Evaluation of GloFAS-Seasonal Forecasts for Cascade Reservoir Impoundment Operation in the Upper Yangtze River
Abstract
:1. Introduction
2. Cascade Reservoir Impoundment Model
2.1. Study Area
2.2. Impoundment Operation Rules for Cascade Reservoirs
2.3. Objective Functions and Constrains
2.3.1. Objective Functions
M | the number of reservoirs; |
N | the number of years for hydrological time series; |
HGi,k | hydropower generation of the kth reservoir in the ith simulated year, kW·h |
αk | the weight for fullness storage rate of the kth reservoir, calculated by the ratio about the total storage capacity of M reservoirs; |
FSRi,k | fullness storage rate of the kth reservoir in the ith simulated year; |
the storage capacity corresponding to the annual top of buffer pool of the kth reservoir, m3; | |
the storage capacity corresponding to the top of conservation pool of the kth reservoir, m3; | |
the highest storage during impoundment operation of the kth reservoir in the ith simulated year, m3; | |
Rk | flood control risk of the kth reservoir; |
Nrisk,k | the number of years when the water level exceeds STBP of the kth reservoir. |
2.3.2. Operation Constraints
N | the number of years for hydrological time series; |
T | total number of days during impoundment operation in the ith simulated year; |
the kth reservoir storage at the beginning of the jth day in the ith simulated year, m3; | |
the kth reservoir inflow on the jth day in the ith simulated year, m3/s; | |
the water discharge of kth reservoir on the jth day in the ith simulated year, m3/s; | |
the water discharge for hydropower generation of the kth reservoir on the jth day in the ith simulated year, m3/s; | |
the spilled water discharge of the kth reservoir on the jth day in the ith simulated year, m3/s; | |
Ak | the hydropower generation efficiency of the kth reservoir; |
the average hydropower head of the kth reservoir on the jth day in the ith simulated year, m; | |
the minimum power limits of the kth hydropower plant, kW; | |
the maximum power limits of the kth hydropower plant, kW; | |
the minimum water discharge for downstream of the kth reservoir, m3/s; | |
the maximum water discharge for flood control safety in downstream of the kth reservoir, m3/s; | |
ΔQk | the maximum water discharge fluctuation of the kth reservoir, m3/s; |
the minimum water level at downstream of the kth dam site, m; | |
the maximum water level at downstream of the kth dam site, m; | |
the water level at downstream of kth dam site on the jth day in the ith simulated year, m; | |
f(⋅) | the function provided by reservoir managers expressing the relationship between reservoir discharge and downstream water level. |
2.4. NSGA-II Optimization Algorithm
3. Evaluation of GloFAS-Seasonal Forecasts
3.1. Discrimination
3.2. Skill
3.3. Reliability, Resolution, and Sharpness
4. Results and Discussion
4.1. The Selected Thresholds
4.2. Evaluation of GloFAS-Seasonal Reforecasts
4.2.1. AUC Values
4.2.2. ROCSS Values
4.2.3. Reliability Diagram
4.3. Specific Analysis and Benefits of the EIOR
