Numerical Prediction of the Short-Term Trajectory of Microplastic Particles in Laizhou Bay
Abstract
:1. Introduction
2. Governing Equations
2.1. Shallow Water Equations
2.2. Microplastic Dynamics
3. Methods
3.1. Lattice Boltzmann Method
3.2. Inter-Particle Collision
3.2.1. Collision Identification
3.2.2. Post-Collision Quantities
3.3. Particle-Wall Collision
4. Case Study
4.1. Model Setup
4.2. Results and Discussion
4.2.1. Particles Input at h
4.2.2. Particles Input at h
4.2.3. Particles Input at h within 30 Days
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Arthur, C.; Baker, J.; Bamford, H. Proceedings of the International Research Workshop on the Occurance, Effects, and Fate of Mircroplastic Marine Debris; NOAA Technical Memorandum NOS-OR&R-30; National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 2009. [Google Scholar]
- Còzar, A.; Echevarría, F.; González-Gordillo, J.I.; Irigoien, X.; Úbeda, B.; Hernández-León, S.; Palma, A.T.; Navarro, S.; García-de Lomas, J.; Ruiz, A.; et al. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. USA 2014, 11, 10239–10244. [Google Scholar] [CrossRef] [PubMed]
- Ashton, K.; Holmes, L.; Turner, A. Association of metals with plastic production pellets in the marine environment. Mar. Pollut. Bull. 2010, 60, 2050–2055. [Google Scholar] [CrossRef] [PubMed]
- Browne, M.A.; Galloway, T.S.; Thompson, R.C. Spatial patterns of plastic debris along Estuarine shorelines. Environ. Sci. Technol. 2010, 44, 3404–3409. [Google Scholar] [CrossRef] [PubMed]
- Law, K.L.; Morét-Ferguson, S.; Maximenko, N.A.; Proskurowski, G.; Peacock, E.E.; Hafner, J.; Reddy, C.M. Plastic accumulation in the North Atlantic subtropical gyre. Science 2010, 329, 1185. [Google Scholar] [CrossRef]
- Dubaish, F.; Liebezeit, G. Suspended Microplastics and Black Carbon Particles in the Jade System, Southern North Sea. Water Air Soil Pollut. 2013, 224, 1352–1360. [Google Scholar] [CrossRef]
- Nor, N.H.M.; Obbard, J.P. Microplastics in Singapore’s coastal mangrove ecosystems. Mar. Pollut. Bull. 2014, 79, 278–283. [Google Scholar]
- Còzar, A.; Sanz-Martín, M.; Martí, E.; González-Gordillo, J.I.; Ubeda, B.; Gálvez, J.A.; Irigoien, X.; Duarte, C.M. Plastic accumulation in the Mediterranean sea. PLoS ONE 2015, 10, e0121762. [Google Scholar] [CrossRef]
- Wiberg, P.L.; Smith, J.D. A theoretical model for saltating grains in water. J. Geophys. Res. 1985, 90, 7341. [Google Scholar] [CrossRef]
- Niño, Y.; García, M.; Ayala, L. Gravel saltation: 1. Experiments. Water Resour. Res. 1994, 30, 1907–1914. [Google Scholar] [CrossRef]
- Lee, H.Y.; Lin, Y.T.; You, J.Y.; Wang, H.W. On three-dimensional continuous saltating process of sediment particles near the channel bed. J. Hydraul. Res. 2006, 44, 374–389. [Google Scholar] [CrossRef]
- Tanaka, T.; Tsuji, M. Numerical simulation of gas-solid two-phase flow in a vertical pipe: On the effect of inter-particle collision. Gas-Solid Flows. ASME 1991, 121, 123–128. [Google Scholar]
- Mei, R.; Hu, K.C. On the collision rate of small particles in turbulent flows. J. Fluid Mech. 1999, 391, 67–89. [Google Scholar] [CrossRef]
- Yeganeh-Bakhtiary, A.; Shabani, B.; Gotoh, H.; Wang, S.S.Y. A three-dimensional distinct element model for bed-load transport. J. Hydraul. Res. 2009, 47, 203–212. [Google Scholar] [CrossRef]
- Lin, J.H.; Chang, K.C. Particle Dispersion Simulation in Turbulent Flow Due to Particle-Particle and Particle-Wall Collisions. J. Mech. 2016, 32, 237–244. [Google Scholar] [CrossRef]
- Fede, P.; Simonin, O. Direct Simulation Monte-Carlo predictions of coarse elastic particle statistics in fully developed turbulent channel flows: Comparison with deterministic discrete particle simulation results and moment closure assumptions. Int. J. Multiph. Flow 2018, 108, 25–41. [Google Scholar] [CrossRef][Green Version]
