Projections of Future Climate Change in Singapore Based on a Multi-Site Multivariate Downscaling Approach
Abstract
:1. Introduction
2. Study Area and Observational Data
3. Methodology
3.1. Selection of Large-Scale Climate Models
3.2. The Multi-Site Multivariate Downscaling Approach
3.2.1. Spatial Downscaling
3.2.2. Temporal Downscaling
3.2.3. The Empirical Copula Approach
4. Results and Discussion
4.1. Assessment of Inter-Site, Inter-Variable, and Temporal Dependence Reconstruction
4.2. Projected Climate Change
4.2.1. Changes in Annual/Seasonal Precipitation and Temperature
4.2.2. Changes in Average Wet and Dry Spell Lengths
4.2.3. Uncertainty of the Projection Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Giorgi, F.; Shields Brodeur, C.; Bates, G.T. Regional climate change scenarios over the United States produced with a nested regional climate model. J. Clim. 1994, 7, 375–399. [Google Scholar] [CrossRef]
- Fu, C.; Wang, S.; Xiong, Z.; Gutowski, W.J.; Lee, D.K.; McGregor, J.L.; Sato, Y.; Kato, H.; Kim, J.W.; Suh, M.S. Regional climate model intercomparison project for Asia. Bull. Am. Meteorol. Soc. 2005, 86, 257–266. [Google Scholar] [CrossRef]
- Jeong, D.I.; Sushama, L.; Diro, G.T.; Khaliq, M.N.; Beltrami, H.; Caya, D. Projected changes to high temperature events for Canada based on a regional climate model ensemble. Clim. Dyn. 2016, 46, 3163–3180. [Google Scholar] [CrossRef]
- Maraun, D.; Wetterhall, F.; Ireson, A.; Chandler, R.; Kendon, E.; Widmann, M.; Brienen, S.; Rust, H.; Sauter, T.; Themeßl, M.; et al. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 2010, 48. [Google Scholar] [CrossRef]
- Wilby, R.L.; Wigley, T. Downscaling general circulation model output: A review of methods and limitations. Prog. Phys. Geogr. 1997, 21, 530–548. [Google Scholar] [CrossRef]
- Xu, C.Y. From GCMs to river flow: A review of downscaling methods and hydrologic modelling approaches. Prog. Phys. Geogr. 1999, 23, 229–249. [Google Scholar] [CrossRef]
- Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol. 2007, 27, 1547–1578. [Google Scholar] [CrossRef]
- Schoof, J.T. Statistical downscaling in climatology. Geogr. Compass 2013, 7, 249–265. [Google Scholar] [CrossRef]
- Fatichi, S.; Ivanov, V.Y.; Caporali, E. Simulation of future climate scenarios with a weather generator. Adv. Water Resour. 2011, 34, 448–467. [Google Scholar] [CrossRef]
- Kilsby, C.; Jones, P.; Burton, A.; Ford, A.; Fowler, H.; Harpham, C.; James, P.; Smith, A.; Wilby, R. A daily weather generator for use in climate change studies. Environ. Model. Softw. 2007, 22, 1705–1719. [Google Scholar] [CrossRef]
- Chen, J.; Li, C.; Brissette, F.P.; Chen, H.; Wang, M.; Essou, G.R. Impacts of correcting the inter-variable correlation of climate model outputs on hydrological modeling. J. Hydrol. 2018. [Google Scholar] [CrossRef]
- Li, X.; Babovic, V. A new scheme for multivariate, multisite weather generator with inter-variable, inter-site dependence and inter-annual variability based on empirical copula approach. Clim. Dyn. 2019, 52, 2247–2267. [Google Scholar] [CrossRef]
- Steinschneider, S.; Brown, C. A semiparametric multivariate, multisite weather generator with low-frequency variability for use in climate risk assessments. Water Resour. Res. 2013, 49, 7205–7220. [Google Scholar] [CrossRef]
- Chen, J.; Chen, H.; Guo, S. Multi-site precipitation downscaling using a stochastic weather generator. Clim. Dyn. 2018, 50, 1975–1992. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Zhang, X.J. A multi-site stochastic weather generator for daily precipitation and temperature. Trans. ASABE 2014, 57, 1375–1391. [Google Scholar]
- Iman, R.L.; Conover, W.J. A distribution-free approach to inducing rank correlation among input variables. Commun. Stat.-Simul. Comput. 1982, 11, 311–334. [Google Scholar] [CrossRef]
- Li, Z.; Shi, X.; Li, J. Multisite and multivariate GCM downscaling using a distribution-free shuffle procedure for correlation reconstruction. Clim. Res. 2017, 72, 141–151. [Google Scholar] [CrossRef]
- Li, Z. A new framework for multi-site weather generator: A two-stage model combining a parametric method with a distribution-free shuffle procedure. Clim. Dyn. 2014, 43, 657–669. [Google Scholar] [CrossRef]
- Li, X.; Babovic, V. Multi-site multivariate downscaling of global climate model outputs: An integrated framework combining quantile mapping, stochastic weather generator and empirical copula approaches. Clim. Dyn. 2019, 52, 5775–5799. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Babovic, V. Analysis of variability and trends of precipitation extremes in Singapore during 1980–2013. Int. J. Climatol. 2018, 38, 125–141. [Google Scholar] [CrossRef]
- Mandapaka, P.V.; Qin, X. Analysis and Characterization of Probability Distribution and Small-Scale Spatial Variability of Rainfall in Singapore Using a Dense Gauge Network. J. Appl. Meteorol. Climatol. 2013, 52, 2781–2796. [Google Scholar] [CrossRef]
- MSS. Annual Climatologicalreport; Technical Report; Meteorological Service Singapore: Singapore, 2014.
