Impact of Land Cover Types on Riverine CO₂ Outgassing in the Yellow River Source Region

Mingyang Tian^{1,2}, Xiankun Yang², Lishan Ran³, Yuanrong Su¹, Lingyu Li¹, Ruihong Yu¹, Haizhu Hu^{1,*} and Xi Xi Lu^{1,4,*}

- ^{1.} Inner Mongolia key laboratory of river and lake ecology, School of ecology and environment, Inner Mongolia University, Hohhot 010021, China; tianmingyang1992@163.com (M.T.); suyuanrong@hotmail.com (Y.S.); 18504846955@163.com (L.L.); rhyu@imu.edu.cn (R.Y.).
- ² School of Geographical Sciences, Guangzhou University, Guangzhou 510006, China; yangxk@gzhu.edu.cn
- ^{3.} Department of Geography, The University of Hong Kong, Hong Kong, China; lsran@hku.hk
- 4. Department of Geography, National University of Singapore, Singapore 117570, Singapore
- * Correspondence: haizhuhu@163.com (H.H.); geoluxx@nus.edu.sg (X.X.L.); Tel: +86-471-499-1469

Introduction

The supporting information provides additional information on the description of the correction of headspace equilibration method (Text S1).

Datasets S1 to S6: Sampling results for streams in April, June, August and October 2016.

Sampling results for streams in April, June, August, and October 2016 are tabulated in Datasets S1 to S6, respectively.

Column 'Sampling site': name of sampling site; Column 'Land cover type': the land cover type around sampling sites; Column 'Coordinates': longitude (E) and latitude (N); Column 'Elevation': elevation above sea level (m); Column 'pH': pH (unitless); Column 'DIC': Dissolved inorganic carbon (mmol/L); Column 'DO': dissolved oxygen (mg/L); Column 'DOC': dissolved organic carbon (mg/L); Column 'pCO₂': partial pressure of CO₂ (μ atm); Column 'FCO₂': CO₂ evasion across water-air interface (g C/m²/yr).

Note: the symbol '-' denotes no data, and GL1, GL4, and GL5 in June were not sampled due to road condition, logistical problems, and instrument failures.

Text S1: Correction of headspace equilibration method

The cited method developed by Dickson et al. (2007) to corrected pCO_2 .

The reactions that take place when carbon dioxide dissolves in water can be represented by the following equilibria:

$$CO_2(g) \rightleftarrows CO_2(aq) \tag{1}$$

$$CO_2(aq) + H_2O \rightleftharpoons H_2CO_3(aq) \tag{2}$$

$$H_2CO_3(aq) \rightleftharpoons H^+(aq) + HCO_3^-(aq) \tag{3}$$

$$HCO_3^-(aq) \rightleftharpoons H^+(aq) + CO_3^{2-}(aq) \tag{4}$$

The notations (g), (l), and (aq) refer to the state of the species, *i.e.*, a gas, a liquid, and in aqueous solution, respectively. The sum of the CO₂ (aq) and H₂CO₃(aq) concentrations is expressed as CO_{2*} (aq).

Redefining (1), (2), and (3) in terms of this species gives (5) and (6)

CO

$$CO_2(g) \rightleftharpoons CO_2^*(aq)$$
 (5)

$$_{2}^{*}(aq) + H_{2}O(l) \rightleftharpoons H^{+}(aq) + HCO_{3}^{-}(aq)$$
 (6)

The equilibrium relationships between the concentrations of these various species can then be written as

$$K_0 = [CO_2^*]/pCO_2 (7)$$

$$K_1 = [H^+][HCO_3^{2-}]/[CO_2^*]$$
(8)

$$K_2 = [H^+][CO_3^{2-}]/[HCO_3^{-}]$$
(9)

The calculation of $\ln(K_0/k^\circ)$ is given by the expression (10) below (Weiss, 1974):

$$\ln(K_0/k^\circ) = 93.4517 \ \left(\frac{100}{K}\right) - 60.2409 + 23.3585 \ln(\frac{K}{100}) + S[0.023517 - 0.023656(\frac{K}{100}) + 0.0047036(\frac{K}{100})^2]$$
(10)

The calculation of $\log_{10}(K_1/k^\circ)$ is given by the expression below (Lueker et al., 2000):

$$\log_{10}(K_1/k^\circ) = \frac{-3633.86}{K} + 61.2172 - 9.67770 \ln(K) + 0.011555S - 0.0001152S^2$$
(11)

The calculation of $\log_{10}(K_2/k^\circ)$ is given by the expression below (Lueker et al., 2000):

$$\log_{10}(K_2/k^\circ) = \frac{-471.78}{K} - 25.9290 + 3.16967 \ln(K) + 0.01781S - 0.0001122S^2$$
(12)

Where, $k^{\circ} = 1$ mol kg-soln⁻¹, K is the kelvin of the water, S is the salinity.

