Effects of Forest Thinning on the Long-Term Runoff Changes of Coniferous Forest Plantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Forest Thinning
2.2. Rainfall-Runoff Data
2.3. Double Mass Curve
2.4. Non-Parametric Statistical Analysis
2.5. Baseflow Separation
3. Results
3.1. Changes of Annual Rainfall-Runoff Characteristics
3.2. Runoff Characteristic Shifts and Change Point Determination
3.2.1. Double Mass Curve of Rainfall-Runoff Measurements
3.2.2. Forest Thinning Effect on Water Yield Increase
3.2.3. Long-Term Runoff Changes After Forest Thinning
3.3. Net Runoff Increment of Forest Thinning
3.4. Baseflow and Quickflow Changes of Each Period
4. Discussion
4.1. Runoff Shifts in GCP and GND Forest Catchments
4.2. Decreasing Forest Thinning Effect with Forest Growth
4.3. Quantifying the Net Runoff Increment in the GCP Forest Catchment
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gleick, P.H. Water in crisis: Paths to sustainable water use. Ecol. Appl. 1998, 8, 571. [Google Scholar] [CrossRef]
- Binkley, D.; Burnham, H.; Allen, H.L. Water quality impacts of forest fertilization with nitrogen and phosphorus. For. Ecol. Manag. 1999, 121, 191–213. [Google Scholar] [CrossRef]
- Dun, S.; Wu, J.Q.; Elliot, W.J.; Robichaud, P.R.; Flanagan, D.C.; Frankenberger, J.R.; Brown, R.E.; Wu, A.C. Adapting the water Erosion Prediction Project (WEPP) model for forest applications. J. Hydrol. 2009, 366, 46–54. [Google Scholar] [CrossRef]
- Neary, D.G.; Ice, G.G.; Jackson, C.R. Linkages between forest soils and water quality and quantity. For. Ecol. Manag. 2009, 258, 2269–2281. [Google Scholar] [CrossRef]
- Dudley, N.; Stolton, S. Running Pure: The Importance of Forest Protected Areas to Drinking Water; World Bank: Washington, DC, USA, 2003. [Google Scholar]
- FAO. The State of the World’s Forests (SOFO); Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Yang, H.; Choi, H.T.; Lim, H. Applicability assessment of estimation methods for baseflow recession constants in small forest catchments. Water 2018, 10, 1074. [Google Scholar] [CrossRef]
- Goldstein, A.H.; McKay, M.; Kurpius, M.R.; Schade, G.W.; Lee, A.; Holzinger, R.; Rasmussen, R.A. Forest thinning experiment confirms ozone deposition to forest canopy is dominated by reaction with biogenic VOCs. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Onda, Y.; Otsuki, K.; Kato, H.; Gomi, T. The effect of strip thinning on forest floor evaporation in a Japanese cypress plantation. Agr. For. Meteorol. 2016, 216, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Dung, B.X.; Gomi, T.; Miyata, S.; Sidle, R.C.; Kosugi, K.; Onda, Y. Runoff responses to forest thinning at plot and catchment scales in a headwater catchment draining Japanese cypress forest. J. Hydrol. 2012, 444, 51–62. [Google Scholar] [CrossRef]
- Grace, J.M.; Skaggs, R.W.; Cassel, D.K. Soil physical changes associated with forest harvesting operations on an organic soil. Soil Sci. Soc. Am. J. 2006, 70, 503. [Google Scholar] [CrossRef]
- Serengil, Y.; Gökbulak, F.; Özhan, S.; Hızal, A.; Şengönül, K.; Balcı, A.N.; Özyuvacı, N. Hydrological impacts of a slight thinning treatment in a deciduous forest ecosystem in Turkey. J. Hydrol. 2007, 333, 569–577. [Google Scholar] [CrossRef]
- Komatsu, H.; Kume, T.; Otsuki, K. The effect of converting a native broad-leaved forest to a coniferous plantation forest on annual water yield: A paired-catchment study in northern Japan. For. Ecol. Manag. 2008, 255, 880–886. [Google Scholar] [CrossRef]
- Lane, P.N.; Mackay, S.M. Streamflow response of mixed-species eucalypt forests to patch cutting and thinning treatments. For. Ecol. Manag. 2001, 143, 131–142. [Google Scholar] [CrossRef]
