Assessing the Impacts of Extreme Climate Events on Vegetation Activity in the North South Transect of Eastern China (NSTEC)
Abstract
:1. Introduction
2. Study Area and Data Preprocessing
2.1. Study Area
2.2. Data and Preprocessing
3. Methods
3.1. Monitoring Vegetation Activities by Using the NDVI as an Indicator
3.2. Characterizing Extreme Climate Events Using Extreme Climate Indices
3.3. Assessing the Impacts of Extreme Climate Events on Vegetation Activities
4. Results and Discussions
4.1. Validation of the NDVI Datasets
4.2. Spatiotemporal Variations of Vegetation Activity and Extreme Climate Events in the NSTEC
4.2.1. Variations of Vegetation Activity
4.2.2. Frequency of Extreme Temperature Events
4.2.3. Intensity of Extreme Temperature and Precipitation Events
4.3. Correlations between the Indices of Extreme Climate Events and Vegetation Activity
4.3.1. Correlation between the Frequency Indices of Extreme Climate Events and Vegetation Activity
4.3.2. Correlation between the Intensity Indices of Extreme Climate Events and Vegetation Activity
4.3.3. Analysis of the Correlation between Different Climatic Ecozones
4.4. Possible Causes of the Vegetation Activity Changes to Extreme Climate Events
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shen, Y.; Wang, G. Key findings and assessment results of IPCC WGI fifth assessment report. J. Glaciol. Geocryol. 2013, 35, 1068–1076. [Google Scholar]
- Alexander, L.; Allen, S.; Nathaniel, L. Climate Change 2013: The Physical Science Basis Summary for Policymakers; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2013. [Google Scholar]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Heisler-White, J.L.; Blair, J.M.; Kelly, E.F.; Harmoney, K.; Knapp, A.K. Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Glob. Chang. Biol. 2009, 15, 2894–2904. [Google Scholar] [CrossRef]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Beek, R.V.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M. Ground water and climate change. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef]
- Pei, F.; Wu, C.; Liu, X.; Hu, Z.; Xia, Y.; Liu, L.A.; Wang, K.; Zhou, Y.; Xu, L. Detection and attribution of extreme precipitation changes from 1961 to 2012 in the Yangtze River Delta in China. Catena 2018, 169, 183–194. [Google Scholar] [CrossRef]
- Brown, M.E.; Pinzon, J.E.; Didan, K.; Morisette, J.T.; Tucker, C.J. Evaluation of the consistency of long-term NDVI time series derived from AVHRR, SPOT-vegetation, SeaWiFS, MODIS, and Landsat ETM+ sensors. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1787–1793. [Google Scholar] [CrossRef]
- Lange, M.; Dechant, B.; Rebmann, C.; Vohland, M.; Cuntz, M.; Doktor, D. Validating MODIS and Sentinel-2 NDVI Products at a Temperate Deciduous Forest Site Using Two Independent Ground-Based Sensors. Sensors 2017, 17, 1855. [Google Scholar] [CrossRef]
- Beck, H.E.; McVicar, T.R.; van Dijk, A.I.J.M.; Schellekens, J.; de Jeu, R.A.M.; Bruijnzeel, L.A. Global evaluation of four AVHRR–NDVI data sets: Intercomparison and assessment against Landsat imagery. Remote Sens. Environ. 2011, 115, 2547–2563. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Z.; Liu, Z.; Zeng, Z.; Ciais, P.; Huang, M.; Liu, Y.; Piao, S. Seasonal and interannual changes in vegetation activity of tropical forests in Southeast Asia. Agric. For. Meteorol. 2016, 224, 1–10. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, X.; Liang, S.; Zhou, T.; Huang, K.; Tang, B.; Zhao, W. Time-lag effects of global vegetation responses to climate change. Glob. Chang. Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef]
- Tian, H.; Cao, C.; Wei, C.; Bao, S.; Yang, B.; Myneni, R.B. Response of vegetation activity dynamic to climatic change and ecological restoration programs in Inner Mongolia from 2000 to 2012. Ecol. Eng. 2015, 82, 276–289. [Google Scholar] [CrossRef]
