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Abstract: Forests and water are closely related to each other. Thus, forest management is crucial for
the sustainable clean water supply. Forest thinning is one of the fundamental forest management
practices, as it can change runoff by controlling the density of trees. In this study, the effect of forest
thinning on long-term runoff changes was evaluated, based on the long-term rainfall-runoff data
of a coniferous plantation forest catchment in Korea. From the double mass curve and Pettitt’s test,
a statistically significant increase in runoff rates was identified. A simple linear regression model of
the double mass curve can successfully quantify the net effect of forest thinning on the runoff increase.
Furthermore, it was also confirmed that forest thinning does not significantly increase the risk of
flooding. About ten years after forest thinning, crown closure rates of the coniferous plantation forest
reached a level similar to the pre-thinning period, and runoff rates returned to the pre-thinning level,
due to forest growth. As a result of this study, a proposed direction for Korea’s forest policy for water
resource management is presented for the future.

Keywords: long-term runoff changes; forest thinning; forest management; water yield change;
double mass curve; change point detection

1. Introduction

Forests have a large number of functions in terms of ecological and hydrological aspects, which can
give ecosystem stability, mitigate hydrological risks, such as floods and soil erosion, and supply fresh
water to living things. One of these functions, providing fresh water, is important because the demand
for clean water is currently increasing as the quality of life improves and the population grows [1].
Many countries obtain significant amounts of their drinking water from forests, because forests
normally supply high-quality water for people continuously throughout the year [2–4]. Over one-third
of the largest cities globally still rely on forests for their drinking water, including New York, Vienna,
Tokyo, etc. In particular, in the United States of America, over 180 million people still rely on forests to
obtain drinking water [5,6]. Likewise, forests and water are closely related, and many countries have
been working on forest management for clean water.

In the Republic of Korea, 64% of the country’s land is covered by forests, and most of the upstream
basins of major rivers, which are important sources for national water resources, are covered by
forests. Therefore, most of Korea’s water resources come from forests [7], and forest conservation and
management are essential for a sustainable clean water supply in Korea. By the 1960s, large parts of
forest lands in the Republic of Korea had been devastated by the Korean war, excessive illegal logging,
and so on. To restore the devastated forest lands, the Korean government carried out several nationwide
reforestation programs. About 2.2 million ha of forest—a third of Korea’s forest lands—have been
reforested artificially since the 1970s. The main planting species were coniferous species, such as Pinus
densiflora, Pinus rigida, Pinus koraiensis, Larix kaempferi, and so on. At present, most of the coniferous
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plantation forests have reached the fourth age class (about 31~40 years old), and managing these
forests has become an important task of Korean forest policy. Although, there are many objectives
in managing forests, considering that forests play an important role in sustainable water resource
management in Korea, studies on how the management of coniferous plantation forests affect the
water cycle and runoff characteristics are very important.

Forest thinning is a forest management practice, which is mainly undertaken to reduce forest
density, increase the health of forests, and optimize the growth of individual trees [8]. This results in a
number of hydrological, biological, pedological, and meteorological changes in forests [9]. From the
hydrological aspect, huge parts of the water cycle in forests can be changed by forest thinning.
For example, the total evaporation of forests can decrease [10–12] as the crown density reduction
by forest thinning can result in the reduction of the interception of the canopy and consequently
an increase in the rainfall input on the forest floor [13,14]. More rainfall inflow into forest soil can
increase the possibility of increasing groundwater recharge and streamflow [9,15]. According to the
hydrological potentials of forest thinning, many studies have been conducted to identify and evaluate
the effect of forest thinning on the water cycle and the rainfall-runoff responses of forests, in order to
mitigate water shortage and climate change impacts [12,16–18].

A paired catchment approach can be used to detect the changes in the water cycle by conducting
treatments in only one of two paired catchments with a similar climate, soil properties, geology, terrain,
land use, and so on [15,19]. This approach compares two catchments at the same time and can be
free from the effects of climate change. Normally, the paired catchment approach is the predominant
method for quantifying the effect of forest management on the water cycle, but the single catchment
approach with long-term monitoring data, can also be useful [15]. The single catchment approach
can identify the effects of treatments by analyzing the changes of long-term trends before, and after,
forest treatments [20,21]. As forests, in particular, continuously change and grow, long-term-based
analysis is essential in identifying the long-term effects of forest thinning. The availability of long-term
monitoring data is an important prerequisite for applying this approach, and it is necessary to have
sufficient long-term data to eliminate the long-term effects of climate change [15,22].