- Bosch, J.M.; Hewlett, J.D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 1982, 55, 3–23. [Google Scholar] [CrossRef]
- Simonit, S.; Connors, J.P.; Yoo, J.; Kinzig, A.; Perrings, C. The impact of forest thinning on the reliability of water supply in Central Arizona. PLoS ONE 2015, 10, e0121596. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, W.; Gampe, S.; Coles, N.A.; Yu, P.; Xu, L.; Zuo, H.; Wang, Y. A water yield-oriented practical approach for multifunctional forest management and its application in dryland regions of China. J. Am. Water Resour. Assoc. 2015, 51, 689–703. [Google Scholar] [CrossRef]
- Yurtseven, I.; Serengil, Y.; Gökbulak, F.; Şengönül, k.; Ozhan, S.; Kılıç, U.; Uygur, B.; Ozçelik, M.S. Results of a paired catchment analysis of forest thinning in Turkey in relation to forest management options. Sci. Total Environ. 2018, 618, 785–792. [Google Scholar] [CrossRef]
- Brown, A.E.; Zhang, L.; McMahon, T.A.; Western, A.W.; Vertessy, R.A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Cheng, Y.; He, H.; Cheng, N.; He, W. The effects of climate and anthropogenic activity on hydrologic features in Yanhe River. Adv. Meteorol. 2016, 2016, 5297158. [Google Scholar] [CrossRef]
- Hawthorne, S.N.; Lane, P.N.; Bren, L.J.; Sims, N.C. The long term effects of thinning treatments on vegetation structure and water yield. For. Ecol. Manag. 2013, 310, 983–993. [Google Scholar] [CrossRef]
- Gao, P.; Li, P.; Zhao, B.; Xu, R.; Zhao, G.; Sun, W.; Mu, X. Use of double mass curves in hydrologic benefic evaluations. Hydrol. Process. 2017, 31, 4639–4646. [Google Scholar] [CrossRef]
- Potts, D.F. Hydrologic impacts of a large-scale mountain pine beetle (Dendroctonus ponderosae hopkins) epidemic. J. Am. Water Resour. Assoc. 1984, 20, 373–377. [Google Scholar] [CrossRef]
- Gao, P.; Mu, X.M.; Wang, F.; Li, R. Changes in streamflow and sediment discharge and the response to human activities in the middle reaches of the Yellow River. Hydrol. Earth Syst. Sci. 2011, 15, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pettitt, A.N. A non-parametric approach to the change-point problem. J. R. Stat. Soc. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Eckhardt, K. How to construct recursive digital filters for baseflow separation. Hydrol. Process. 2005, 19, 507–515. [Google Scholar] [CrossRef]
- Stewart, M.K. Promising new baseflow separation and recession analysis methods applied to streamflow at Glendhu Catchment, New Zealand. Hydrol. Earth Syst. Sci. 2015, 19, 2587–2603. [Google Scholar] [CrossRef] [Green Version]
- Swank, W.T.; Douglass, J.E. Streamflow greatly reduced by converting deciduous hardwood stands to pine. Science 1974, 185, 857–859. [Google Scholar] [CrossRef]
- Choi, H.T. Effect of forest growth and thinning on the long-term water balance in a coniferous forest. Korean J. Agric. For. Meteorol. 2011, 13, 157–164. [Google Scholar] [CrossRef]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Dore, M.H. Climate change and changes in global precipitation patterns: What do we know? Environ. Int. 2005, 31, 1167–1181. [Google Scholar] [CrossRef]
- Ford, C.R.; Laseter, S.H.; Swank, W.T.; Vose, J.M. Can forest management be used to sustain water-based ecosystem services in the face of climate change? Ecol. Appl. 2011, 21, 2049–2067. [Google Scholar] [CrossRef]
- Lins, H.F.; Slack, J.R. Streamflow trends in the United States. Geophys. Res. Lett. 1999, 26, 227–230. [Google Scholar] [CrossRef] [Green Version]
- Kuczera, G. Prediction of water yield reductions following a bushfire in ash-mixed species eucalypt forest. J. Hydrol. 1987, 94, 215–236. [Google Scholar] [CrossRef]