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Labadie, J.W. Optimal operation of multireservoir systems: State-of-the-art review. J. Water Res. Plan. Man. 2004, 130, 93–111. [Google Scholar] [CrossRef]
- Guo, S.L.; Zhang, H.G.; Chen, H.; Peng, D.Z.; Liu, P.; Pang, B. A reservoir flood forecasting and control system for China. Hydrolog. Sci. J. 2004, 49, 959–972. [Google Scholar] [CrossRef]
- Mehran, A.; Mazdiyasni, O.; AghaKouchak, A. A hybrid framework for assessing socioeconomic drought: Linking climate variability, local resilience, and demand. J. Geophys. Res. Atmos. 2015, 120, 7520–7533. [Google Scholar] [CrossRef]
- Rahnamay Naeini, M. A Framework for Optimization and Simulation of Reservoir Systems Using Advanced Optimization and Data Mining Tools. Ph.D. Dissertation, University of California Irvine, Irvine, CA, USA, 2019. [Google Scholar]
- Zhou, C.; Sun, N.; Chen, L.; Ding, Y.; Zhou, J.Z.; Zha, G.; Luo, G.L.; Dai, L.; Yang, X. Optimal Operation of Cascade Reservoirs for Flood Control of Multiple Areas Downstream: A Case Study in the Upper Yangtze River Basin. Water 2018, 10, 1250. [Google Scholar] [CrossRef]
- Wang, Q.S.; Zhou, J.Z.; Huang, K.D.; Dai, L.; Zha, G.; Chen, L.; Qin, H. Risk Assessment and Decision-Making Based on Mean-CVaR-Entropy for Flood Control Operation of Large Scale Reservoirs. Water 2019, 11, 649. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Guo, S.L.; Xu, C.Y.; Liu, P.; Qin, H. Deriving joint optimal refill rules for cascade reservoirs with multi-objective evaluation. J. Hydrol. 2015, 524, 166–181. [Google Scholar] [CrossRef]
- Li, H.; Liu, P.; Guo, S.L.; Ming, B.; Cheng, L.; Zhou, Y.L. Hybrid Two-Stage Stochastic Methods Using Scenario-Based Forecasts for Reservoir Refill Operations. J. Water Res. Plan. Man. 2018, 144. [Google Scholar] [CrossRef]
- He, S.K.; Guo, S.L.; Chen, K.B.; Deng, L.L.; Liao, Z.; Xiong, F.; Yin, J.B. Optimal impoundment operation for cascade reservoirs coupling parallel dynamic programming with importance sampling and successive approximation. Adv. Water Resour. 2019, 131, 103375. [Google Scholar] [CrossRef]
- Batalla, R.J.; Gomez, C.M.; Kondolf, G.M. Reservoir-induced hydrological changes in the Ebro River basin (NE Spain). J. Hydrol. 2004, 290, 117–136. [Google Scholar] [CrossRef]
- Clark, E.J. Impounding reservoirs. J. Am. Water Works Assoc. 1956, 48, 349–354. [Google Scholar]
- Lund, J.R. Developing Seasonal and Long-Term Reservoir System Operation Plans Using HEC-PRM; Hydrologic Engineering Center: Davis, CA, USA, 1996. [Google Scholar]
- Lund, J.R.; Guzman, J. Derived operating rules for reservoirs in series or in parallel. J. Water Res. Plan. Man. 1999, 125, 143–153. [Google Scholar] [CrossRef]
- Liu, P.; Guo, S.L.; Xiong, L.H.; Li, W.; Zhang, H.G. Deriving reservoir refill operating rules by using the proposed DPNS model. Water Resour. Manag. 2006, 20, 337–357. [Google Scholar] [CrossRef]
- Liu, X.Y.; Guo, S.L.; Liu, P.; Chen, L.; Li, X.A. Deriving Optimal Refill Rules for Multi-Purpose Reservoir Operation. Water Resour. Manag. 2011, 25, 431–448. [Google Scholar] [CrossRef]
