0.49 * | 0.55 * | 0.44 * | −0.37 * | −0.74 * | 0.31 * | 0.29 * | |
IV | 0.26 | 0.57 * | 0.01 | −0.51 * | −0.71 * | 0.70 * | 0.57 * | |
V | 0.25 | 0.63 * | −0.11 | −0.54 * | −0.72 * | 0.75 * | 0.47 * | |
VI | 0.21 | 0.47 * | 0.00 | −0.38 * | −0.61 * | 0.66 * | 0.43 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Wang, S.; Ma, D.; Liu, B.; Lin, H.; Li, S. Meteorological Factors Affecting Pan Evaporation in the Haihe River Basin, China. Water 2019, 11, 317. https://doi.org/10.3390/w11020317
Yan Z, Wang S, Ma D, Liu B, Lin H, Li S. Meteorological Factors Affecting Pan Evaporation in the Haihe River Basin, China. Water. 2019; 11(2):317. https://doi.org/10.3390/w11020317
Chicago/Turabian StyleYan, Zhihong, Shuqian Wang, Ding Ma, Bin Liu, Hong Lin, and Su Li. 2019. "Meteorological Factors Affecting Pan Evaporation in the Haihe River Basin, China" Water 11, no. 2: 317. https://doi.org/10.3390/w11020317