This study was conducted, in order to evaluate the long-term effect of forest thinning on the
runoff characteristics of a coniferous plantation forest catchment, that requires forest management to
increase water resources in Korea. For this purpose, two paired catchments with long-term hydrological
monitoring data were used: One is a coniferous plantation forest catchment, and the other is a natural
deciduous forest catchment. The coniferous forest was established over 40 years ago and was thinned
when the trees were 20 years old. The natural deciduous forest catchment belongs to a national
nature reserve and has not been artificially treated in any form. In order to check the effect of forest
thinning on the runoff characteristics, a double mass curve analysis of long-term rainfall-runoff data
was used. In addition, Pettitt’s test was performed to verify that the changes in runoff characteristics
are statistically significant. Finally, the changes in the long-term trend of runoff characteristics were
identified from a double mass curve, using a simple linear regression model, and the effect of the forest
thinning on water supply was evaluated.

2. Materials and Methods

2.1. Study Sites and Forest Thinning

The study sites are two catchments called the Gwangneung coniferous plantation
(GCP; 37◦45′48.23”N, 127◦09′23.40”E) and Gwangneung natural deciduous (GND; 37◦44′56.02”N,
127◦08′56.14”E) forest catchments located in Pochun, Gyeonggi-do, Republic of Korea (Figure 1).
Both the GCP and GND forest catchment are experimental catchments of the National Institute of
Forest Science (NIFoS) under the Korea Forest Service. Although, both forest catchments are about 1 km
away from each other, the soil and geological characteristics are the same: Sandy loam, and granite
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gneiss, respectively (Table 1). The catchment areas are 13.6 ha for the GCP, and 22.0 ha for the GND
forest catchment, respectively.Water 2019, 11, 2301 3 of 16 
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Figure 1. Location of the study sites: the Gwangneung coniferous plantation (GCP) and natural
deciduous (GND) forest catchments.

The mean annual temperature of the GCP and the GND forest catchments is 11.2 ◦C; the mean
annual rainfall of the GCP forest catchment is 1425 mm, and that of the GND forest catchment is
1436 mm. Both catchments lie in the temperate climate zone with four distinct seasons. The summer
is humid and hot, and winter is dry and cold. Over 70% of the annual rainfall falls in the summer
monsoon period between June and September, as a part of the East-Asian monsoon season.

The area of the GCP forest catchment was originally hillslope agricultural land with slash-and-burn
farming. In 1976, coniferous trees, such as Abies holophylla and Pinus koraiensis were planted in most of
the GCP forest catchment for reforestation. In the GND forest catchment, the predominant species are
Carpinus laxiflora and Quercus spp., which are now more than 90 years old. In the GCP forest catchment,
45% of stems are uniformly thinned in all areas of the catchment. After forest thinning, the mean tree
height, diameter at breast height (DBH), and stem volume slightly increased, and the growing stock
volume decreased. The crown closure was 97.1% before the forest thinning, but later it decreased
significantly to 70.0% (Table 2). After forest thinning, the crown closure drastically increased to 95.0%
in 2003, 96.0% in 2010 and 95% in 2016.

Based on the paired catchment approach, the GCP forest catchment was selected with respect to
the runoff characteristic changes from forest thinning, and the GND forest catchment was selected as a
control catchment to eliminate the impacts of long-term climate change.

Table 1. Characteristics of the Gwangneung coniferous plantation (GCP) and natural deciduous (GND)
forest catchments.

Catchment Characteristics GCP GND

Catchment area (ha) 13.6 22.0
Elevation (m) 160~290 280~470

Bed rock Granite gneiss Granite Gneiss
Soil depth (m) 0.3~0.6 0.3~0.6

Predominant species Abies holophylla Pinus koraiensis Carpinus laxiflora Quercus spp.
Forest management Planted in 1976 and Thinning in 1996 Natural forest

Forest age class V X



Water 2019, 11, 2301 4 of 16

Table 2. Stand characteristics change of the GCP forest catchment before and after the forest thinning.

Stand Characteristics
1986 1996 2003 2010 2016

Pre Post

Mean tree height (m) 6.5 9.6 10.6 12.2 13.5 14.8
Mean DBH (cm) 4.7 13.4 15.7 19.8 21.4 22.4

Mean tree density (trees/ha) 2700 2102 1147 1120 1054 996
Growing stock volume (m3/ha) 25.2 150.1 123.8 205.9 259.1 283.0

Mean stem volume (m3/tree) 0.009 0.071 0.108 0.184 0.246 0.284
Crown closure (%) 75.9 97.1 70.0 95.0 96.0 95.0

Note: The forest thinning is conducted in 1996, and Pre is pre-thinning, Post is post-thinning. DBH: diameter at
breast height.