- Li, Y.; Guo, S.L.; Quo, J.L.; Wang, Y.; Li, T.Y.; Chen, J.H. Deriving the optimal refill rule for multi-purpose reservoir considering flood control risk. J. Hydro Environ. Res. 2014, 8, 248–259. [Google Scholar] [CrossRef]
- Wang, X.M.; Zhou, J.Z.; Ouyang, S.; Li, C.L. Research on Joint Impoundment Dispatching Model for Cascade Reservoir. Water Resour. Manag. 2014, 28, 5527–5542. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Guo, S.L.; Chang, F.J.; Xu, C.Y. Boosting hydropower output of mega cascade reservoirs using an evolutionary algorithm with successive approximation. Appl. Energ. 2018, 228, 1726–1739. [Google Scholar] [CrossRef]
- Jasperse, J.; Ralph, M.; Anderson, M.; Brekke, L.D.; Dillabough, M.; Dettinger, M.D.; Haynes, A.; Hartman, R.; Jones, C.; Forbis, J. Preliminary Viability Assessment of Lake Mendocino Forecast Informed Reservoir Operations; Center For Western Weather and Water Extremes: San Diego, CA, USA, 2017. [Google Scholar]
- Liu, L.L.; Xiao, C.; Du, L.M.; Zhang, P.Q.; Wang, G.F. Extended-Range Runoff Forecasting Using a One-Way Coupled Climate-Hydrological Model: Case Studies of the Yiluo and Beijiang Rivers in China. Water 2019, 11, 1150. [Google Scholar] [CrossRef]
- Panagoulia, D. Impacts of Giss-Modeled Climate Changes on Catchment Hydrology. Hydrolog. Sci. J. 1992, 37, 141–163. [Google Scholar] [CrossRef]
- Yuan, X.; Wood, E.F.; Ma, Z.G. A review on climate-model-based seasonal hydrologic forecasting: Physical understanding and system development. Wires Water 2015, 2, 523–536. [Google Scholar] [CrossRef]
- Panagoulia, D.; Dimou, G. Sensitivity of flood events to global climate change. J. Hydrol. 1997, 191, 208–222. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, M.; Wang, L.Y.; Zhou, T. Understanding and seasonal forecasting of hydrological drought in the Anthropocene. Hydrol. Earth Syst. Sci. 2017, 21, 5477–5492. [Google Scholar] [CrossRef]
- Arnal, L.; Cloke, H.L.; Stephens, E.; Wetterhall, F.; Prudhomme, C.; Neumann, J.; Krzeminski, B.; Pappenberger, F. Skilful seasonal forecasts of streamflow over Europe? Hydrol. Earth Syst. Sci. 2018, 22, 2057–2072. [Google Scholar] [CrossRef]
- Bennett, J.C.; Wang, Q.J.; Robertson, D.E.; Schepen, A.; Li, M.; Michael, K. Assessment of an ensemble seasonal streamflow forecasting system for Australia. Hydrol. Earth Syst. Sci. 2017, 21, 6007–6030. [Google Scholar] [CrossRef]
- Demargne, J.; Wu, L.M.; Regonda, S.K.; Brown, J.D.; Lee, H.; He, M.X.; Seo, D.J.; Hartman, R.; Herr, H.D.; Fresch, M.; et al. The Science of NOAA’s Operational Hydrologic Ensemble Forecast Service. Bull. Am. Meteorol. Soc. 2014, 95, 79–98. [Google Scholar] [CrossRef]
- Block, P. Tailoring seasonal climate forecasts for hydropower operations. Hydrol. Earth Syst. Sci. 2011, 15, 1355–1368. [Google Scholar] [CrossRef]
- Delorit, J.; Ortuya, E.C.G.; Block, P. Evaluation of model-based seasonal streamflow and water allocation forecasts for the Elqui Valley, Chile. Hydrol. Earth Syst. Sci. 2017, 21, 4711–4725. [Google Scholar] [CrossRef]