The dissolved inorganic carbon content of water is defined as (13)

$$C_{\rm T} = [{\rm CO}_2^*] + [{\rm HCO}_3^-] + [{\rm CO}_3^{2-}]$$
(13)

Redefining (7), (8), and (9) in terms of this species gives (13)

$$= pCO_2^{headspace,f} \times K_0 \times \left[1 + \frac{K_1}{[H^+]} + \frac{K_1 \cdot K_2}{[H^+]^2}\right]$$
(14)

Where, the brackets represent total concentrations of these constituents in solution (in mol kg⁻¹) and [CO₂*] represents the total concentration of all unionized carbon dioxide, whether present as H₂CO₃ or as CO₂.

The CO₂ in water that emits into the headspace during the shaking process can be express:

$$D_C = \frac{Vh}{V_W} (pCO_2^{headspace,f} - pCO_2^{headspace,i})/(RT)$$
(15)

Redefining (13), the original pCO_2 of water could be calculated by (16)

$$pCO_2 = \frac{C_T + D_C}{[1 + \frac{K_1}{[H^+]} + \frac{K_1 \cdot K_2}{[H^+]^2}] \cdot K_0}$$
(16)

Finally, the *p*CO₂ was corrected by water vapor pressure

$$pCO_2^{Correct} = pCO_2^{Dry} (1 - pH_2O)$$
(17)

Where, pCO_2^{Dry} is the corrected pCO_2 value in dry air, pH_2O is the water vapor pressure over a water sample of given salinity at the temperature of equilibration, $pCO_2^{Correct}$ is the final corrected pCO_2 .

Dataset S1. Land cover type, longitude, latitude and above sea level (ASL) of the 36 stream sites

within the Yellow River source region, expressed in the order of April, June, August, and

October in 2016.

		Coordinates									
Sampling sites	Land cover type	-		Elevation							
		E	Ν	(m)							
M1	grassland	99.75829	33.80749	3944							
M2	permafrost	102.07888	33.95922	3413							
M3	grassland	100.26164	35.68511	2608							
GR1	grassland	101.30032	33.39361	3851							
GR2	grassland	100.25924	34.37431	3847							
GR3	grassland	102.35835	33.97419	3418							
GR4	grassland	101.75893	34.11458	3494							
GR5	grassland	100.89919	35.52327	3204							
GR6	grassland	101.48157	35.01245	3631							
GR7	grassland	101.53469	34.58753	3588							
GR8	grassland	101.68369	33.76026	3506							
GR9	grassland	101.62235	34.12661	3437							
GR10	grassland	101.41593	34.18555	3506							
GR11	grassland	101.28440	34.22831	3433							
Pt1	peatland	102.7302	34.07592	3209							
Pt2	peatland	102.23709	33.75737	3423							
Pt3	peatland	102.62729	32.91428	3484							
Pt4	peatland	102.95628	33.75627	3444							
Pt5	peatland	103.18163	33.42880	3558							
Pt6	peatland	103.35088	33.00639	3799							
Pt7	peatland	103.17970	32.93623	3560							
Pt8	peatland	102.90696	33.05994	3546							
Pt9	peatland	102.80032	33.53649	3442							
Pt10	peatland	102.48113	33.39488	3437							
GL1	glacier	99.56724	34.84405	4036							
GL2	glacier	99.61596	34.63389	4125							
GL3	glacier	99.64521	34.6244	4022							
GL4	glacier	99.64952	34.62556	4009							
GL5	glacier	99.69093	34.77461	3704							
GL6	glacier	99.68733	34.72751	3778							
Pm1	permafrost	98.34296	34.82945	4226							
Pm2	permafrost	97.91049	35.09445	4265							
Pm3	permafrost	97.30228	35.01677	4309							
Pm4	permafrost	99.46102	33.67272	4040							
Pm5	permafrost	100.12988	34.11357	4126							
Pm6	permafrost	100.07277	33.46087	4154							

Table S2. pH, DIC, DOC, pCO₂, and FCO₂ of the main stream and grassland sites within the YRSR, expressed in the order of April, June,

August, and October in 2016.