2.2. Rainfall-Runoff Data

Rainfall-runoff data were provided from the long-term monitoring data of the National Institute
of Forest Science (NIFoS) in the Republic of Korea. NIFoS has collected rainfall-runoff data in GCP and
GND forest catchments since 1981. Currently, automatic rain gauges and float-type water level recorders
with a sharp-crested triangular weir (120◦), in the study sites, are used for in-situ measurement. In this
study, the annual rainfall and runoff data collected from 1981 to 2017 were used to analyze runoff

characteristics changes. Annual rainfall and runoff values are the total amount of rainfall and water
outflow throughout the year. Where data was lost for a certain period of time because of natural
disasters such as typhoons and the consequent repair of the gauging station or equipment replacement,
the annual rainfall-runoff data corresponding to missing data were excluded from the analysis.

2.3. Double Mass Curve

The double mass curve method was used to analyze the runoff characteristics that change over
time. The double mass curve method is commonly used to check the consistency of hydrological data
and to confirm the slope changes, as cumulative values of the rainfall and runoff data are plotted
on the graph [23]. This is very practical because of the low data requirements and the simplicity
of the analysis process [22]. Thus, it has been widely used to assess the effect of climate change or
human interference on runoff changes [24]. In particular, when a double mass curve was plotted with
cumulative rainfall and runoff data, the slope of the regression line means the runoff rate represents the
runoff characteristics. Thus, from this curve, we can easily recognize the long-term runoff characteristic
changes as changes in slope.

2.4. Non-Parametric Statistical Analysis

The double mass curve method has the advantage of making it easier for researchers to
detect the change in runoff characteristics by confirming the slope change over time at a glance.
However, the change point detection from the double mass curve can be so subjective, that it may
lead to different results, depending on the researcher [22]. One non-parametric statistical analysis
method, Pettitt’s test, was performed, in order to determine the statistically objective change points [25].
This determines whether two parametric groups (population; (x1, · · · , x j) and (x j+1, · · · , xN)) have the
same tendency, and in this paper, each value is the annual runoff rate. The null hypothesis is that there
is no change point, and the alternative hypothesis is that a change points exist. The test statistic of
Pettitt’s test is as follows,

KN = max
1≤ j≤N

∣∣∣U j,N
∣∣∣ (1)

where

U j,N = U j−1,N +
N∑

k=1

sgn
(
x j − xk

)
for j = 2, · · · , N (2)
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and

sgn
(
x j − xk

)
=


1 i f x j > xk
0 i f x j = xk
−1 i f x j < xk

(3)

The associated probability (P) is derived as follows:

P � 2 exp

 −6K2
N

N3 + N2

. (4)

Thus, the probability value (p-value) derived from the test statistic of Pettitt’s test can be calculated.
From this, trend differences in two parametric groups, x1, · · · , x j and x j+1, · · · , xN, are analyzed,
and the point associated with the test statistic (KN) is the change point of the time series trend.

The Mann–Kendall test was used to determine whether there was a monotonic increase of decrease
trends in the long-term time series data (x1, · · · , xn). This method is used to detect a monotonic trend,
where the null hypothesis is that there are no monotonic trends and the alternative hypothesis is that
monotonic trends exist. The test statistic of the Mann–Kendall test is calculated according to,

S =
n−1∑
k=1

n∑
j=k+1

sgn
(
x j − xk

)
(5)

where n is the amount of time series data. The Mann–Kendall statistic S follows a normal distribution,
and the following Z-transformation is employed,

Z =


S−1
σ if S > 0
0 if S = 0

S−1
σ if S < 0

(6)

where the variance of S is:
σ2 =

1
18

n(n− 1)(2n + 5). (7)

In other words, when a z-value exists within the rejection region, the null hypothesis is rejected,
and the time series data show a monotonic trend.

2.5. Baseflow Separation

There has been much debate about whether forest thinning would increase flooding. In particular,
for sustainable clean water supply, it is necessary to analyze the direction of changes caused by forest
thinning. Therefore, this study conducted a more in-depth analysis of the changes of runoff components
after forest thinning using baseflow separation analysis.