- Baker, S.A.; Wood, A.W.; Rajagopalan, B. Developing Subseasonal to Seasonal Climate Forecast Products for Hydrology and Water Management. J. Am. Water Resour. Assoc. 2019, 55, 1024–1037. [Google Scholar] [CrossRef]
- Chen, K.B.; Guo, S.L.; He, S.K.; Xu, T.; Zhong, Y.X.; Sun, S.R. The Value of Hydrologic Information in Reservoir Outflow Decision-Making. Water 2018, 10, 1372. [Google Scholar] [CrossRef]
- Zhu, S.; Zhou, J.Z.; Ye, L.; Meng, C.Q. Streamflow estimation by support vector machine coupled with different methods of time series decomposition in the upper reaches of Yangtze River, China. Environ. Earth 2016, 75. [Google Scholar] [CrossRef]
- He, R.R.; Chen, Y.F.; Huang, Q.; Yu, S.N.; Hou, Y. Evaluation of ocean-atmospheric indices as predictors for summer streamflow of the Yangtze River based on ROC analysis. Stoch. Env. Res. Risk Assess. 2018, 32, 1903–1918. [Google Scholar] [CrossRef]
- Tan, Q.F.; Lei, X.H.; Wang, X.; Wang, H.; Wen, X.; Ji, Y.; Kang, A.Q. An adaptive middle and long-term runoff forecast model using EEMD-ANN hybrid approach. J. Hydrol. 2018, 567, 767–780. [Google Scholar] [CrossRef]
- Emerton, R.; Zsoter, E.; Arnal, L.; Cloke, H.L.; Muraro, D.; Prudhomme, C.; Stephens, E.M.; Salamon, P.; Pappenberger, F. Developing a global operational seasonal hydro-meteorological forecasting system: G1oFAS-Seasonal v1.0. Geosci. Model Dev. 2018, 11, 3327–3346. [Google Scholar] [CrossRef] [Green Version]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Yeh, W.W.G. Reservoir Management and Operations Models - a State-of-the-Art Review. Water Resour. Res. 1985, 21, 1797–1818. [Google Scholar] [CrossRef]
- Lei, X.H.; Zhang, J.W.; Wang, H.; Wang, M.N.; Khu, S.T.; Li, Z.J.; Tan, Q.F. Deriving mixed reservoir operating rules for flood control based on weighted non-dominated sorting genetic algorithm II. J. Hydrol. 2018, 564, 967–983. [Google Scholar] [CrossRef]
- Celeste, A.B.; Billib, M. Evaluation of stochastic reservoir operation optimization models. Adv. Water Resour. 2009, 32, 1429–1443. [Google Scholar] [CrossRef]
- Zhao, T.T.G.; Zhao, J.S. Optimizing Operation of Water Supply Reservoir: The Role of Constraints. Math. Probl. Eng. 2014. [Google Scholar] [CrossRef]
- Naeini, M.R.; Yang, T.T.; Sadegh, M.; AghaKouchak, A.; Hsu, K.L.; Sorooshian, S.; Duan, Q.Y.; Lei, X.H. Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL) optimization framework. Environ. Modell. Softw. 2018, 104, 215–235. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.C.; Chang, F.J. Multi-objective evolutionary algorithm for operating parallel reservoir system. J. Hydrol. 2009, 377, 12–20. [Google Scholar] [CrossRef]
- Tsai, W.P.; Chang, F.J.; Chang, L.C.; Herricks, E.E. AI techniques for optimizing multi-objective reservoir operation upon human and riverine ecosystem demands. J. Hydrol. 2015, 530, 634–644. [Google Scholar] [CrossRef]
- Uen, T.S.; Chang, F.J.; Zhou, Y.L.; Tsai, W.P. Exploring synergistic benefits of Water-Food-Energy Nexus through multi-objective reservoir optimization schemes. Sci. Total Environ. 2018, 633, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Chang, F.J. Evolutionary artificial neural networks for hydrological systems forecasting. J. Hydrol. 2009, 367, 125–137. [Google Scholar] [CrossRef]
