Stable Isotope Reveals Tap Water Source under Different Water Supply Modes in the Eastern Margin of the Qinghai–Tibet Plateau
Abstract
:1. Introduction
2. Study Area
3. Data and Method
3.1. Collection of Water Samples
3.2. Experimental Analysis
3.3. Other Data
3.4. Tap Water Isoscape Simulation and Error Test Methods
4. Result
4.1. Basic Characteristics of Tap Water Isotopes
4.1.1. Local Tap Water Line
4.1.2. Spatial Pattern
4.1.3. Temporal Variation
4.2. Comparison of Isotopes in Tap Water under Different Water Supply Modes with Those in Precipitation and Surface Water
4.2.1. Under the Mode of Central Water Supply by Local Tap Water Company
4.2.2. Under Mixed Tap Water Supply Modes
5. Discussion on Water Source Information of Tap Water Isotopes
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Killingley, J.S.; Newman, W.A. 18O fractionation in barnacle calcite: A barnacle paleotemperature equation. J. Mar. Res. 1982, 40, 893–902. [Google Scholar]
- Gat, J.R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci. 1996, 24, 225–262. [Google Scholar] [CrossRef] [Green Version]
- Roden, J.S.; Lin, G.G.; Ehleringer, J.R. A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim. Cosmochim. Acta 2000, 64, 21–35. [Google Scholar] [CrossRef]
- Harvey, F.E.; Sibray, S.S. Delineating ground water recharge from leaking irrigation canals using water chemistry and isotopes. Ground Water 2001, 39, 408–421. [Google Scholar] [CrossRef]
- Yepez, E.A.; Williams, D.G.; Scott, R.L.; Lin, G. Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor. Agric. For. Meteorol. 2003, 119, 53–68. [Google Scholar] [CrossRef]
- Burnett, A.W.; Mullins, H.T.; Patterson, W.P. Relationship between atmospheric circulation and winter precipitation delta O-18 in central New York State. Geophys. Res. Lett. 2004, 31, L22209. [Google Scholar] [CrossRef]
- Williams, D.G.; Cable, W.; Hultine, K.; Hoedjes, J.C.B.; Yepez, E.A.; Simonneaux, V.; Er-Raki, S.; Boulet, G.; de Bruin, H.A.R.; Chehbouni, A. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agric. For. Meteorol. 2004, 125, 241–258. [Google Scholar] [CrossRef]
- West, J.B.; Bowen, G.J.; Cerling, T.E.; Ehleringer, J.R. Stable isotopes as one of nature’s ecological recorders. Trends Ecol. Evol. 2006, 21, 408–414. [Google Scholar] [CrossRef]
- Ehleringer, J.R.; Bowen, G.J.; Chesson, L.A.; West, A.G.; Podlesak, D.W.; Cerling, T.E. Hydrogen and oxygen isotope ratios in human hair are related to geography. Proc. Natl. Acad. Sci. USA 2008, 105, 2788–2793. [Google Scholar] [CrossRef] [Green Version]
- Boschetti, T.; Cifuentes, J.; Iacumin, P.; Selmo, E. Local Meteoric Water Line of Northern Chile (18 S—30 S): An application of error-in-variables regression to the oxygen and hydrogen stable isotope ratio of precipitation. Water 2019, 11, 791. [Google Scholar] [CrossRef] [Green Version]
- Gat, J.R.; Bowser, C.J.; Kendall, C. The contribution of evaporation from the Great Lakes to the continental atmosphere: Estimate based on stable isotope data. Res. Lett. 1994, 21, 557–560. [Google Scholar] [CrossRef]
- Hobson, K.A.; Atwell, L.; Wassenaar, L.I. Influence of drinking water and diet on the stable-hydrogen isotope ratios of animal tissues. Proc. Natl. Acad. Sci. USA 1999, 96, 8003–8006. [Google Scholar] [CrossRef] [Green Version]
- Gibson, J.J.; Edwards, T.W.D. Regional water balance trends and evaporation-transpiration partitioning from a stable isotope survey of lakes in northern Canada. Glob. Biogeochem. Cycles 2002, 16, 1026. [Google Scholar] [CrossRef] [Green Version]
- Bowen, G.J.; Wassenaar, L.I.; Hobson, K.A. Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 2005, 143, 337–348. [Google Scholar] [CrossRef]