The streamflow at any time (Qt) can be separated into quickflow (At) and baseflow (Bt) [26]:

Qt = At + Bt. (8)

There are several methods for baseflow separation analysis. The Eckhardt filter can separate
baseflow from streamflow with a simple digital filter, and it describes forest catchment characteristics
well [7,27]. The Eckhardt filter equation is as follows,

Bt =
(1− BFImax)aBt−1 + (1− a)BFImaxQt

1− aBFImax
(9)

where Bt is the baseflow for time t (mm), Qt is the streamflow for time t (mm), and a is the recession
constant. BFImax is the maximum value of the baseflow index. In porous aquifers such as the GCP and
GND forest catchments, a 0.8 BFImax value was suggested [27]. And the AR (1) model, which explains
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the baseflow at one point from a previous one, for calculating the recession constant. The AR (1) model
is appropriate for analyzing the baseflow characteristics in the small forest catchment [7].

3. Results

3.1. Changes of Annual Rainfall-Runoff Characteristics

Average annual runoff rates for the GCP and GND forest catchments during the entire experimental
period are about 45.6%, and 61.2%, respectively (Table 3). The relatively high annual runoff rates are
due to the hydrological characteristics of the Republic of Korea, in which over 70% of the annual
rainfall falls intensively in the summer monsoon rainy season (June to September), and the surface soil
layers are relatively shallow. Furthermore, the steep slopes of streams cause floods to runoff quickly.
Therefore, runoff rates are relatively high compared to other countries.

Both GCP and GND forest catchments have significant variations in annual rainfall and runoff

over time, and as the annual rainfall increases, the annual runoff also increases (Figure 2). In particular,
with the exception of the last four years (2014~2017), when an unusual drought occurred in Korea,
the annual rainfall in both GCP and GND forest catchments continuously increased depending on
the effects of climate change. Because of this trend, the annual runoff also showed a gradual increase.
The Mann–Kendall test was conducted to verify this statistically. Rainfall showed a monotonic increase
tendency in GCP and GND forest catchments (p < 0.01), and for runoff and runoff rates, the GCP
forest catchment showed no monotonic increase or decrease tendency (p = 0.19, 0.78 respectively),
while the GND forest catchment showed a monotonic increment tendency during whole periods
(p < 0.01, p = 0.046 respectively).Water 2019, 11, 2301 7 of 16 
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Figure 2. Long-term annual rainfall-runoff in GCP and GND forest catchments. In the GCP
forest catchment, runoff rapidly increased after 1996 when forest thinning was conducted.
However, runoff form the GND forest catchment did not change very much. In both catchments,
annual rainfall-runoff data, including missing values from natural disasters, were excluded from
the graph.
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Table 3. Rainfall-runoff characteristics in GCP and GND forest catchments.

Periods *
GCP Forest Catchment GND Forest Catchment

Rainfall Runoff Runoff Rates Rainfall Runoff Runoff Rates

1981~1988 1293 535 41.4 1216 724 59.5
1989~1996 1340 509 38.0 1321 781 59.1
1997~2004 1638 921 56.2 1434 783 54.6
2005~2008 1533 797 52.0 1535 1018 66.3
2009~2013 1823 763 41.9 1617 1109 68.6
2014~2017 978 397 40.6 1051 587 55.9

* Periods were arbitrarily divided.

Comparing the differences between both catchments, the runoff rates of the GCP forest catchment
were lower than that of the GND forest catchment, from 1981 to 1996, before the forest thinning was
conducted (Table 3). However, since 1996, the runoff rates of the GCP forest catchment have increased,
unlike the GND forest catchment, whose runoff rates are almost the same as before. For years, the runoff

rates of the two catchments have been similar. In particular, the GCP forest catchment showed a sharp
increment in rainfall, runoff and runoff rates after 1996; since then, the increment of runoff rates in the
GCP forest catchment gradually decreased, and since 2009, the runoff rates have become similar to the
GND forest catchment again. As a result, unlike the GND forest catchment, where the runoff rates are
relatively uniform over time, the runoff rates of the GCP forest catchment significantly increased after
the forest thinning.

3.2. Runoff Characteristic Shifts and Change Point Determination

3.2.1. Double Mass Curve of Rainfall-Runoff Measurements

The double mass curve method was used to analyze the rainfall-runoff characteristic changes in
GCP and GND forest catchments (Figure 3). Because the slope of the double mass curve represents
the runoff rates, the whole period from 1981 to 2017 was divided into three periods, and slopes of
regression lines in each period were analyzed (Table 4).