- Chow, W.T.; Roth, M. Temporal dynamics of the urban heat island of Singapore. Int. J. Climatol. 2006, 26, 2243–2260. [Google Scholar] [CrossRef]
- Fong, M.; Ng, L.K. The Weather and Climate of Singapore; Meteorological Service Singapore: Singapore, 2012.
- Beck, F.; Bárdossy, A.; Seidel, J.; Müller, T.; Sanchis, E.F.; Hauser, A. Statistical analysis of sub-daily precipitation extremes in Singapore. J. Hydrol. Reg. Stud. 2015, 3, 337–358. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Meshgi, A.; Babovic, V. Spatio-temporal variation of wet and dry spell characteristics of tropical precipitation in Singapore and its association with ENSO. Int. J. Climatol. 2016, 36, 4831–4846. [Google Scholar] [CrossRef]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled SRTM for the Globe Version 4. 2008. Available online: http://srtm.csi.cgiar.org (accessed on 11 August 2017).
- Marzin, C.; Rahmat, R.; Bernie, D.; Bricheno, L.; Buonomo, E.; Calvert, D.; Cannaby, H.; Chan, S.; Chattopadhyay, M.; Cheong, W.K.; et al. Singapore’s Second National Climate Change Study—Phase 1; Technical Report; Met Office: Exeter, UK; Centre for Climate Researh Singapore and National Oceanography Centre: Liverpool, UK; CSIRO, Australia and Newcastle University: Newcastle, UK, 2015.
- Maurer, E.P.; Hidalgo, H.G. Utility of daily vs. monthly large-scale climate data: An intercomparison of two statistical downscaling methods. Hydrol. Earth Syst. Sci. 2008, 12, 551–563. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Dong, S.; Sun, Y.; Aguilar, E.; Zhang, X.; Peterson, T.C.; Song, L.; Zhang, Y. Observed changes in temperature extremes over Asia and their attribution. Clim. Dyn. 2017, 51, 339–353. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Liu, W.Z.; Zhang, X.C.; Zheng, F.L. Assessing the site-specific impacts of climate change on hydrology, soil erosion and crop yields in the Loess Plateau of China. Clim. Chang. 2011, 105, 223–242. [Google Scholar] [CrossRef]
- Zhang, X.C.; Liu, W.Z.; Li, Z.; Chen, J. Trend and uncertainty analysis of simulated climate change impacts with multiple GCMs and emission scenarios. Agric. For. Meteorol. 2011, 151, 1297–1304. [Google Scholar] [CrossRef]
- Zhang, X.C. Spatial downscaling of global climate model output for site-specific assessment of crop production and soil erosion. Agric. For. Meteorol. 2005, 135, 215–229. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.J.; Brissette, F.P. Assessing scale effects for statistically downscaling precipitation with GPCC model. Int. J. Climatol. 2014, 34, 708–727. [Google Scholar] [CrossRef]
- Mullan, D.; Chen, J.; Zhang, X.J. Validation of non-stationary precipitation series for site-specific impact assessment: Comparison of two statistical downscaling techniques. Clim. Dyn. 2016, 46, 967–986. [Google Scholar] [CrossRef]
- Richardson, C.W. Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour. Res. 1981, 17, 182–190. [Google Scholar] [CrossRef]
- Zhang, X.C.; Chen, J.; Garbrecht, J.; Brissette, F. Evaluation of a weather generator-based method for statistically downscaling non-stationary climate scenarios for impact assessment at a point scale. Trans. ASABE 2012, 55, 1745–1756. [Google Scholar] [CrossRef]
- Zhang, X.C. Verifying a temporal disaggregation method for generating daily precipitation of potentially non-stationary climate change for site-specific impact assessment. Int. J. Climatol. 2013, 33, 326–342. [Google Scholar] [CrossRef]
- Wilks, D.S. Multisite downscaling of daily precipitation with a stochastic weather generator. Clim. Res. 1999, 11, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.C.; Nearing, M.; Garbrecht, J.; Steiner, J. Downscaling monthly forecasts to simulate impacts of climate change on soil erosion and wheat production. Soil Sci. Soc. Am. J. 2004, 68, 1376–1385. [Google Scholar] [CrossRef]