- Kelly, S.; Heaton, K.; Hoogewerff, J. Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis. Trends Food Sci. Technol. 2005, 16, 555–567. [Google Scholar] [CrossRef]
- McGuire, K.J.; McDonnell, J.J.; Weiler, M.; Kendall, C.; McGlynn, B.L.; Welker, J.M.; Seibert, J. The role of topography on catchment–scale water residence time. Water Resour. Res. 2005, 41, W05002. [Google Scholar] [CrossRef]
- West, A.G.; Hultine, K.R.; Burtch, K.G.; Ehleringer, J.R. Seasonal variations in moisture use in a pinon-juniper woodland. Oecologia 2007, 153, 787–798. [Google Scholar] [CrossRef]
- Worden, J.; Noone, D.; Bowman, K.; Beer, R.; Eldering, A.; Fisher, B.; Gunson, M.; Goldman, A.; Herman, R.; Kulawik, S.S.; et al. Importance of rain evaporation and continental convection in the tropical water cycle. Nature 2007, 445, 528–532. [Google Scholar] [CrossRef]
- Hawkins, H.; Hettasch, H.; West, A.G.; Cramer, M.D. Hydraulic redistribution by Protea “Sylvia” (Proteaceae) facilitates soil water replenishment and water acquisition by an understorey grass and shrub. Funct. Plant Biol. 2009, 36, 752–760. [Google Scholar] [CrossRef]
- Brooks, J.R.; Barnard, H.R.; Coulombe, R.; McDonnell, J.J. Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nat. Geosci. 2010, 3, 100–104. [Google Scholar] [CrossRef]
- Bowen, G.J.; Kennedy, C.D.; Henne, P.D.; Zhang, T. Footprint of recycled water subsidies downwind of Lake Michigan. Ecosphere 2012, 3, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Brienen, R.J.W.; Helle, G.; Pons, T.L.; Guyot, J.L.; Gloor, M. Oxygen isotopes in tree rings are a good proxy for Amazon precipitation and El Nino-Southern Oscillation variability. Proc. Natl. Acad. Sci. USA 2012, 109, 16957–16962. [Google Scholar] [CrossRef] [Green Version]
- Bowen, G.J.; Winter, D.A.; Spero, H.J.; Zierenberg, R.A.; Reeder, M.D.; Cerling, T.E.; Ehleringer, J.R. Stable hydrogen and oxygen isotope ratios of bottled waters of the world. Rapid Commun. Mass Spectrom. 2005, 19, 3442–3450. [Google Scholar] [CrossRef] [PubMed]
- Brenčič, M.; Vreča, P. Identification of sources and production processes of bottled waters by stable hydrogen and oxygen isotope ratios. Rapid Commun. Mass Spectrom. 2006, 20, 3205–3212. [Google Scholar] [CrossRef] [PubMed]
- Bong, Y.S.; Ryu, J.S.; Lee, K.S. Characterizing the origins of bottled water on the South Korean market using chemical and isotopic compositions. Anal. Chim. Acta 2009, 631, 189–195. [Google Scholar] [CrossRef]
- Chesson, L.A.; Valenzuela, L.O.; O’Grady, S.P.; Cerling, T.E.; Ehleringer, J.R. Hydrogen and oxygen stable isotope ratios of milk in the United States. J. Agric. Food Chem. 2010, 58, 2358–2363. [Google Scholar] [CrossRef]
- Chesson, L.A.; Valenzuela, L.O.; O’Grady, S.P.; Cerling, T.E.; Ehleringer, J.R. Links between purchase location and stable isotope ratios of bottled water, soda, and beer in the United States. J. Agric. Food Chem. 2010, 58, 7311–7316. [Google Scholar] [CrossRef]
- Dotsika, E.; Poutoukis, D.; Raco, B.; Psomiadis, D. Stable isotope composition of Hellenic bottled waters. J. Geochem. Explor. 2010, 107, 299–304. [Google Scholar]
- Kim, G.E.; Shin, W.J.; Ryu, J.S.; Choi, M.S.; Lee, K.S. Identification of the origin and water type of various Korean bottled waters using strontium isotopes. J. Geochem. Explor. 2013, 132, 1–5. [Google Scholar] [CrossRef]
- Li, S.; Levin, N.E.; Chesson, L.A. Continental scale variation in 17O-excess of meteoric waters in the United States. Geochim. Cosmochim. Acta 2015, 164, 110–126. [Google Scholar] [CrossRef]