After the forest thinning, in the GCP forest catchment, the slope of the double mass curve increased
from 0.39 to 0.56, and the slope was nearly the same as that of the pre-thinning period, at 0.41 since
2009. In other words, there has been a drastic change in the slope since 1996 when the forest thinning
took place, and the slope gradually decreased over time, making it similar to the period before forest
thinning. From this curve, the runoff rates from 1997 to 2008 increased by 17%, compared to the period
before 1996. On the other hand, in the GND forest catchment, slopes of the regression lines over time
were 0.60, 0.66, and 0.65, respectively, with no sharp changes over the entire period. In other words,
the GND forest catchment has seen gradual changes in its slope over the entire period.

Table 4. Linear relations between cumulative rainfall (
∑

P ) and runoff (
∑

R ) measurements in GCP
and GND forest catchments (

∑
Q = a

∑
P + b ).

Periods
GCP Forest Catchment GND Forest Catchment

a b R2 a b R2

1981~1996 0.39 115.85 0.9982 0.60 −267.64 0.9974
1997~2008 0.56 −2501.23 0.9985 0.66 −1363.99 0.9983
2009~2017 0.41 1818.78 0.9988 0.65 −532.19 0.9920
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Figure 3. Double mass curves of GCP and GND forest catchments.

3.2.2. Forest Thinning Effect on Water Yield Increase

Pettitt’s test was performed to determine the objective change point of the annual rainfall-runoff.
Figure 4 shows the U j,N values in chronological order. The dashed lines represent the 10% significance
level and the dotted lines represent the 5% significance level. All U j,N values in the GND forest
catchment are not located in the 10% rejection region, which means that there are no significant changes
in the annual rainfall-runoff characteristics over the entire period. Although, not all values of the GCP
forest catchment were located within the rejection region of a 10% significance level, the test statistic
was very close to the rejection line in 1996, when the forest thinning was conducted.
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Figure 4. Pettitt’s test of the GCP and GND forest catchments. The test statistics of the GCP forest
catchment correspond to the value in 1996; the test statistic value does not fall in the rejection region
(p = 0.11), but it is located near the 10% significance level. On the contrary, in the GND forest catchment,
there is no significant change over the whole period.
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Annual runoff in the GCP forest catchment can be seen to have a gradual decrease over time
after the forest thinning was performed. Therefore, Pettitt’s test was examined using data up to 2008,
which showed a sharp increment in runoff characteristics (Figure 5). The test statistic corresponding to
1996 was located within the 1% significance rejection region, which means that the runoff characteristics
from 1981 to 1996, and characteristics from 1997 to 2008, are statistically significantly different.
Also, the negative value of the test statistic indicates that runoff rates have risen sharply since 1996.

Water 2019, 11, 2301 9 of 16 

 

Annual runoff in the GCP forest catchment can be seen to have a gradual decrease over time 
after the forest thinning was performed. Therefore, Pettitt’s test was examined using data up to 2008, 
which showed a sharp increment in runoff characteristics (Figure 5). The test statistic corresponding 
to 1996 was located within the 1% significance rejection region, which means that the runoff 
characteristics from 1981 to 1996, and characteristics from 1997 to 2008, are statistically significantly 
different. Also, the negative value of the test statistic indicates that runoff rates have risen sharply 
since 1996. 

 

Figure 5. Pettitt’s test of the GCP forest catchment based on annual rainfall-runoff data from 1981 to 
2008. The test statistic corresponding to 1996 falls in the rejection region (p = 0.008), which means that 
runoff characteristics changed after 1996 and were statistically significant. 

3.2.3. Long-Term Runoff Changes After Forest Thinning 

From Figure 5, we can see a sharp increase in the runoff rates of the post-thinning period, 
compared to the period before the forest thinning in the GCP forest catchment. To see how the annual 
runoff characteristics changed over time after forest thinning was conducted, the Pettitt’s test was 
examined based on the runoff rate data from 1997 to 2017 (Figure 6). In this case, the test statistic was 
located in the rejection region of the 10% significance level, and the change point corresponded to 
2008. In other words, the runoff in the GCP forest catchment increased after 1996, due to forest 
thinning and runoff decreased since 2008, which was statistically significant. 