- Cai, D.; Fraedrich, K.; Sielmann, F.; Guan, Y.; Shan, G.; Ling, Z.; Zhu, X. Climate and vegetation: An ERA-Interim and GIMMS NDVI analysis. J. Clim. 2014, 27, 5111–5118. [Google Scholar] [CrossRef]
- Barichivich, J.; Briffa, K.R.; Myneni, R.B.; Osborn, T.J.; Melvin, T.M.; Philippe, C.; Shilong, P.; Compton, T. Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011. Glob. Chang. Biol. 2013, 19, 3167–3183. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Tucker, C.J.; Kaufmann, R.K.; Slayback, D.; Shabanov, N.V.; Myneni, R.B. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res. Atmos. 2001, 106, 20069–20083. [Google Scholar] [CrossRef]
- Felton, A.J.; Smith, M.D. Integrating plant ecological responses to climate extremes from individual to ecosystem levels. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20160142. [Google Scholar] [CrossRef] [Green Version]
- Reyer, C.P.O.; Brouwers, N.; Rammig, A.; Brook, B.W.; Epila, J.; Grant, R.F.; Holmgren, M.; Langerwisch, F.; Leuzinger, S.; Lucht, W. Forest resilience and tipping points at different spatio-temporal scales: Approaches and challenges. J. Ecol. 2015, 103, 5–15. [Google Scholar] [CrossRef]
- Tan, Z.; Tao, H.; Jiang, J.; Zhang, Q. Influences of Climate Extremes on NDVI (Normalized Difference Vegetation Index) in the Poyang Lake Basin, China. Wetlands 2015, 35, 1033–1042. [Google Scholar] [CrossRef]
- Sarmah, S.; Jia, G.; Zhang, A.; Singha, M. Assessing seasonal trends and variability of vegetation growth from NDVI3g, MODIS NDVI and EVI over South Asia. Remote Sens. Lett. 2018, 9, 1195–1204. [Google Scholar] [CrossRef]
- Zhao, A.; Zhang, A.; Liu, X.; Cao, S. Spatiotemporal changes of normalized difference vegetation index (NDVI) and response to climate extremes and ecological restoration in the Loess Plateau, China. Theor. Appl. Climatol. 2018, 132, 555–567. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Y.; Zhao, Y.; Mao, W.; Xu, X.; Liu, Y.; Yang, Q. Response of vegetation NDVI to climatic extremes in the arid region of Central Asia: A case study in Xinjiang, China. Theor. Appl. Climatol. 2017, 131, 1503–1515. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Hu, R.; Yin, S.; Bao, Y.; Ayal, D.Y. Relationship between vegetation change and extreme climate indices on the Inner Mongolia Plateau, China, from 1982 to 2013. Ecol. Indic. 2018, 89, 101–109. [Google Scholar] [CrossRef]
- Mélin, F.; Sclep, G.; Jackson, T.; Sathyendranath, S. Uncertainty estimates of remote sensing reflectance derived from comparison of ocean color satellite data sets. Remote Sens. Environ. 2016, 177, 107–124. [Google Scholar] [CrossRef]
- Julien, Y.; Sobrino, J.A. Comparison of cloud-reconstruction methods for time series of composite NDVI data. Remote Sens. Environ. 2010, 114, 618–625. [Google Scholar] [CrossRef]
- Li, Y.; Liao, S.; Chi, G.; Liao, Q. NPP distribution related to the terrains along the North-South Transect of Eastern China. Sci. Bull. 2004, 49, 617–624. [Google Scholar] [CrossRef]
- Sheng, W.; Ren, S.; Yu, G.; Fang, H.; Jiang, C.; Mi, Z. Patterns and driving factors of WUE and NUE in natural forest ecosystems along the North-South Transect of Eastern China. J. Geogr. Sci. 2011, 21, 651–665. [Google Scholar] [CrossRef]
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; Saleous, N.E. An extended AVHRR 8 km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Zhu, X.; Yu, G.; He, H. Radiation and Light-Use Efficiency Dataset of Typical Chinese Ecosystems (2002–2010); China Scientific Data: Beijing, China, 2018. [Google Scholar]
- CMA. Surface Meteorological Observation Standards; China Meteorological Press: Beijing, China, 1979; pp. 167–192. (In Chinese) [Google Scholar]
