Multi-Parametrical Tool for the Design of Bottom Racks DIMRACK—Application to Small Hydropower Plants in Ecuador
Abstract
:1. Introduction
2. Experimental Setting
3. Results and Discussion
3.1. Generalized Nomogram for the Rack Length Calculation
3.2. Occlusion Factor from Experiment Data
3.3. Application Case
3.4. Application to Design Cases in Ecuador
3.5. Multi-Parametrical Tool for Designing Purposes
- (a)
- Project Information: This section is designed to enter information related to the design conditions of the bottom grid, such as the width of the section of the river where the intake will be located, Br, and the design flow to derive, Qd. Schemes of the components of the bottom intake are also included, as presented in Figure 27. This part also includes the bottom rack information, which allows the information chosen for the racks, such as rack width, B, longitudinal slope, tanθ, and the selection of bottom racks profile (fish body, T-shaped, and circular), to be entered. It also includes schemes of the selected rack profile and its components. The user also needs to provide the bar width, bw, and bar spacing, b1.
- (b)
- Hydraulic Design Parameters: This section presents the results of the calculations made by the program and the recommended rack length for the design. In the case of the design considering sediment clogging, the rack length is expressed as Lf, where f is the occlusion factor. The clear water design length is expressed by L.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- CENACE. Available online: http://www.cenace.org.ec/ (accessed on 11 July 2019).
- Andaroodi, M.; Schleiss, A. Standardization of Civil Engineering Works of Small High-Head Hydropower Plants and Development of an Optimization Tool, LCH N 26: Communication; Laboratoire de Constructions Hydrauliques, Ecole Polytechnique Fédérale de Lausanne: Lausanne, Switzerland, 2006. [Google Scholar]
- Proyecto Mazar-Dudas. Available online: https://www.celec.gob.ec/hidroazogues/proyecto (accessed on 6 July 2018). (In Spanish).
- Andrade Borges, A.P.; Heredia Hidalgo, B.A. Diseño de Las Obras Hidráulicas de La Alternativa Técnica de La Central Hidroeléctrica Sardinas Grande, Provincia de Napo; Pontificia Universidad Católica del Ecuador: Quito, Ecuador, 2013. (In Spanish) [Google Scholar]
- Escuela Politécnica Nacional, (Facultad de Ingeniería Civil y Ambiental); Ministerio de Electricidad y Energía Renovable. Diseño a nivel de Prefactibilidad de Cinco Centrales Hidroeléctricas: Nanegal, Tulipe, Chuquiraguas, Huarhuallá y Chanchán; Ministerio de Electricidad y Energía Renovable: Quito, Ecuador, 2008. (In Spanish) [Google Scholar]
- ASTEC Cía. Ltda. Estudios de Factibilidad y Diseños Definitivos de la Primera Etapa del Proyecto de Agua Potable Ríos Orientales, Ramal Chalpi Grande—Papallacta; Empresa Pública Metropolitana de Agua Potable y Saneamiento: Quito, Ecuador, 2012; p. 74. (In Spanish) [Google Scholar]
- Righetti, M.; Lanzoni, S. Experimental Study of the Flow Field over Bottom Intake Racks. J. Hydraul. Eng. 2008, 134, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Motskow, M. Sur le calcul des grilles de prise d’eau. La Houille Blanche 1957, 4, 569–576. (In French) [Google Scholar]
- Vargas, V. Tomas de fondo. In Proceedings of the XVIII Congreso Latinoamericano de Hidráulica, Oaxaca, Mexico, 18–21 September 1998. (In Spanish). [Google Scholar]
- Brunella, S.; Hager, W.; Minor, H. Hydraulics of Bottom Rack Intake. J. Hydraul. Eng. 2003, 129, 2–10. [Google Scholar] [CrossRef]
- Noseda, G. Correnti permanenti con portata progressivamente decrescente, defluenti su griglie di fondo. L’Energia Elettr. 1956, 33, 565–588. (In Italian) [Google Scholar]
- Krochin, S. Diseño Hidráulico, 2nd ed.; EPN: Quito, Ecuador, 1978; pp. 97–106. (In Spanish) [Google Scholar]