- Niño, Y.; García, M. Using Lagrangian particle saltation observations for bedload sediment transport modelling. Hydrol. Process. 1998, 12, 1197–1218. [Google Scholar] [CrossRef]
- Chang, Y.; Scotti, A. Entrainment and suspension of sediments into a turbulent flow over ripples. J. Turbul. 2003, 4, 1–22. [Google Scholar] [CrossRef]
- Bhatnagar, P.L.; Gross, E.P.; Krook, M. A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems. Phys. Rev. 1954, 94, 511–525. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, G.J.; Burrows, R. Lattice Boltzmann model for shallow water flows in curved and meandering channels. Int. J. Comput. Fluid Dyn. 2009, 23, 209–220. [Google Scholar] [CrossRef]
- Zhou, J.G. Lattice Boltzmann Methods for Shallow Water Flows; Springer: Berlin, Germany, 2004; Volume 4. [Google Scholar]
- Sun, T.; Li, W.; Dong, B. Numerical and experimental study on the motion characteristics of single bubble in a complex channel. Int. J. Comput. Fluid Dyn. 2015, 29, 346–356. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, J.G. Lattice Boltzmann approach to simulating a wetting-drying front in shallow flows. J. Fluid Mech. 2014, 743, 32–59. [Google Scholar] [CrossRef]
- Chen, S.; Doolen, G. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 1998, 30, 329–364. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.; Wang, X.; Zheng, C.; Wang, C.; Xiao, K.; Wan, L.; Wang, X.; Jiang, X.; Guo, H. Estimation of submarine groundwater discharge and associated nutrient fluxes in eastern Laizhou Bay, China using 222 Rn. J. Hydrol. 2016, 533, 103–113. [Google Scholar] [CrossRef]
- Chang, Y.; Hu, B.X.; Xu, Z.; Li, X.; Tong, J.; Chen, L.; Zhang, H.; Miao, J.; Liu, H.; Ma, Z. Numerical simulation of seawater intrusion to coastal aquifers and brine water/freshwater interaction in south coast of Laizhou Bay, China. J. Contam. Hydrol. 2018, 215, 1–10. [Google Scholar] [CrossRef][Green Version]
- Zhou, J.G. Enhancement of the LABSWE for shallow water flows. J. Comput. Phys. 2011, 230, 394–401. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, H.; Peng, Y.; Xing, L. Lattice Boltzmann method for rain-induced overland flow. J. Hydrol. 2018, 562, 789–795. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Potthoff, M.; Tanaka, T.; Kajishima, T.; Tsuji, Y. Large-eddy simulation of turbulent gas-particle flow in a vertical channel: Effect of considering inter-particle collisions. J. Fluid Mech. 2001, 442, 303–334. [Google Scholar] [CrossRef]
- Rong, Q.; Liu, J.; Cai, Y.Z.L.; Zhao, Z.; Yue, W.; Xia, J. Leaf carbon, nitrogen and phosphorus stoichiometry of Tamarix chinensis, Lour. in the Laizhou Bay coastal wetland, China. Ecol. Eng. 2015, 76, 57–65. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J.; Wang, H.; Ding, Y.; Yi, Y. Numerical modeling of the tidal wave run-up and the eelgrass habitat at the Laizhou Bay. Ecol. Model. 2017, 360, 378–386. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Y.; Liu, H.; Yang, W. Numerical Prediction of the Short-Term Trajectory of Microplastic Particles in Laizhou Bay. Water 2019, 11, 2251. https://doi.org/10.3390/w11112251
Ding Y, Liu H, Yang W. Numerical Prediction of the Short-Term Trajectory of Microplastic Particles in Laizhou Bay. Water. 2019; 11(11):2251. https://doi.org/10.3390/w11112251
Chicago/Turabian StyleDing, Yu, Haifei Liu, and Wei Yang. 2019. "Numerical Prediction of the Short-Term Trajectory of Microplastic Particles in Laizhou Bay" Water 11, no. 11: 2251. https://doi.org/10.3390/w11112251