- Richardson, A.J. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Justice, C.O.; Townshend, J.R.G.; Holben, B.N.; Tucker, C.J. Analysis of the phenology of global vegetation using meteorological satellite data. Int. J. Remote Sens. 1985, 6, 1271–1318. [Google Scholar] [CrossRef]
- Pei, F.; Wu, C.; Liu, X.; Xia, L.; Yang, K.; Yi, Z.; Wang, K.; Li, X.; Xia, G. Monitoring the vegetation activity in China using vegetation health indices. Agric. For. Meteorol. 2018, 248, 215–227. [Google Scholar] [CrossRef]
- Silva, F.B.; Shimabukuro, Y.E.; Aragao, L.E.; Anderson, L.O.; Pereira, G.; Cardozo, F.; Arai, E. Large-scale heterogeneity of Amazonian phenology revealed from 26-year long AVHRR/NDVI time-series. Environ. Res. Lett. 2013, 8, 24011. [Google Scholar] [CrossRef] [Green Version]
- Vrieling, A.; Hoedjes, J.C.; van der Velde, M. Large-Scale Assessment of Soil Erosion in Africa: Satellites Help to Jointly Account for Dynamic Rainfall and Vegetation Cover. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 12–17 April 2015. [Google Scholar]
- Liu, Y.; Li, Y.; Li, S.; Motesharrei, S. Spatial and temporal patterns of global NDVI trends: Correlations with climate and human factors. Remote Sens. 2015, 7, 13233–13250. [Google Scholar] [CrossRef]
- Tourre, Y.M.; Jarlan, L.; Lacaux, J.P.; Rotela, C.H.; Lafaye, M. Spatio-temporal variability of NDVI-precipitation over southernmost South America: Possible linkages between climate signals and epidemics. Environ. Res. Lett. 2008, 3, 52–55. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Zhou, L.; Guo, Q.; Henderson, M.; Ji, W.; Li, Y.; Tao, S. Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. J. Geophys. Res. 2003, 108, 4401. [Google Scholar] [CrossRef]
- Fang, J.; Shilong, P. Increasing terrestrial vegetation activity in China, 1982–1999. Sci. China 2004, 47, 229–240. [Google Scholar]
- Thoma, D.P.; Montagne, C. Short-Term Monitoring of Rangeland Forage Conditions with AVHRR Imagery. J. Range Manag. 2002, 55, 383–389. [Google Scholar] [CrossRef]
- Lamchin, M.; Park, T.; Lee, J.Y.; Lee, W.K. Monitoring of Vegetation Dynamics in the Mongolia Using MODIS NDVIs and their Relationship to Rainfall by Natural Zone. J. Indian Soc. Remote 2015, 43, 325–337. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing [Computer Software Manual]; R Foundation for Statistical Computing: Vienna, Austria, 2011. [Google Scholar]
- Pohlert, T. Non-Parametric Trend Tests and Change-Point Detection. CC BY-ND 4. 2018. Available online: https://cran.r-project.org/web/packages/trend/ (accessed on 1 November 2019).
- Ren, G.; Chen, Y.; Zou, X.; Zhou, Y.; Wang, X.; Jiang, Y.; Ren, F. Definition and Trend Analysis of an Integrated Extreme Climatic Index. Clim. Environ. Res. 2010, 15, 354–364. [Google Scholar]
- Frich, P.; Alexander, L.V.; Della-Marta, P.; Gleason, B.; Haylock, M.; Tank, A.M.G.K.; Peterson, T. Observed coherent changes in climatic extremes during 2nd half of the 20th century. Clim. Res. 2002, 19. [Google Scholar] [CrossRef]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Alexander, L.V. Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond. Weather Clim. Extrem. 2016, 11, 4–16. [Google Scholar] [CrossRef] [Green Version]
- Peterson, T.C.; Manton, M.J. Monitoring changes in climate extremes: A tale of international collaboration. Bull. Am. Meteorol. Soc. 2008, 89, 1266–1271. [Google Scholar] [CrossRef]
- Manton, M.J.; Della-Marta, P.M.; Haylock, M.R.; Hennessy, K.J.; Nicholls, N.; Chambers, L.E.; Collins, D.A.; Daw, G.; Finet, A.; Gunawan, D. Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998. Int. J. Climatol. 2001, 21, 269–284. [Google Scholar] [CrossRef]
- Sheikh, M.M.; Manzoor, N.; Ashraf, J.; Adnan, M.; Collins, D.; Hameed, S.; Manton, M.J.; Ahmed, A.U.; Baidya, S.K.; Borgaonkar, H.P. Trends in extreme daily rainfall and temperature indices over South Asia. Int. J. Climatol. 2015, 35, 1625–1637. [Google Scholar] [CrossRef]