- Balsamo, G.; Pappenberger, F.; Dutra, E.; Viterbo, P.; van den Hurk, B. A revised land hydrology in the ECMWF model: A step towards daily water flux prediction in a fully-closed water cycle. Hydrol. Process. 2011, 25, 1046–1054. [Google Scholar] [CrossRef]
- Landman, W.A.; Beraki, A. Multi-model forecast skill for mid-summer rainfall over southern Africa. Int. J. Climatol. 2012, 32, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Fundel, F.; Jorg-Hess, S.; Zappa, M. Monthly hydrometeorological ensemble prediction of streamflow droughts and corresponding drought indices. Hydrol. Earth Syst. Sci. 2013, 17, 395–407. [Google Scholar] [CrossRef] [Green Version]
- Manzanas, R.; Gutierrez, J.M.; Bhend, J.; Hemri, S.; Doblas-Reyes, F.J.; Torralba, V.; Penabad, E.; Brookshaw, A. Bias adjustment and ensemble recalibration methods for seasonal forecasting: A comprehensive intercomparison using the C3S dataset. Clim. Dynam. 2019, 53, 1287–1305. [Google Scholar] [CrossRef]
- Mason, S.J.; Graham, N.E. Conditional probabilities, relative operating characteristics, and relative operating levels. Weather Forecast. 1999, 14, 713–725. [Google Scholar] [CrossRef]
- Pappenberger, F.; Ramos, M.H.; Cloke, H.L.; Wetterhall, F.; Alfieri, L.; Bogner, K.; Mueller, A.; Salamon, P. How do I know if my forecasts are better? Using benchmarks in hydrological ensemble prediction. J. Hydrol. 2015, 522, 697–713. [Google Scholar] [CrossRef] [Green Version]
- Ogutu, G.E.O.; Franssen, W.H.P.; Supit, I.; Omondi, P.; Hutjes, R.W.A. Skill of ECMWF system-4 ensemble seasonal climate forecasts for East Africa. Int. J. Climatol. 2017, 37, 2734–2756. [Google Scholar] [CrossRef] [Green Version]
- Diez, E.; Orfila, B.; Frias, M.D.; Fernandez, J.; Cofino, A.S.; Gutierrez, J.M. Downscaling ECMWF seasonal precipitation forecasts in Europe using the RCA model. Tellus A 2011, 63, 757–762. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Stephenson, D.B. Forecast Verification: A Practitioner’s Guide in Atmospheric Science; John Wiley & Sons: Chichester, UK, 2012. [Google Scholar]
- Mason, S.J.; Stephenson, D.B. How do we know whether seasonal climate forecasts are any good? In Seasonal Climate: Forecasting and Managing Risk; Springer: Dordrecht, The Netherlands, 2008; pp. 259–289. [Google Scholar]
Reservoir | Basin Area (Thousand km2) | Annual Top of Buffer Pool (m) | Top of Conservation Pool (m) | Total Storage Capacity (Billion m3) | Storage for Flood Control (Billion m3) | Installed Hydropower Capacity (GW) |
---|---|---|---|---|---|---|
WDD | 406.1 | 952 | 975 | 3.94 | 2.44 | 10.20 |
BHT | 430.3 | 785 | 825 | 20.60 | 7.50 | 16.00 |
XLD | 454.4 | 560 | 600 | 12.67 | 4.65 | 13.86 |
XJB | 458.8 | 370 | 380 | 5.16 | 0.90 | 7.75 |
TGR | 1000 | 145 | 175 | 45.07 | 22.15 | 22.50 |
Reservoir | Initial Impoundment Time | Final Impoundment Time (SIOR, EIOR) | |
---|---|---|---|
(SIOR) | (EIOR) | ||