	Land cover	Apr							Jun					Aug						Oct					
Name	types	рН	DIC	DO	DOC	pCO ₂	FCO ₂	pН	DIC	DO	DOC	pCO ₂	FCO ₂	pН	DIC	DO	DOC	pCO ₂	FCO ₂	рН	DIC	DO	DOC	pCO ₂	FCO ₂
			mmol L-	mg L-	mg L-	µatm	mmol m ⁻² d ⁻		mmol L-	mg L-	mg L-	uatm	mmol m ⁻² d ⁻		mmol L-	mg L⁻	mg L-	uatm	mmol m ⁻² d ⁻		mmol L-	mg L-	mg L-	uatm	mmol m ⁻² d ⁻
M1	grasslan	8.	4.4	7.4	4.6	662	99	8.	2.5	6.4	2.5	513	51	7.	-	6.6	4.7	758	181	8.	2.9	8.1	-	643	72
M2	glacier	8.	3.5	8.6	5.4	550	42	8.	1.9	7.2	3.6	483	185	7.	-	6.6	3.5	514	48	7.	2.3	8.2	5.4	678	45
M3	grasslan	8.	4	7.5	3.9	525	103	8.	3.1	6.8	9.5	572	6	7	-	6.4	3.8	715	113	7.	3.1	-	1.3	535	85
GR1	grasslan	7.	1.7	8.6	3.7	886	70	8.	2.1	6.6	1.2	538	42	7.	2.4	7.1	3.6	105	366	7.	1.8	7.4	1.4	830	134
GR2	grasslan	8.	4.8	6.8	5.9	571	133	8.	-	7.3	5.3	488	11	7.	-	6.5	-	109	367	7.	3.7	7.6	3.1	822	165
GR3	grasslan	8.	2.8	7.1	10	686	68	8.	2.1	8.6	5.1	149	22	7.	2.8	5.9	8.2	611	27	8	1.6	5.9	4.7	719	46
GR4	grasslan	8.	4.2	6.7	3.6	614	40	8.	3	6.7	5.4	479	16	7	2.7	6	6.9	552	120	7.	3.9	8	6.6	510	311
GR5	grasslan	8.	4.4	7.5	-	969	326	8.	2.9	6.8	3.8	545	64	7.	2.9	5.8	2.7	119	447	7.	3.9	8.1	1.7	-	-
GR6	grasslan	8.	5.6	8.4	4.7	762	114	8.	3.7	7.6	9.6	628	166	7.	3.9	6.3	8.4	186	370	7.	5.1	8.4	4.2	108	496
GR7	grasslan	8.	6.3	7	2.5	139	203	8.	3.2	6.5	3	608	100	7	3.5	6.9	2.8	219	337	7.	5.5	8.2	1.7	121	530
GR8	grasslan	8.	2.6	8.3	7.4	720	45	8.	1.9	9	7.8	478	76	7.	2.8	7.3	2.6	141	211	7.	2.8	7.4	5.3	593	104
GR9	grasslan	8.	2.3	8.7	4.8	921	32	8.	1.6	7	6.8	493	146	7.	1.7	6.4	2	585	120	7.	1.9	7.6	6.7	515	122
GR1	grasslan	8	3.4	8	3.5	112	237	8.	2.2	6.7	2.3	469	104	7.	1.9	6.2	2.7	676	40	7.	2.4	7.9	2.4	496	54
GR1	grasslan	8.	4.6	7.9	4.9	547	53	8.	3	6.9	-	482	41	7.	-	6.2	6.6	700	92	7.	4.1	7.7	-	557	101

Table S3. pH, DIC, DOC, pCO₂, and FCO₂ of the peatland sites within the YRSR, expressed in the order of April, June, August, and October

in 2016.