Figure 5. Pettitt’s test of the GCP forest catchment based on annual rainfall-runoff data from 1981 to
2008. The test statistic corresponding to 1996 falls in the rejection region (p = 0.008), which means that
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3.2.3. Long-Term Runoff Changes After Forest Thinning

From Figure 5, we can see a sharp increase in the runoff rates of the post-thinning period,
compared to the period before the forest thinning in the GCP forest catchment. To see how the annual
runoff characteristics changed over time after forest thinning was conducted, the Pettitt’s test was
examined based on the runoff rate data from 1997 to 2017 (Figure 6). In this case, the test statistic was
located in the rejection region of the 10% significance level, and the change point corresponded to 2008.
In other words, the runoff in the GCP forest catchment increased after 1996, due to forest thinning and
runoff decreased since 2008, which was statistically significant.
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3.3. Net Runoff Increment of Forest Thinning

The average annual runoff of the GCP forest catchment has increased by 366 mm for 12 years
(1997 to 2008) compared with the pre-thinning period (1981 to 1996) due to the forest thinning conducted
in 1996. In terms of this, it increased by 70%. Considering that the average annual precipitation in
Korea is 1343 mm, this is a very large increment. In addition, compared with previous research, we can
see that it is a very large water yield increment [10,15].

The Mann–Kendall test showed a gradual increase in annual rainfall changes in the GCP forest
catchment. Thus, a large increment in water yield clearly exists due to the effect of increased rainfall
due to the climate change, and an annual runoff increase of 366 mm should not be considered as the
net runoff increment of forest thinning. The effect of rainfall change should be excluded in order to
quantify the effect of the net increase. In other words, the impact of increased rainfall and the impact
of forest thinning should be divided and assessed. For this purpose, we assumed that the factors
which have the greatest impact on the increase of annual runoff in the GCP forest catchment are the
precipitation increase and the forest thinning.

To exclude the effects of rainfall, the simple linear regression model from the double mass curve
was used. The double mass curve already contains rainfall data on the x-axis, so the regression model
based on it can exclude the effects of rainfall on the annual runoff changes [22]. Therefore, a simple
linear regression model was created based on the data from 1981 to 1996 before the forest thinning was
performed, and the actual measurements and model values were compared for each period. Based on
the years 1996 and 2008, when the annual runoff characteristics were statistically changed, the entire
period was divided into three parts to compare the observed and modelled values (Figure 7).
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Figure 7. Simple linear regression model of double mass curve and observed values in the GCP (a–c)
and the GND (d–f) forest catchments. In the second period in the GCP forest catchment (1997~2008) after
forest thinning was conducted, there is a radical discrepancy between the observed and modelled runoff.

From 1981 to 1996, a simple linear regression model was created based on the annual rainfall-runoff

double mass curve in the GCP forest catchment (Figure 7a;
∑

R = 0.39
∑

P + 115.85). Based on this
regression model, the comparison of the observed with modelled values for the remaining second
period resulted in a sharp increase in the amount of runoff after the forest thinning was performed,
but there was no significant difference between the observed and modelled values in the third period
after a certain period of time after the forest thinning (Figure 7b,c); that is, based on Figure 7b, the net
annual increase in runoff is 263 mm, accounting for about 72% of the total runoff increase of 366 mm
(Table 5). The simple linear regression model of the GND forest catchment is

∑
R = 0.60

∑
P− 267.64

(Figure 7d). Although the simple linear regression model accounts for many parts of the observed
values, it can be seen that there is a difference between the modelled and observed values over time.
In particular, the third period (2008 to 2017; Figure 7f) shows that the observed runoff is higher than
the modelled runoff.

Table 5. Precipitation and thinning impacts on the water yield increase in the GCP forest catchment.

Periods Observed Runoff Modelled Mean
Total Change Rainfall Impact Thinning Impact

Amount Per * Amount Per * Amount Per *

1981~1996 522 − − − − − − −

1997~2008 888 624 366 70.0 102 28.0 263 72.0
2009~2017 600 561 78 8.8 39 49.2 40 50.8

* percentage (%).
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To confirm how the runoff characteristics of the GCP forest catchment changed over time,
the cumulative difference between the observed and modelled runoff using the simple linear regression
model was plotted with the cumulative rainfall (Figure 8). Until 1996, only minor errors existed, but the
runoff has increased sharply since the forest thinning was carried out. Subsequently, the slope of the
graph gradually decreases, and over time, the water yield increase effect gradually disappears.
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Figure 8. Relationship between cumulative runoff discrepancy and rainfall. Runoff increased after
forest thinning, and the thinning effect gradually decreased after 12 years of runoff change.

