Improvement of Hargreaves–Samani Reference Evapotranspiration Estimates with Local Calibration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Weather Station Data Used
2.3. Reference Evapotranspiration
2.3.1. Penman–Monteith
2.3.2. Hargreaves–Samani
2.4. Improving Hargreaves–Samani Estimates
2.4.1. General Calibration of Coefficients
2.4.2. Regional or Seasonal Clustering of Data
2.5. Validation and Accuracy Indicators
- The slope of the regression forced to the origin (FTO) considering EToPM as observed data (Oi) and EToHS as predicted values (Pi).
- Coefficient of determination (R2) of the ordinary least squares (OLS) regression considering Oi and Pi.
- Mean bias error (ME, mm·day−1), mean absolute error (MAE, mm·day−1) and root mean square error (RMSE, mm·day−1).
3. Results and Discussion
3.1. Data Analyses
3.2. Cluster Analyses
3.3. Parameters of Improved Hargreaves–Samani Models
3.4. Performances of Improved Hargreaves–Samani Models
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Abdulbaki, D.; Al-Hindi, M.; Yassine, A.; Abou Najm, M. An optimization model for the allocation of water resources. J. Clean. Prod. 2017, 164, 994–1006. [Google Scholar] [CrossRef]
- Wendt, D.E.; Rodrigues, L.N.; Dijksma, R.; Van Dam, J.C. Assessing groundwater potential use for expanding irrigation in the Buriti Vermelho watershed. IRRIGA 2015, 1, 81–94. [Google Scholar] [CrossRef]
- Silva, J.M.D.; Gurgel, I.G.D.; Santos, M.O.D.; Gurgel, A.D.M.; Augusto, L.G.D.S.; Costa, A.M. Conflitos ambientais e as águas do rio São Francisco. Saúde E Soc. 2015, 24, 1208–1216. [Google Scholar] [CrossRef]
- Getirana, A.C.V.; de Fátima Malta, V.; de Azevedo, J.P.S. Decision Process in a Water Use Conflict in Brazil. Water Resour. Manag. 2008, 22, 103–118. [Google Scholar] [CrossRef]
- Zohaib, M.; Kim, H.; Choi, M. Detecting global irrigated areas by using satellite and reanalysis products. Sci. Total Environ. 2019, 677, 679–691. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Tarjuelo, J.M.; Rodriguez-Diaz, J.A.; Abadía, R.; Camacho, E.; Rocamora, C.; Moreno, M.A. Efficient water and energy use in irrigation modernization: Lessons from Spanish case studies. Agric. Water Manag. 2015, 162, 67–77. [Google Scholar] [CrossRef]
- Jiménez-Bello, M.A.; Royuela, A.; Manzano, J.; Prats, A.G.; Martínez-Alzamora, F. Methodology to improve water and energy use by proper irrigation scheduling in pressurised networks. Agric. Water Manag. 2015, 149, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Pryor, S.W.; Smithers, J.; Lyne, P.; van Antwerpen, R. Impact of agricultural practices on energy use and greenhouse gas emissions for South African sugarcane production. J. Clean. Prod. 2017, 141, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56, 9th ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; ISBN 92-5-104219-5. [Google Scholar]
- Cobaner, M.; Citakoğlu, H.; Haktanir, T.; Kisi, O. Modifying Hargreaves–Samani equation with meteorological variables for estimation of reference evapotranspiration in Turkey. Hydrol. Res. 2017, 48, 480–497. [Google Scholar] [CrossRef]
- Dou, X.; Yang, Y. Evapotranspiration estimation using four different machine learning approaches in different terrestrial ecosystems. Comput. Electron. Agric. 2018, 148, 95–106. [Google Scholar] [CrossRef]
- Ferreira, L.B.; da Cunha, F.F.; de Oliveira, R.A.; Fernandes Filho, E.I. Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM—A new approach. J. Hydrol. 2019, 572, 556–570. [Google Scholar] [CrossRef]
- Tabari, H.; Grismer, M.E.; Trajkovic, S. Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrig. Sci. 2013, 31, 107–117. [Google Scholar] [CrossRef]