	Land cover	-	Apr					Jun						Aug							Oct						
Name	types	pН	DIC	DO	DOC	pCO ₂	FCO2	pН	DIC	DO	DOC	pCO ₂	FCO ₂	pН	DIC	DO	DOC	pCO ₂	FCO ₂	рН	DIC	DO	DOC	pCO ₂	FCO ₂		
			mmol L-	mg L⁻	mg L⁻	µatm	mmol m ⁻² d ⁻		mmol L-	mg L⁻	mg L⁻	µatm	mmol m ⁻² d ⁻		mmol L-	mg L⁻	mg L⁻	µatm	mmol m ⁻² d ⁻		mmol L-	mg L⁻	mg L⁻	µatm	mmol m ⁻² d ⁻		
Pt1	peatlan	8.6	4.8	7.3	6.3	562	102	8.6	3.4	6	4.5	522	24	7	3.6	6.5	2.5	1970	310	-	3.5	7.1	5	876	272		
Pt2	peatlan	8.2	5	8.5	6.3	1362	258	8.2	3.3	8.3	3	598	14	7.1	1.8	6.5	6.1	1461	75	7.3	2.6	7.6	3.8	862	286		
Pt3	peatlan	7.4	1	7.6	-	1809	190	7.9	-	6.6	1.4	1139	120	7.4	1.1	6.4	2.4	862	1574	8	1.2	7.4	6.8	1370	415		
Pt4	peatlan	8.4	5.9	8.4	5.3	511	87	8.6	3.5	8.2	2.6	509	57	7.3	3.5	7.5	3.8	882	29	7.3	4.2	8.8	0.2	517	40		
Pt5	peatlan	7.7	1	7	5.1	576	64	8.6	1.5	7.1	7.6	660	62	7.1	1.8	6.3	4.2	523	21	7.2	1.7	7.8	4.4	856	148		
Pt6	peatlan	7.5	0.6	8	4.3	1177	232	7.9	1.2	6.3	9.4	652	50	7.1	0.8	5.9	3.1	632	125	7.6	0.9	7	4.6	1206	346		
Pt7	peatlan	7.6	0.7	8.2	-	612	335	8.2	1.5	7	-	490	61	7.2	1.3	5.5	3.5	755	406	7.5	1	8	3.2	685	28		
Pt8	peatlan	7.6	1.1	7.8	6.3	712	104	8.2	1.3	6.4	-	567	39	7.2	1.2	6.2	2.1	2441	280	7.9	1.2	7.6	3.9	732	463		
Pt9	peatlan	8.6	4.8	8.1	6.6	562	8	8.1	-	-	12.2	891	70	7.1	2.1	7.5	21.7	1268	14	7.3	-	7.1	5.1	1338	79		

Table S4. pH, DIC, DOC, pCO₂, and FCO₂ of the glacier sites within the YRSR, expressed in the order of April, June, August, and October in

2016.

	Land cover	Apr							Jun								Oct								
Name	types	рН	DIC	DO	DOC	pCO ₂	FCO ₂	pН	DIC	DO	DOC	pCO ₂	FCO ₂	pН	DIC	DO	DOC	pCO ₂	FCO ₂	pН	DIC	DO	DOC	pCO ₂	FCO2
			mmol L ⁻¹	mg L ^{_1}	mg L-1	uatm	mmol m ⁻² d ⁻¹		mmol L ⁻¹	mg L-1	mg L-1	uatm	mmol m ⁻² d ⁻¹		mmol L ⁻¹	mg L-1	mg L ⁻¹	uatm	mmol m ⁻² d ⁻¹		mmol L ⁻¹	mg L ⁻¹	mg L-1	uatm	mmol m ⁻² d ⁻¹
GL1	glacier	8.4	3.9	7.2	4.4	656	272	-	-	-	-		-	7.6	1.2	8.3	2.1	273	-33	7.2	2.9	9.8	4.8	806	104
GL2	glacier	8.2	1.8	8.7	4.7	859	301	8.6	-	7.5	2	484	19	7.5	-	6.6	-	628	89	7.5	-	7.7	-	711	91
GL3	glacier	8.5	3.1	8.2	4.7	606	36	8.7	2.3	6.8	2.8	492	12	7.3	1.9	6.4	4.5	692	133	7.8	2.5	8	3.9	523	53
GL4	glacier	8.4	3.1	8.1	2.7	514	47	-	-	-	-	-	-	7.5	2.1	6.6	4.5	716	75	7.8	3.1	8.4	4.6	672	75
GL5	glacier	8.5	3.1	7.5	4.1	630	11	-	-	-	-	-	-	7.3	2.2	6.9	2.9	525	255	7.3	-	7.8		441	40
GL6	glacier	8.5	4	7.2	3.9	542	92	8.6	-	6.9	1.2	542	60	7.3	2.8	-	2.2	1592	561	-	2.3	7.9	4	640	144

Table S5. pH, DIC, DOC, pCO₂, and FCO₂ of the permafrost sites within the YRSR, expressed in the order of April, June, August, and

October in 2016.