- West, A.G.; February, E.C.; Bowen, G.J. Spatial analysis of hydrogen and oxygen stable isotopes (“isoscapes”) inground water and tap water across South Africa. J. Geochem. Explor. 2014, 145, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Jameel, Y.; Brewer, S.; Good, S.P.; Tipple, B.J.; Ehleringer, J.R.; Bowen, G.J. Tap water isotope ratios reflect urban water system structure and dynamics across a semi-arid metropolitan area. Water Resour. Res. 2016, 52, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Tipple, B.J.; Jameel, Y.; Chau, T.H.; Mancuso, C.J.; Bowen, G.J.; Dufour, A.; Chesson, L.A.; Ehleringer, J.R. Stable hydrogen and oxygen isotopes of tap water reveal structure of the San Francisco Bay Area’s water system and adjustments during a major drought. Water Res. 2017, 119, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Hu, H.; Tian, F.; Tie, Q.; Wang, L.; Liu, Y.; Shi, C. Divergence of stable isotopes in tap water across China. Sci. Rep. 2017, 7, 43653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Good, S.P.; Kennedy, C.D.; Stalker, J.C.; Chesson, L.A.; Valenzuela, L.O.; Beasley, M.M.; Ehleringer, J.R.; Bowen, G.J. Patterns of local and nonlocal water resource use across the western US determined via stable isotope intercomparisons. Water Resour. Res. 2014, 50, 8034–8049. [Google Scholar] [CrossRef] [Green Version]
- Bowen, G.J.; Ehleringer, J.R.; Chesson, L.A.; Stange, E.; Cerling, T.E. Stable isotope ratios of tap water in the contiguous United States. Water Resour. Res. 2007, 43, 399–407. [Google Scholar] [CrossRef]
- Landwehr, J.M.; Coplen, T.B.; Stewart, D.W. Spatial, seasonal, and source variability in the stable oxygen and hydrogen isotopic composition of tap waters throughout the USA. Hydrol. Process. 2014, 28, 5382–5422. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, M.; Bowen, G.J.; Liu, X.; Du, M.; Chen, F.; Qiu, X.; Wang, L.; Che, Y.; Zhao, G. Water source signatures in the spatial and seasonal isotope variation of Chinese tap waters. Water Resour. Res. 2018. [Google Scholar] [CrossRef]
- Jiang, Y. China’s water security: Current status, emerging challenges and future prospects. Environ. Sci. Policy 2015, 54, 106–125. [Google Scholar] [CrossRef]
- Du, M.; Zhang, M.; Wang, S.; Chen, F.; Zhao, P.; Zhou, S.; Zhang, Y. Stable Isotope Ratios in Tap Water of a Riverside City in a Semi-Arid Climate: An Application to Water Source Determination. Water 2019, 11, 1441. [Google Scholar] [CrossRef] [Green Version]
- Clark, I.; Fritz, P. Environmental Isotopes in Hydrogeology; CRC Press: New York, NY, USA, 1997; p. 328. [Google Scholar]
- Newman, B.; Tanweer, A.; Kurttas, T. IAEA Standard Operating Procedure for the Liquid-Water Stable Isotope Analyser, Laser Procedure; IAEA Water Resources Programme; IAEA: Vienna, Austria, 2009; p. 27. [Google Scholar]
- Lis, G.; Wassenaar, L.I.; Hendry, M.J. High-precision laser spectroscopy D/H and 18O/16O measurements of microliter natural water samples. Anal. Chem. 2008, 80, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Lyon, S.W.; Desilets, S.L.E.; Troch, P.A. A tale of two isotopes: Differences in hydrograph separation for a runoff event when using δD versus δ18O. Hydrol. Process. 2009, 23, 2095–2101. [Google Scholar] [CrossRef]
- Terzer, S.; Wassenaar, L.I.; Araguás-Araguás, L.J.; Aggarwal, P.K. Global isoscapes for δ18O and δ2H in precipitation: Improved prediction using regionalized climatic regression models. Hydrol. Earth Syst. Sci. 2013, 17, 4713–4728. [Google Scholar] [CrossRef]
- IAEA (International Atomic Energy Agency). Regionalized Cluster-Based Water Isotope Prediction (RCWIP). 2018. Available online: http://www-naweb.iaea.org/napc/ih/IHS_resources_rcwip.html (accessed on 25 April 2019).
- IAEA/WMO (International Atomic Energy Agency/World Meteorological Organization). Water Isotope System for Data Analysis, Visualization and Electronic Retrieval (WISER). 2017. Available online: https://nucleus.iaea.org/wiser (accessed on 12 March 2019).