3.4. Baseflow and Quickflow Changes of Each Period

Based on Section 3.2 to Section 3.3, a forest thinning effect on water yield changes was detected
with statistical analysis, and the net water increment was quantified. To identify the forest thinning
effect on the changes of baseflow and quickflow, baseflow separation analysis was conducted in the
rainy season for each period, which is separated based on the change points in which the runoff

had statistically significantly changed. Recession constants were calculated from recession curves
with the AR (1) method, and baseflow was separated from the streamflow with the Eckhardt filter
(see Equation (9)). The baseflow index (BFI) is the ratio of the amount of baseflow and streamflow and
the quickflow ratio is the ratio of the amount of quickflow and streamflow. Because the streamflow
can be divided into two components, baseflow and quickflow, the sum of the two ratios of the two
components always amounts to 1 (see Equation (8)).

In the GCP forest catchment, BFI was 0.70 in the pre-thinning period (Table 6). However, the BFI
increased by about 6% after forest thinning and again decreased by the same amount before forest
thinning (0.69). In the same manner, the quickflow ratio was 0.30 in the first period and decreased
by about 6% after the forest thinning; it was 0.31 in the third period, in which the quickflow ratio
increased again. On the other hand, the BFI and quickflow ratio of the GND forest catchment did not
change over time (BFI values were 0.72, 0.72, and 0.71, respectively).
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Table 6. Rainfall-runoff characteristics in the rainy season of each period in the GCP and GND
forest catchments.

Rainfall-Runoff Characteristics
GCP GND

Period1 Period2 Period3 Period1 Period2 Period3

Year 1981~1996 1997~2008 2009~2017 1981~1996 1997~2008 2009~2017
Baseflow index (BFI) 0.70 0.76 0.69 0.72 0.72 0.71

Quickflow ratio 0.30 0.24 0.31 0.28 0.28 0.29

Note: The baseflow index (BFI) is the rate of the amount of the baseflow to the streamflow, and the quickflow ratio
is the rate of the amount of the quickflow to the streamflow; in Korea, the rainy season is June to September.

4. Discussion

4.1. Runoff Shifts in GCP and GND Forest Catchments

Comparing the runoff between the GCP and GND forest catchments, more runoff in the GND
forest catchment was found than in the GCP forest catchment, when similar rainfall occurred. When the
runoff and runoff rates during the pre-treatment period (before 1996) were compared between the
two catchments, the annual rainfall characteristics were similar. However, the GND forest catchment
produced 230 mm more water per year than the GCP forest catchment, and considering that the average
annual rainfall in Korea is 1340 mm, the water supply in the GND forest catchment was 17% higher than
the GCP forest catchment. The main difference between the two catchments is forest cover. The GCP
forest catchment is a coniferous forest plantation. Whereas, the GND forest catchment is a natural
deciduous forest. Because of this, the two catchments yield different amounts of water. Studying water
supply changes according to forest type began with Swank [28]. In this study, coniferous trees were
planted after the clear cutting of the deciduous catchment, which resulted in a decrease in water yield.
In other words, although there is a deviation in terms of the forest characteristics such as tree density,
leaf area index, forest age, etc., this generally means that the water yield of coniferous forests is less
than that of deciduous forest, and related research has been steadily conducted to date [7,13,29].

In addition to the difference in the annual runoff characteristics of the two catchments,
chronological changes in the annual rainfall-runoff characteristics were observed in each catchment.
In the GCP forest catchment, the slope of the double mass curve became steeper and the annual runoff

was increased after the forest thinning. However, it was not clear whether the change point of the
runoff rates was in 1996 when the forest thinning was carried out. Pettitt’s test confirmed statistically
that the change point was 1996. By confirming that the year corresponding to the test statistic and the
year in which the forest thinning was carried out are the same, we can determine that the reason for
the increase in the runoff rates was the forest thinning in 1996.