- Bárdossy, A.; Pegram, G. Copula based multisite model for daily precipitation simulation. Hydrol. Earth Syst. Sci. 2009, 13, 2299. [Google Scholar] [CrossRef]
- Schefzik, R.; Thorarinsdottir, T.L.; Gneiting, T. Uncertainty quantification in complex simulation models using ensemble copula coupling. Stat. Sci. 2013, 28, 616–640. [Google Scholar] [CrossRef]
- Schefzik, R. Multivariate discrete copulas, with applications in probabilistic weather forecasting. arXiv 2015, arXiv:1512.05629. [Google Scholar]
- Wilks, D.S. Multivariate ensemble Model Output Statistics using empirical copulas. Q. J. R. Meteorol. Soc. 2015, 141, 945–952. [Google Scholar] [CrossRef]
- Clark, M.; Gangopadhyay, S.; Hay, L.; Rajagopalan, B.; Wilby, R. The Schaake shuffle: A method for reconstructing space–time variability in forecasted precipitation and temperature fields. J. Hydrometeorol. 2004, 5, 243–262. [Google Scholar] [CrossRef]
- Vrac, M.; Friederichs, P. Multivariate—Intervariable, spatial, and temporal—Bias correction. J. Clim. 2015, 28, 218–237. [Google Scholar] [CrossRef]
- Vrac, M. Multivariate bias adjustment of high-dimensional climate simulations: The “Rank Resampling for Distributions and Dependences” (R2D2) Bias Correction. Hydrol. Earth Syst. Sci. Discuss. 2018, 22, 3175–3196. [Google Scholar] [CrossRef]
- Li, X.; Meshgi, A.; Wang, X.; Zhang, J.; Tay, S.H.X.; Pijcke, G.; Manocha, N.; Ong, M.; Nguyen, M.T.; Babovic, V. Three resampling approaches based on method of fragments for daily-to-subdaily precipitation disaggregation. Int. J. Climatol. 2018. [Google Scholar] [CrossRef]
Earth System Models | Institution | Resolution (Latitude × Longitude) | Emission Scenarios |
---|---|---|---|
ACCESS1.3 | Commonwealth Scientific and Industrial Research Organisation, Australia (CSIRO), and Bureau of Meteorology, Australia (BOM) | 1.25 × 1.875 | historical, RCP4.5, RCP8.5 |
Bcc-csm1-1-m | Beijing Climate Center | 2.7906 × 2.8125 | historical, RCP4.5, RCP8.5 |
CanESM2 | Canadian Centre for Climate Modelling and Analysis | 2.7906 × 2.8125 | historical, RCP4.5, RCP8.5 |
CMCC-CM | Centro Euro-Mediterraneo per I Cambiamenti Climatici | 0.7484 × 0.75 | historical, RCP4.5, RCP8.5 |
CNRM-CM5 | Centre National de Recherches Meteorologiques/Centre Europeen de Recherche et Formation Avancees en Calcul Scientifique | 1.4008 × 1.40625 | historical, RCP4.5, RCP8.5 |
CSIRO-MK3-6-0 | Commonwealth Scientific and Industrial Research Organisation in collaboration with the Queensland Climate Change Centre of Excellence | 1.8653 × 1.875 | historical, RCP4.5, RCP8.5 |
GFDL-CM3 | Geophysical Fluid Dynamics Laboratory | 2 × 2.5 | historical, RCP4.5, RCP8.5 |
HadGEM2-ES | Met Office Hadley Centre | 1.25 × 1.875 | historical, RCP4.5, RCP8.5 |
IPSL-CM5A-MR | Institut Pierre-Simon Laplace | 1.2676 × 2.5 | historical, RCP4.5, RCP8.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhang, K.; Babovic, V. Projections of Future Climate Change in Singapore Based on a Multi-Site Multivariate Downscaling Approach. Water 2019, 11, 2300. https://doi.org/10.3390/w11112300
Li X, Zhang K, Babovic V. Projections of Future Climate Change in Singapore Based on a Multi-Site Multivariate Downscaling Approach. Water. 2019; 11(11):2300. https://doi.org/10.3390/w11112300
Chicago/Turabian StyleLi, Xin, Ke Zhang, and Vladan Babovic. 2019. "Projections of Future Climate Change in Singapore Based on a Multi-Site Multivariate Downscaling Approach" Water 11, no. 11: 2300. https://doi.org/10.3390/w11112300
APA StyleLi, X., Zhang, K., & Babovic, V. (2019). Projections of Future Climate Change in Singapore Based on a Multi-Site Multivariate Downscaling Approach. Water, 11(11), 2300. https://doi.org/10.3390/w11112300