- Christner, E.; Kohler, M.; Schneider, M. The influence of snow sublimation and meltwater evaporation on δD of water vapor in the atmospheric boundary layer of central Europe. Atmos. Chem. Phys. 2017, 17, 1207–1225. [Google Scholar] [CrossRef] [Green Version]
- Seltzer, A.M.; Buizert, C.; Baggenstos, D.; Brook, E.J.; Ahn, J.; Yang, J.-W.; Severinghaus, J.P. Does δ18O of O2 record meridional shifts in tropical rainfall? Clim. Past 2017, 13, 1323–1338. [Google Scholar] [CrossRef] [Green Version]
- Bowen, G.J.; Revenaugh, J. Interpolating the isotopic composition of modern meteoric precipitation. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef]
- Lykoudis, S.P.; Argiriou, A.A. Gridded data set of the stable isotopic composition of precipitation over the eastern and central Mediterranean. J. Geophys. Res. 2007, 112, D18107. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Tian, L.; Chai, X.; Yao, T. A model-based determination of spatial variation of precipitation δ18O over China. Chem. Geol. 2008, 249, 203–212. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Liu, J.; Song, X.; Yuan, G.; Sun, X.; Yang, L. Stable isotopic compositions of precipitation in China. Tellus B Chem. Phys. Meteorol. 2014, 66, 22567. [Google Scholar] [CrossRef] [Green Version]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Gourcy, L.L.; Groening, M.; Aggarwal, P.K. Stable oxygen and hydrogen isotopes in precipitation. In Isotopes in the Water Cycle: Past, Present and Future of Developing Science; Aggarwal, P.K., Gat, J.R., Froehlich, K.F.O., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 39–51. [Google Scholar] [CrossRef]
- Salati, E.; Dall’ Olio, A.; Matsui, E.; Gat, J.R. Recycling of water in the Amazon basin: An isotopic study. Water Resour. Res. 1979, 15, 1250–1258. [Google Scholar] [CrossRef]
Water Type | Area | Number of Sampling Sites (N) | Sum of Sampling Sites | Sampling Frequency | Number of Samples (n) | Sum of Samples |
---|---|---|---|---|---|---|
Tap water | Gannan | 43 | 123 | monthly | 433 | 1260 |
Longnan | 80 | monthly | 827 | |||
Surface water | Gannan | 17 | 28 | seasonally | 82 | 136 |
Longnan | 11 | seasonally | 54 |
Code | Regression Model | Regression Method | Reference |
---|---|---|---|
1 | δ = aL2 + bL + cE + d | Multiple regression | [36,50,52] |
2 | δ = aL + bO + cE + d | Multiple regression | [34] |
3 | δ = aT + bP + c | Multiple regression | [34] |
4 | δ = aT + bP + cR + dS+ eV + f | Multiple regression | [38] |
5 | L, O, E, L2, O2, E2 | Stepwise regression | [51] |
6 | T, P, R, S, V, T2, P2, R2, S2, V2 | Stepwise regression | [51,54] |
7 | L, O, E, T, P, R, S, V, L2, O2, E2, T2, P2, R2, S2, V2 | Stepwise regression | [38] |
Isotope | Code | Equations | r2 | radj2 | Sig. | N | MBE | MAE | RMSE |
---|---|---|---|---|---|---|---|---|---|
δ2H (‰) | 1 | δ = 0.122L2 − 0.012E − 182.913 | 0.582 | 0.575 | 0.000 | 123 | 0.14 | 4.13 | 5.13 |
2 | δ = 5.61L + 5.317O − 0.004E − 803.075 | 0.665 | 0.657 | 0.000 | 123 | –0.66 | 3.67 | 4.65 | |
3 | δ = 1.053T + 0.048P − 101.836 | 0.436 | 0.426 | 0.000 | 123 | –0.01 | 4.83 | 5.96 | |
4 | δ = −4.505T − 0.058P + 0.00006449R − 10.554S + 99.162V − 64.208 | 0.66 | 0.645 | 0.000 | 123 | −0.08 | 3.67 | 4.63 | |