From the baseflow separation analysis, we find that the quickflow ratio was reduced and baseflow
ratio (BFI) was increased after the forest thinning in the GCP forest catchment. On the contrary,
baseflow and quickflow ratios in the GND catchment did not change over time. In other words,
after forest thinning, the total amount of streamflow increased, and the baseflow and quickflow also
increased. However, based on from the decrease in quickflow ratio, we can confirm that a huge portion
of the increased streamflow originated from the baseflow. Dung [10] also confirmed that the runoff

increase from forest thinning was highly associated with the baseflow component.
Conversely, in the GND forest catchment conserved naturally, the Mann–Kendall test showed

that annual rainfall, runoff, and runoff rates gradually increased over time. The increasing trend in
annual rainfall can be explained by climate change. Changes in rainfall characteristics, caused by
climate change, have been mentioned in many studies [30], and the increase in annual rainfall has
been observed in many regions around the world [31–33]. The increase in runoff can be explained by
the reduction of the water consumption of the old, matured forest, rather than the impact of climate
change [34–36].
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4.2. Decreasing Forest Thinning Effect with Forest Growth

Tree growing is a major factor of the decreasing forest thinning effect. During the period forest
thinning in 1996, it was observed that where the mean tree density decreased, the mean tree height,
mean DBH, and mean stem volume slightly increased. However, the growing stock volume and the
crown closure greatly decreased. Until 2003, however, the crown closure drastically increased to 95.0%,
and it is at almost the same level as the pre-thinning period. After that, the crown closure remained at
similar levels (96.0% in 2010 and 95.0% in 2016). The growing stock volume also greatly increased after
forest thinning. Almost 66% of the growing stock volume increased from 1996 to 2003, and the growth
rates subsequently slowed down. The growth in trees increases the total amount of evapotranspiration.
From the water balance mentioned above, increasing evapotranspiration makes forest runoff decrease.
Consequently, the introduction of understory plants and growth of individual trees, as forest growth,
result in increasing evapotranspiration and decreasing forest runoff.

4.3. Quantifying the Net Runoff Increment in the GCP Forest Catchment

The double mass curves and simple linear regression model successfully excluded the effect of
rainfall changes from total runoff changes. From this model, it can be interpreted that, in the GCP
forest catchment, 28% of the effects of rainfall increase and 72% of effects of forest thinning result in
a 366 mm total water yield increase. Thus, the effect of forest thinning carried out in 1996 is greater
than the rainfall increase due to climate change, and the net runoff increment from the forest thinning
is 263 mm yr−1. Appropriate forest management is important for the sustainable supply of fresh
water resources in response to the effects of climate change [32]. While, climate change is a natural
phenomenon that humans cannot control, we can decide how to manage forests with proper direction.
From this point of view, the results of the study showed that in a coniferous forest plantation in Korea,
forest thinning can successfully increase water yield and can have a greater impact than the effects of
annual rainfall changes derived by climate change.

However, rainfall change and the forest thinning are not the only reasons for the changes in annual
runoff characteristics. Changes in forest stand age, including those outlined in studies by Kuczera [34]
and the results of the GND forest catchment, can also affect runoff characteristics. There may be more
factors affecting the annual water yield that have yet to be identified. Since the above results were
derived by assuming that the most important factors affecting the annual runoff changes are the
rainfall and forest thinning, a limitation in this paper is the failure to take into account other factors in
calculating the net runoff increment. Thus, additional studies are required for analyzing the net water
yield increment.

5. Conclusions

The effects of forest thinning on long-term runoff was confirmed based on the long-term
rainfall-runoff data in the GCP and GND forest catchments in Korea. The double mass curve (DMC)
and Pettitt’s test showed that, in the GCP forest catchment, the slope of the double mass curve changed
in 1996 and 2008, proving statistically significant. Forest thinning increased the annual runoff rates,
and the effect of forest thinning gradually decreased, which lasted for about 12 years. This was because
the forests have grown rapidly after forest thinning and the canopy closed quickly. A simple linear
regression model of the double mass curve can successfully quantify the net effect of the forest thinning.
As a result, the total runoff increase is derived from 72% of the forest thinning impacts and 28% of the
rainfall increase. The net runoff increment effect was 263 mm yr−1 and, from the baseflow separation
analysis in which the quickflow ratio decreased after forest thinning. It can be confirmed that forest
thinning does not significantly increase the amount of the quickflow. On the contrary, the GND forest
catchment showed no significant changes in the runoff characteristics in the DMC and the Pettitt’s test.
In this study, the water yield increment by forest thinning was statistically identified and considered
to be more influential than the increased rainfall caused by climate change. This could suggest the
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direction that forest policy for water resource management is being undertaken in the Republic of
Korea’s future. However, the interaction between plant growth and the increase in rainfall could not
be considered in this study, and only the effect of the rainfall change was excluded in quantifying the
net runoff increment. Thus, additional studies should be conducted in future research.
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