- ASCE-EWRI. The ASCE standardized reference evapotranspiration equation. In Technical Committee Rep. to the Environmental and Water Resources Institute of ASCE from the Task Committee on Standardization of Reference Evapotranspiration; ASCE-EWRI: Reston, VA, USA, 2005; p. 173. [Google Scholar]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Gavilán, P.; Lorite, I.J.; Tornero, S.; Berengena, J. Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment. Agric. Water Manag. 2006, 81, 257–281. [Google Scholar] [CrossRef]
- Shiri, J.; Sadraddini, A.A.; Nazemi, A.H.; Marti, P.; Fakheri Fard, A.; Kisi, O.; Landeras, G. Independent testing for assessing the calibration of the Hargreaves–Samani equation: New heuristic alternatives for Iran. Comput. Electron. Agric. 2015, 117, 70–80. [Google Scholar] [CrossRef]
- Tabaru, H.; Talaee, P.H. Local Calibration of the Hargreaves and Priestley-Taylor Equations for Estimating Reference Evapotranspiration in Arid and Cold Climates of Iran Based on the Penman-Monteith Model. J. Hydrol. Eng. 2011, 16, 837–845. [Google Scholar] [CrossRef]
- Zhang, Q.; Cui, N.; Feng, Y.; Gong, D.; Hu, X. Improvement of Makkink model for reference evapotranspiration estimation using temperature data in Northwest China. J. Hydrol. 2018, 566, 264–273. [Google Scholar] [CrossRef]
- Mendicino, G.; Senatore, A. Regionalization of the Hargreaves Coefficient for the Assessment of Distributed Reference Evapotranspiration in Southern Italy. J. Irrig. Drain. Eng. 2013, 139, 349–362. [Google Scholar] [CrossRef]
- Ravazzani, G.; Corbari, C.; Morella, S.; Gianoli, P.; Mancini, M. Modified Hargreaves-Samani Equation for the Assessment of Reference Evapotranspiration in Alpine River Basins. J. Irrig. Drain. Eng. 2012, 138, 592–599. [Google Scholar] [CrossRef]
- Aguilar, C.; Polo, M.J. Generating reference evapotranspiration surfaces from the Hargreaves equation at watershed scale. Hydrol. Earth Syst. Sci. 2011, 15, 2495–2508. [Google Scholar] [CrossRef] [Green Version]
- Zanetti, S.S.; Dohler, R.E.; Cecílio, R.A.; Pezzopane, J.E.M.; Xavier, A.C. Proposal for the use of daily thermal amplitude for the calibration of the Hargreaves-Samani equation. J. Hydrol. 2019, 571, 193–201. [Google Scholar] [CrossRef]
- Reis, M.M.; da Silva, A.J.; Zullo Junior, J.; Tuffi Santos, L.D.; Azevedo, A.M.; Lopes, É.M.G. Empirical and learning machine approaches to estimating reference evapotranspiration based on temperature data. Comput. Electron. Agric. 2019, 165, 104937. [Google Scholar] [CrossRef]
- Liou, Y.-A.; Kar, S.K. Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A Review. Energies 2014, 7, 2821–2849. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes, G.; Leonardo, J.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Pousa, R.; Costa, M.H.; Pimenta, F.M.; Fontes, V.C.; Brito, V.F.A.D.; Castro, M. Climate change and intense irrigation growth in western Bahia, Brazil: The urgent beed for hydroclimatic monitoring. Water 2019, 11, 933. [Google Scholar] [CrossRef]
- Filgueiras, R.; Reis, M.M.; Lopes, É.M.G.; Ribeiro, R.B.; Ramos, M.C.A. Spatio-temporal dynamics of climatological variables in the aid of decision making for irrigated agriculture. J. Agric. Sci. 2019, 11, 292. [Google Scholar] [CrossRef]
- EMBRAPA. Relatório técnico e de atividades da Embrapa Semiárido 2011. In Technical Report and Activities from the Semiarid Embrapa 2011; Embrapa Semiárido: Petrolina, Brazil, 2012; p. 69. (In English) [Google Scholar]
- Shafer, M.A.; Fiebrich, C.A.; Arndt, D.S.; Fredrickson, S.E.; Hughes, T.W. Quality assurance procedures in the Oklahoma mesonetwork. J. Atmos. Ocean. Technol. 2000, 17, 474–494. [Google Scholar] [CrossRef]
- Gavilán, P.; Estévez, J.; Berengena, J. Comparison of standardized reference evapotranspiration equations in Southern Spain. J. Irrig. Drain. Eng. 2008, 134, 1–12. [Google Scholar] [CrossRef]
- Estévez, J.; Gavilán, P.; Giráldez, J.V. Guidelines on validation procedures for meteorological data from automatic weather stations. J. Hydrol. 2011, 402, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Hargreaves, G.H.; Samani, Z.A. Estimating potential evapotranspiration. J. Irrig. Drain. Div. 1982, 108, 225–230. [Google Scholar]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A K-Means Clustering Algorithm. J. R. Stat. Soc. Ser. C Appl. Stat. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef]