- Worku, G.; Teferi, E.; Bantider, A.; Dile, Y.T. Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, Upper Blue Nile Basin, Ethiopia. Theor. Appl. Climatol. 2019, 135, 839–854. [Google Scholar] [CrossRef]
- Chen, J.M.; Black, T.A. Defining Leaf-Area Index for Non-Flat Leaves. Agric. For. Meteorol. 1992, 15, 421–429. [Google Scholar] [CrossRef]
- Garrigues, S.; Lacaze, R.; Baret, F.; Morisette, J.T.; Weiss, M.; Nickeson, J.E.; Fernandes, R.; Plummer, S.; Shabanov, N.V.; Myneni, R.B. Validation and intercomparison of global Leaf Area Index products derived from remote sensing data. J. Geophys. Res. Biogeosci. 2015, 113, 1010–1029. [Google Scholar] [CrossRef]
- Fensholt, R.; Proud, S.R. Evaluation of Earth Observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 2012, 119, 131–147. [Google Scholar] [CrossRef]
- Shu, S.J.; Yuan, W.; Xiong, A.Y. Estimation and analysis for geographic and orographic influences on precipitation distribution in China. Chin. J. Geophys. 2007, 50, 1482–1493. [Google Scholar] [CrossRef]
- Du, H. Research on the Extreme Climate Events over Northeast China under Global Climate Change. Ph.D. Thesis, Northeast Normal University, Changchun, China, 2015. [Google Scholar]
- Peng, Y.; Zhao, X.; Wu, D.; Tang, B.; Xu, P.; Du, X.; Wang, H. Spatiotemporal variability in extreme precipitation in China from observations and projections. Water-Sui 2018, 10, 1089. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [PubMed]
- Chinnusamy, V.; Zhu, J.; Zhu, J. Cold stress regulation of gene expression in plants. Trends Plant Sci. 2007, 12, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Thakur, P.; Kumar, S.; Malik, J.A.; Berger, J.D.; Nayyar, H. Cold stress effects on reproductive development in grain crops: An overview. Environ. Exp. Bot. 2010, 67, 429–443. [Google Scholar] [CrossRef]
- Benli, B.; Pala, M.; Stockle, C.; Oweis, T. Assessment of winter wheat production under early sowing with supplemental irrigation in a cold highland environment using CropSyst simulation model. Agric. Water Manag. 2007, 93, 45–53. [Google Scholar] [CrossRef]
- Pimentel, D. Soil Erosion: A Food and Environmental Threat. Environ. Dev. Sustain. 2006, 8, 119–137. [Google Scholar] [CrossRef]
- Clifford, M.J.; Royer, P.D.; Cobb, N.S.; Breshears, D.D.; Ford, P.L. Precipitation thresholds and drought-induced tree die-off: Insights from patterns of Pinus edulis mortality along an environmental stress gradient. New Phytol. 2013, 200, 413–421. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Chen, Y.H. Temporal responses of vegetation to climate variables in temperate steppe of northern China. J. Plant Ecol. 2007, 31, 1054–1062. [Google Scholar]
- Yan, D.; Xu, T.; Girma, A.; Yuan, Z.; Weng, B.; Qin, T.; Do, P.; Yuan, Y. Regional correlation between precipitation and vegetation in the Huang-Huai-Hai River Basin, China. WATER-SUI 2017, 9, 557. [Google Scholar] [CrossRef]
- Yu, C. Features of Weather/Climate over China in 2000. Meteorol. Mon. 2001, 4, 20–24. (In Chinese) [Google Scholar]
- Yang, X.; Lin, E.; Ma, S.; Ju, H.; Guo, L.; Xiong, W.; Li, Y.; Xu, Y. Adaptation of agriculture to warming in Northeast China. Clim. Chang. 2007, 84, 45–58. [Google Scholar] [CrossRef]
- Xu, X.; Li, X. Review and preview of the urbanization in pearl river delta in the past 30 years of reform and opening up. Econ. Geogr. 2009, 29, 13–18. [Google Scholar]
- Pei, F.; Li, X.; Liu, X.; Lao, C.; Xia, G. Exploring the response of net primary productivity variations to urban expansion and climate change: A scenario analysis for Guangdong Province in China. J. Environ. Manag. 2015, 150, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Baumbach, L.; Siegmund, J.F.; Mittermeier, M.; Donner, R.V. Impacts of Temperature Extremes on European Vegetation during the Growing Season. Biogeosciences 2017, 14, 4891–4903. [Google Scholar] [CrossRef]