Nam	I and cover	-	Apr						Jun						Aug						Oct						
e	types	pН	DIC	DO	DOC	pCO ₂	FCO2	pН	DIC	DO	DOC	pCO ₂	FCO2	pН	DIC	DO	DOC	pCO ₂	FCO2	pН	DIC	DO	DOC	pCO ₂	FCO2		
			mmol L-	mg L-	mg L-	uat	mmol m ⁻² d ⁻	-	mmol L-	mg L-	mg L-	µat	mmol m ⁻² d-		mmol L-	mg L-	mg L-	uat	mmol m ⁻² d ⁻		mmol L-	mg L-	mg L-	uat	mmol m ⁻² d-		
Pm1	permafros	8.	3.2	-	3.4	236	-32	10.	7.4	12.1	-	-	-	7.	2.9	6.7	6.5	560	4	7.	-	8.5	-	936	23		
Pm2	permafros	8.	4.1	-	5.5	511	97	8.7	-	6.2	5.1	483	32	7.	3	5.7	8.2	538	62	8.	7.6	6.4	-	927	213		
Pm3	permafros	8.	5.2	-	6.3	681	61	9	-	7.2	5	447	10	7.	-	6.9	7.1	554	34	-	4.1	7.2	3.8	365	-8		
Pm4	permafros	8.	3.2	8	2.8	495	58	8.5	-	6.7	1.5	508	29	7.	-	6.4	2.5	628	72	-	2.2	8.4	1.1	583	52		
Pm5	permafros	8.	4.3	7.7	4.6	688	74	8.7	3.4	6.9	4.8	502	85	7.	3.1	7.4	7.1	726	173	7.	4.4	8	10.6	859	184		
Pm6	permafros	8.	2.1	7.3	7.4	181	-50	8.5	2.5	6.2	4.6	989	109	7.	1.8	9.2	6.5	540	22	-	2.6	7	1.4	866	282		

•

Land cover	T		DIC	DO	DOC	pCO ₂	FCO ₂
type	Time	рн	mmol L ⁻¹	mg L ⁻¹	mg L ⁻¹	µatm	mmol m ⁻² d ⁻¹
	April	8.3±0.2	3.9±1.4	7.7±0.7	5.1±2.2	836±258	120±96
Creasland	June	8.5±0.2	2.6±0.7	7.2±0.8	5±2.6	609±297	72±52
Grassianu	August	7.2±0.3	2.7±0.7	6.4±0.5	4.7±2.6	1086±551	227±154
	October	7.4±0.3	3.3±1.3	7.7±0.7	3.8±2	734±253	206±178
	April	7.9±0.5	2.6±2.2	7.8±0.5	5.7±0.8	875±437	141±108
Dootlond	June	8.3±0.3	2.2±1	7±0.9	5.5±3.8	792±436	52±31
reatiand	August	7.2±0.1	1.9±1	6.6±0.7	5.3±5.9	1156±630	289±472
	October	7.5±0.3	1.9±1.2	7.6±0.5	4.1±1.8	926±285	219±159
	April	8.4±0.1	3.2±0.8	7.8±0.6	4.1±0.7	635±122	127±127
alacian	June	8.6±0.1	2.3±2.3	7.1±0.4	2±0.8	506±31	30±26
glacier	August	7.4±0.1	2±0.6	7±0.8	3.2±1.2	738±449	180±209
	October	7.5±0.3	2.7±0.4	8.3±0.8	4.3±0.4	632±132	85±38
	April	8.5±0.2	3.7±1.1	7.7±0.4	5±1.7	465±216	35±61
Downoofusat	June	9±0.8	4.4±2.6	7.6±2.3	4.2±1.5	586±227	53±42
rermairost	August	7.2±0.1	2.7±0.6	7.1±1.2	6.3±2	591±74	61±60
	October	7.5±0.5	4.2±2.1	7.6±0.8	4.2±4.4	756±231	124±118

Table S6. Mean pH, DO, DOC, *p*CO₂, and *F*CO₂ of 4 land cover types.

References

- 1. Dickson, A. G., Sabine, C. L., and Christian, J. R (2007), Guide to best practices for ocean CO₂ measurements. Pices Special Publication.
- 2. Lueker T, Dickson A, and Keeling C (2000), Ocean *p*CO₂ calculated from dissolved inorganic carbon, alkalinity, and equations for *K*₁ and *K*₂: Validation based on laboratory measurements of CO₂ in gas and seawater at equilibrium. Marine Chemistry, 70(1):105-119.
- 3. Weiss, R. F (1974), Carbon dioxide in water and seawater: the solubility of a non-ideal gas, Marine Chemistry, 2, 203–215.