5 | δ = 0.082L2 + 0.025O2 − 0.0000009622E2 − 423.155 | 0.672 | 0.664 | 0.000 | 123 | 4.20 | 4.84 | 6.19 | |
6 | δ = −0.053P + 74.125S + 77.378V − 0.098T2 − 16.107S2 − 166.133 | 0.709 | 0.696 | 0.000 | 123 | 0.02 | 3.26 | 4.28 | |
7 | δ = −0.001R + 65.462V + 0.236L2 − 0.096T2 − 209.471 | 0.730 | 0.721 | 0.000 | 123 | 10.53 | 10.53 | 11.31 | |
δ18O (‰) | 1 | δ = 0.021L2 − 0.002E − 30.661 | 0.541 | 0.533 | 0.000 | 123 | −0.38 | 0.71 | 0.86 |
2 | δ = 0.889L + 1.057O − 0.00003615E − 150.125 | 0.718 | 0.711 | 0.000 | 123 | −0.01 | 0.45 | 0.57 | |
3 | δ = 0.114T + 0.009P − 16.187 | 0.408 | 0.399 | 0.000 | 123 | −0.15 | 0.68 | 0.84 | |
4 | δ = −0.545T − 0.006P + 0.00003996R − 0.41S + 13.941V − 18.462 | 0.698 | 0.685 | 0.000 | 123 | 0.20 | 0.48 | 0.63 | |
5 | δ = 0.013L2 + 0.005O2 − 80.602 | 0.720 | 0.715 | 0.000 | 123 | −1.47 | 1.48 | 1.58 | |
6 | δ = −0.001R + 10.531V − 0.02T2 + 0.000000003406R2 + 61.186 | 0.722 | 0.713 | 0.000 | 123 | 5.33 | 5.33 | 5.36 | |
7 | δ = −0.000135R + 13.746S + 8.259V + 0.034L2 − 3.086S2 − 47.914 | 0.793 | 0.784 | 0.000 | 123 | 0.27 | 0.41 | 0.56 |
Isotope | Area | Spring | Summer | Autumn | Winter | Annual |
---|---|---|---|---|---|---|
δ2H (‰) | Gannan | −70.3 | −70.0 | −71.0 | −71.2 | −70.6 |
Longnan | −58.4 | −57.4 | −59.2 | −59.5 | −58.6 | |
δ18O (‰) | Gannan | −10.3 | −10.4 | −10.6 | −10.6 | −10.5 |
Longnan | −8.8 | −8.8 | −9.0 | −9.1 | −8.9 |
Area | Sampling Sites | r of δ2H | p < 0.05 (Yes/No) | r of δ18O | p < 0.05 (Yes/No) |
---|---|---|---|---|---|
Gannan | Hezuo | 0.31 | N | 0.49 | N |
Xiahe Xian | 0.45 | N | 0.59 | N | |
Lintan Xian | 0.85 | Y | 0.92 | Y | |
Jone Xian | 0.70 | Y | 0.75 | Y | |
Luqu Xian | 0.19 | N | −0.24 | N | |
Maqu Xian | 0.59 | N | 0.36 | N | |
Tewo Xian | 0.49 | N | 0.16 | N | |
Zhugqu Xian | −0.16 | N | 0.25 | N | |
Longnan | Wudu | 0.12 | N | 0.53 | N |
Dangchang Xian | 0.55 | N | 0.47 | N | |
Wen Xian | −0.73 | Y | −0.47 | N | |
Kang Xian | 0.24 | N | 0.51 | N | |
Cheng Xian | 0.59 | N | 0.54 | N | |
Hui Xian | 0.26 | N | 0.12 | N | |
Liangdang Xian | 0.46 | N | 0.54 | N | |
Xihe Xian | 0.35 | N | 0.32 | N | |
Li Xian | 0.48 | N | 0.31 | N |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, M.; Zhang, M.; Wang, S.; Meng, H.; Che, C.; Guo, R. Stable Isotope Reveals Tap Water Source under Different Water Supply Modes in the Eastern Margin of the Qinghai–Tibet Plateau. Water 2019, 11, 2578. https://doi.org/10.3390/w11122578
Du M, Zhang M, Wang S, Meng H, Che C, Guo R. Stable Isotope Reveals Tap Water Source under Different Water Supply Modes in the Eastern Margin of the Qinghai–Tibet Plateau. Water. 2019; 11(12):2578. https://doi.org/10.3390/w11122578
Chicago/Turabian StyleDu, Mingxia, Mingjun Zhang, Shengjie Wang, Hongfei Meng, Cunwei Che, and Rong Guo. 2019. "Stable Isotope Reveals Tap Water Source under Different Water Supply Modes in the Eastern Margin of the Qinghai–Tibet Plateau" Water 11, no. 12: 2578. https://doi.org/10.3390/w11122578
APA StyleDu, M., Zhang, M., Wang, S., Meng, H., Che, C., & Guo, R. (2019). Stable Isotope Reveals Tap Water Source under Different Water Supply Modes in the Eastern Margin of the Qinghai–Tibet Plateau. Water, 11(12), 2578. https://doi.org/10.3390/w11122578