- Chapin, F.S.; Starfield, A.M. Time lags and novel ecosystems in response to transient climatic change in arctic Alaska. Clim. Chang. 1997, 35, 449–461. [Google Scholar] [CrossRef]
- Sukopp, H.; Wurzel, A. The effects of climate change on the vegetation of central European cities. Arboric. J. 2000, 24, 257–281. [Google Scholar] [CrossRef]
- Musau, J.; Patil, S.; Sheffield, J.; Marshall, M. Spatio-temporal vegetation dynamics and relationship with climate over East Africa. Hydrol. Earth Syst. Sci. 2016. [Google Scholar] [CrossRef]
Name | Definitions | Units |
---|---|---|
TN10p | Percentage of time when daily min temperature <10th percentile | days |
TX90p | Percentage of time when daily max temperature >90th percentile | days |
TXX | Monthly maximum value of daily max temperature | °C |
TNN | Monthly minimum value of daily min temperature | °C |
WSDI | Annual count when at least six consecutive days of max temperature >90th percentile | days |
CSDI | Annual count when at least six consecutive days of min temperature <10th percentile | days |
R95p | Annual total precipitation from days >95th percentile | mm |
Year | Higher than Usual | Lower than Usual | NDVI-SWS | NDVI-GIMMS |
---|---|---|---|---|
1984 | CSDI, TN10p, TNN | - | - | |
1993 | CSDI, TN10p | TNN, WSDI, TX90p, TXX | - | - |
2000 | TX90p, TXX | R95p | - | - |
2005 | CSDI, TN10p, TNN | - | - | |
2007 | TNN, TX90p | CSDI, TN10p | + | + |
Ecozone | Data Source | Correlation | ||||||
---|---|---|---|---|---|---|---|---|
TNN | CSDI | TN10p | TXX | WSDI | TX90p | R95p | ||
Tropical monsoon rainforest | SWS | 0.220 | −0.171 | 0.249 | −0.263 | 0.199 | −0.297 | −0.221 |
GIMMS | 0.295 | −0.232 | −0.294 | 0.208 | 0.352 | 0.412 | −0.224 | |
Subtropical evergreen broad-leaved forest | SWS | 0.252 | −0.230 | −0.281 | 0.269 | 0.272 | 0.342 | −0.284 |
GIMMS | 0.260 | −0.261 | −0.248 | 0.244 | 0.251 | 0.254 | −0.257 | |
Warm-temperate deciduous broad-leaved forest | SWS | 0.349 | −0.208 | −0.245 | −0.288 | −0.287 | −0.291 | 0.241 |
GIMMS | −0.232 | −0.274 | −0.281 | −0.256 | −0.265 | −0.223 | 0.223 | |
Temperate mixed forest | SWS | 0.334 | −0.222 | −0.304 | 0.245 | 0.282 | 0.273 | −0.315 |
GIMMS | −0.222 | −0.217 | −0.235 | 0.231 | 0.208 | −0.241 | −0.212 | |
Temperate grassland | SWS | 0.356 | −0.259 | −0.255 | −0.294 | −0.296 | 0.258 | 0.259 |
GIMMS | −0.219 | 0.259 | −0.215 | −0.235 | −0.275 | −0.286 | 0.287 | |
Cold temperate coniferous forest | SWS | −0.203 | 0.266 | 0.212 | 0.383 | 0.248 | 0.432 | −0.220 |
GIMMS | 0.218 | 0.200 | −0.213 | 0.349 | 0.268 | −0.268 | −0.219 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Pei, F.; Xia, Y.; Wu, C.; Zhong, R.; Wang, K.; Wang, H.; Cao, Y. Assessing the Impacts of Extreme Climate Events on Vegetation Activity in the North South Transect of Eastern China (NSTEC). Water 2019, 11, 2291. https://doi.org/10.3390/w11112291
Zhou Y, Pei F, Xia Y, Wu C, Zhong R, Wang K, Wang H, Cao Y. Assessing the Impacts of Extreme Climate Events on Vegetation Activity in the North South Transect of Eastern China (NSTEC). Water. 2019; 11(11):2291. https://doi.org/10.3390/w11112291
Chicago/Turabian StyleZhou, Yi, Fengsong Pei, Yan Xia, Changjiang Wu, Rui Zhong, Kun Wang, Huaili Wang, and Yang Cao. 2019. "Assessing the Impacts of Extreme Climate Events on Vegetation Activity in the North South Transect of Eastern China (NSTEC)" Water 11, no. 11: 2291. https://doi.org/10.3390/w11112291
APA StyleZhou, Y., Pei, F., Xia, Y., Wu, C., Zhong, R., Wang, K., Wang, H., & Cao, Y. (2019). Assessing the Impacts of Extreme Climate Events on Vegetation Activity in the North South Transect of Eastern China (NSTEC). Water, 11(11), 2291. https://doi.org/10.3390/w11112291