WDD | Aug. 10th | Aug.1st | Sep. 10th |
BHT | Aug. 10th | Aug.1st | Sep. 30th |
XLD | Sep. 10st | Aug. 25th | Sep. 30th |
XJB | Sep. 10st | Aug. 25th | Sep. 30th |
TGR | Sep. 15th | Aug. 25th | Oct. 31st |
Reservoir | Seasonal Top of Buffer Pool (m) | |||||
---|---|---|---|---|---|---|
Aug.15th | Aug.25th | Sep.1st | Sep.10th | Sep.30th | Oct.31st | |
WDD | 965 | 965 | 970 | 975 | 975 | 975 |
BHT | 800 | 810 | 810 | 810 | 825 | 825 |
XLD | 560 | 565 | 575 | 575 | 600 | 600 |
XJB | 370 | 372 | 375 | 375 | 380 | 380 |
TGR | 145 | 145 | 152 | 152 | 165 | 175 |
Flow Group | EIOR | SIOR | |||||
---|---|---|---|---|---|---|---|
HG (108 kW·h) | FSR (%) | R (%) | HG (108 kW·h) | FSR (%) | R (%) | ||
QWDD | below 20% | 813.784 | 82.68% | 0 | 805.070 | 79.78% | 0 |
below 30% | 845.857 | 85.43% | 0 | 834.963 | 82.45% | 0 | |
below 40% | 868.680 | 89.40% | 0 | 857.848 | 87.25% | 0 | |
below 50% | 895.822 | 91.72% | 0 | 884.002 | 89.81% | 0 | |
above 20% | 1025.617 | 99.25% | 1.802% | 1011.410 | 98.86% | 2.229% | |
above 30% | 1040.072 | 99.98% | 2.035% | 1022.395 | 99.96% | 2.123% | |
above 40% | 1060.128 | 100.00% | 2.924% | 1042.975 | 100.00% | 2.284% | |
above 50% | 1074.293 | 100.00% | 3.730% | 1057.887 | 100.00% | 2.842% | |
QTGR | below 20% | 816.973 | 81.86% | 0 | 808.284 | 79.18% | 0 |
below 30% | 838.596 | 86.20% | 0 | 829.380 | 83.76% | 0 | |
below 40% | 876.391 | 89.49% | 0 | 864.720 | 87.80% | 0 | |
below 50% | 895.437 | 91.56% | 2.055% | 881.728 | 90.13% | 0 | |
above 20% | 1024.592 | 99.23% | 2.217% | 1005.852 | 98.97% | 2.742% | |
above 30% | 1042.250 | 99.70% | 2.313% | 1023.483 | 99.65% | 2.098% | |
above 40% | 1048.775 | 99.88% | 2.237% | 1030.204 | 99.87% | 2.902% | |
above 50% | 1072.242 | 99.96% | 2.263% | 1052.043 | 99.96% | 3.043% |
Flow Group | Rule Curve in Figure 7 | Benefit and Risk | |||
---|---|---|---|---|---|
HG (108 kW·h) | FSR (%) | R (%) | |||
QTGR | below 20% | LOR | 785.042 | 77.512% | 0 |
EIOR | 816.601 | 81.876% | 0 | ||
Increased ratio | 4.02% | 5.63% | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; Guo, S.; Wang, J.; Qin, P.; He, S.; Sun, S.; Naeini, M.R. Evaluation of GloFAS-Seasonal Forecasts for Cascade Reservoir Impoundment Operation in the Upper Yangtze River. Water 2019, 11, 2539. https://doi.org/10.3390/w11122539
Chen K, Guo S, Wang J, Qin P, He S, Sun S, Naeini MR. Evaluation of GloFAS-Seasonal Forecasts for Cascade Reservoir Impoundment Operation in the Upper Yangtze River. Water. 2019; 11(12):2539. https://doi.org/10.3390/w11122539
Chicago/Turabian StyleChen, Kebing, Shenglian Guo, Jun Wang, Pengcheng Qin, Shaokun He, Sirui Sun, and Matin Rahnamay Naeini. 2019. "Evaluation of GloFAS-Seasonal Forecasts for Cascade Reservoir Impoundment Operation in the Upper Yangtze River" Water 11, no. 12: 2539. https://doi.org/10.3390/w11122539
APA StyleChen, K., Guo, S., Wang, J., Qin, P., He, S., Sun, S., & Naeini, M. R. (2019). Evaluation of GloFAS-Seasonal Forecasts for Cascade Reservoir Impoundment Operation in the Upper Yangtze River. Water, 11(12), 2539. https://doi.org/10.3390/w11122539