- Bholowalia, P.; Kumar, A. EBK-means: A clustering technique based on elbow method and k-means in WSN. Int. J. Comput. Appl. 2014, 105, 17–24. [Google Scholar]
- Paredes, P.; Fontes, J.C.; Azevedo, E.B.; Pereira, L.S. Daily reference crop evapotranspiration in the humid environments of Azores islands using reduced data sets: Accuracy of FAO-PM temperature and Hargreaves-Samani methods. Theor. Appl. Climatol. 2018, 134, 595–611. [Google Scholar] [CrossRef]
- Zhu, X.; Luo, T.; Luo, Y.; Yang, Y.; Guo, L.; Luo, H.; Fang, C.; Cui, Y. Calibration and Validation of the Hargreaves-Samani Model for Reference Evapotranspiration Estimation in China. Irrig. Drain. 2019, 68, 822–836. [Google Scholar] [CrossRef]
- Valiantzas, J.D. Temperature-and humidity-based simplified Penman’s ET0 formulae. Comparisons with temperature-based Hargreaves-Samani and other methodologies. Agric. Water Manag. 2018, 208, 326–334. [Google Scholar] [CrossRef]
Municipality | State | WMO * | Latitude | Longitude | Altitude (m) |
---|---|---|---|---|---|
Barra | BA | 83179 | −11.08° | −43.16° | 402 |
Bom Jesus da Lapa | BA | 83288 | −13.26° | −43.41° | 440 |
Espinosa | MG | 83338 | −14.91° | −42.80° | 570 |
Formoso | MG | 83334 | −14.93° | −46.25° | 840 |
Janaúba | MG | 83395 | −15.80° | −43.29° | 516 |
Januária | MG | 83386 | −15.45° | −44.00° | 474 |
Juramento | MG | 83452 | −16.77° | −43.66° | 648 |
Mocambinho | MG | 83389 | −15.08° | −44.01° | 452 |
Monte Azul | MG | 83388 | −15.16° | −42.86° | 625 |
Montes Claros | MG | 83437 | −16.68° | −43.84° | 652 |
Paracatu | MG | 83479 | −17.24° | −46.88° | 712 |
Santa Rita de Cássia | BA | 83076 | −11.01° | −44.51° | 450 |
ETo Models | kRs | Offset |
---|---|---|
Hargreaves and Samani [16] | 0.170 | 17.80 |
A1—General calibration | 0.166 | 15.30 |
A2—Clusters by months—wet season | 0.161 | 15.55 |
A2—Clusters by months—dry season | 0.172 | 15.43 |
A3—Clusters by region—Region One | 0.175 | 15.88 |
A3—Clusters by region—Region Two | 0.163 | 15.18 |
A4—Clusters by region and months—Region One/wet season | 0.168 | 15.79 |
A4—Clusters by region and months—Region One/dry season | 0.184 | 17.12 |
A4—Clusters by region and months—Region Two/wet season | 0.159 | 15.49 |
A4—Clusters by region and months—Region Two/dry season | 0.169 | 15.08 |
ETo Models | ME | MAE | RMSE | R2 | FTO |
---|---|---|---|---|---|
Hargreaves and Samani [16] | 0.37 | 0.76 | 0.96 | 0.53 | 1.05 |
A1—General calibration | −0.03 | 0.67 | 0.88 | 0.53 | 0.96 |
A2—Clusters by months | −0.03 | 0.67 | 0.87 | 0.54 | 0.96 |
A3—Clusters by stations | −0.03 | 0.66 | 0.85 | 0.56 | 0.96 |
A4—Clusters by stations and months | −0.03 | 0.65 | 0.84 | 0.57 | 0.96 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Althoff, D.; Santos, R.A.d.; Bazame, H.C.; Cunha, F.F.d.; Filgueiras, R. Improvement of Hargreaves–Samani Reference Evapotranspiration Estimates with Local Calibration. Water 2019, 11, 2272. https://doi.org/10.3390/w11112272
Althoff D, Santos RAd, Bazame HC, Cunha FFd, Filgueiras R. Improvement of Hargreaves–Samani Reference Evapotranspiration Estimates with Local Calibration. Water. 2019; 11(11):2272. https://doi.org/10.3390/w11112272
Chicago/Turabian StyleAlthoff, Daniel, Robson Argolo dos Santos, Helizani Couto Bazame, Fernando França da Cunha, and Roberto Filgueiras. 2019. "Improvement of Hargreaves–Samani Reference Evapotranspiration Estimates with Local Calibration" Water 11, no. 11: 2272. https://doi.org/10.3390/w11112272
APA StyleAlthoff, D., Santos, R. A. d., Bazame, H. C., Cunha, F. F. d., & Filgueiras, R. (2019). Improvement of Hargreaves–Samani Reference Evapotranspiration Estimates with Local Calibration. Water, 11(11), 2272. https://doi.org/10.3390/w11112272