- Vertessy, R.A.; Hatton, T.J.; Benyon, R.G.; Dawes, W.R. Long-term growth and water balance predictions for a mountain ash (Eucalyptus regnans) forest catchment subject to clear-felling and regeneration. Tree Physiol. 1996, 16, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Watson, F.R.; Vertessy, R.A.; Grayson, R.B. Large-scale modelling of forest hydrological processes and their long-term effect on water yield. Hydrol. Process. 1999, 13, 689–700. [Google Scholar] [CrossRef]
Catchment Characteristics | GCP | GND |
---|---|---|
Catchment area (ha) | 13.6 | 22.0 |
Elevation (m) | 160~290 | 280~470 |
Bed rock | Granite gneiss | Granite Gneiss |
Soil depth (m) | 0.3~0.6 | 0.3~0.6 |
Predominant species | Abies holophylla Pinus koraiensis | Carpinus laxiflora Quercus spp. |
Forest management | Planted in 1976 and Thinning in 1996 | Natural forest |
Forest age class | V | X |
Stand Characteristics | 1986 | 1996 | 2003 | 2010 | 2016 | |
---|---|---|---|---|---|---|
Pre | Post | |||||
Mean tree height (m) | 6.5 | 9.6 | 10.6 | 12.2 | 13.5 | 14.8 |
Mean DBH (cm) | 4.7 | 13.4 | 15.7 | 19.8 | 21.4 | 22.4 |
Mean tree density (trees/ha) | 2700 | 2102 | 1147 | 1120 | 1054 | 996 |
Growing stock volume (m3/ha) | 25.2 | 150.1 | 123.8 | 205.9 | 259.1 | 283.0 |
Mean stem volume (m3/tree) | 0.009 | 0.071 | 0.108 | 0.184 | 0.246 | 0.284 |
Crown closure (%) | 75.9 | 97.1 | 70.0 | 95.0 | 96.0 | 95.0 |
Periods * | GCP Forest Catchment | GND Forest Catchment | ||||
---|---|---|---|---|---|---|
Rainfall | Runoff | Runoff Rates | Rainfall | Runoff | Runoff Rates | |
1981~1988 | 1293 | 535 | 41.4 | 1216 | 724 | 59.5 |
1989~1996 | 1340 | 509 | 38.0 | 1321 | 781 | 59.1 |
1997~2004 | 1638 | 921 | 56.2 | 1434 | 783 | 54.6 |
2005~2008 | 1533 | 797 | 52.0 | 1535 | 1018 | 66.3 |
2009~2013 | 1823 | 763 | 41.9 | 1617 | 1109 | 68.6 |
2014~2017 | 978 | 397 | 40.6 | 1051 | 587 | 55.9 |
Periods | GCP Forest Catchment | GND Forest Catchment | ||||
---|---|---|---|---|---|---|
a | b | R2 | a | b | R2 | |
1981~1996 | 0.39 | 115.85 | 0.9982 | 0.60 | −267.64 | 0.9974 |
1997~2008 | 0.56 | −2501.23 | 0.9985 | 0.66 | −1363.99 | 0.9983 |
2009~2017 | 0.41 | 1818.78 | 0.9988 | 0.65 | −532.19 | 0.9920 |
Periods | Observed Runoff | Modelled Mean | Total Change | Rainfall Impact | Thinning Impact | |||
---|---|---|---|---|---|---|---|---|
Amount | Per * | Amount | Per * | Amount | Per * | |||
1981~1996 | 522 | − | − | − | − | − | − | − |
1997~2008 | 888 | 624 | 366 | 70.0 | 102 | 28.0 | 263 | 72.0 |
2009~2017 | 600 | 561 | 78 | 8.8 | 39 | 49.2 | 40 | 50.8 |
Rainfall-Runoff Characteristics | GCP | GND | ||||
---|---|---|---|---|---|---|
Period1 | Period2 | Period3 | Period1 | Period2 | Period3 | |
Year | 1981~1996 | 1997~2008 | 2009~2017 | 1981~1996 | 1997~2008 | 2009~2017 |
Baseflow index (BFI) | 0.70 | 0.76 | 0.69 | 0.72 | 0.72 | 0.71 |
Quickflow ratio | 0.30 | 0.24 | 0.31 | 0.28 | 0.28 | 0.29 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Choi, H.T.; Lim, H. Effects of Forest Thinning on the Long-Term Runoff Changes of Coniferous Forest Plantation. Water 2019, 11, 2301. https://doi.org/10.3390/w11112301
Yang H, Choi HT, Lim H. Effects of Forest Thinning on the Long-Term Runoff Changes of Coniferous Forest Plantation. Water. 2019; 11(11):2301. https://doi.org/10.3390/w11112301
Chicago/Turabian StyleYang, Hyunje, Hyung Tae Choi, and Honggeun Lim. 2019. "Effects of Forest Thinning on the Long-Term Runoff Changes of Coniferous Forest Plantation" Water 11, no. 11: 2301. https://doi.org/10.3390/w11112301
APA StyleYang, H., Choi, H. T., & Lim, H. (2019). Effects of Forest Thinning on the Long-Term Runoff Changes of Coniferous Forest Plantation. Water, 11(11), 2301. https://doi.org/10.3390/w11112301