- Drobir, H. Entwurf von Wasserfassungen im Hochgebirge. Österreichische Wasserwirtsch. 1981, 11, 243–253. (In German) [Google Scholar]
- Frank, J.; Von Obering, E. Hydraulische Untersuchungen für das Tiroler Wehr. Bauingenieur 1956, 31, 96–101. (In German) [Google Scholar]
- Frank, J. Fortschritte in der hydraulic des Sohlenrechens. Bauingenieur 1959, 34, 12–18. (In German) [Google Scholar]
- García, J.T. Estudio Experimental y Numérico de Los Sistemas de Captación de Fondo. Ph.D. Thesis, Universidad Politécnica de Cartagena, Cartagena, Spain, June 2016. (In Spanish). [Google Scholar]
- Sotelo, G. Hidráulica de Canales; Facultad de Ingeniería Ediciones, Universidad Nacional Autónoma de México: Ciudad de México, México, 2002. (In Spanish) [Google Scholar]
- Lauterjung, H.; Schmidt, G. Planning of Water Intake Structures for Irrigation or Hydropower; A Publication of GTZ-Postharvest Project; Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH: Harare, Zimbabwe, 1989. (In German) [Google Scholar]
- Simmler, H. Konstruktiver Wasserbau; Technische Universität Graz, Institut für Wasserwirtschaft und konstruktiven Wasserbau: Graz, Austria, 1978. (In German) [Google Scholar]
- Drobir, H.; Kienberger, V.; Krouzecky, N. The wetted rack length of the Tyrolean Weir. In Proceedings of the IAHR-28th Congress, Graz, Austria, 22–27 August 1999. [Google Scholar]
- Castillo, L.G.; Lima, P. Análisis del dimensionamiento de la longitud de reja en una captación de fondo. In Proceedings of the XXIV Congreso Latinoamericano de Hidráulica, Punta del Este, Uruguay, 25 December 2010. (In Spanish). [Google Scholar]
- Castillo, L.G.; García, J.T.; Carrillo, J.M. Influence of rack slope and approaching conditions in bottom intake systems. Water 2017, 9, 65. [Google Scholar] [CrossRef]
- Carrillo, J.M.; Castillo, L.G.; García, J.T.; Sordo-Ward, A. Considerations for the design of bottom intake systems. J. Hydroinform. 2018, 20, 232–245. [Google Scholar] [CrossRef]
- Castillo, L.G.; García, J.T.; Haro, P.; Carrillo, J.M. Rack length in bottom intake systems. Int. J. Environ. Impacts 2018, 1, 279–287. [Google Scholar] [CrossRef]
- García, J.T.; Castillo, L.G.; Carrillo, J.M.; Haro, P.L. Empirical, dimensional and inspectional analysis in the design of bottom intake racks. Water 2018, 10, 1035. [Google Scholar] [CrossRef]
- Castillo, L.G.; García, J.T.; Carrillo, J.M. Experimental measurements of flow and sediment transport through bottom racks-influence of gravels sizes on the rack. In Proceedings of the International Conference on Fluvial Hydraulics, Lausanne, Switzerland, 3–5 September 2014; pp. 2165–2172. Available online: http://www.upct.es/hidrom/publicaciones/congresos/sizes_on_the_rack.pdf (accessed on 1 August 2018).
- Castillo, L.G.; García, J.T.; Carrillo, J.M. Experimental and numerical study of bottom rack occlusion by flow with gravel-sized sediment application to ephemeral streams in semi-arid regions. Water 2016, 8, 166. [Google Scholar] [CrossRef]
- Carrillo, J.M.; García, J.T.; Castillo, L.G. Experimental and Numerical Modelling of Bottom Intake Racks with Circular Bars. Water 2018, 10, 605. [Google Scholar] [CrossRef]
- García, J.T.; Castillo, L.G.; Haro, P.L.; Carrillo, J.M. Occlusion in Bottom Intakes with Circular Bars by Flow with Gravel-Sized Sediment. An Experimental Study. Water 2018, 10, 1699. [Google Scholar] [CrossRef]
- Haro, P.L.; Castillo, L.G.; García, J.T.; Carrillo, J.M. Experimental study of clogging in bottom intakes. Case of circular bars with high void ratios. In Proceedings of the Adapting River Management in an Era of Change, Madrid, Spain, 15 November 2018. [Google Scholar]
- Orth, J.; Chardonnet, E.; Meynardi, G. Étude de grilles pour prises d’eau du type en-dessous. La Houille Blanche 1954, 9, 343–351. (In French) [Google Scholar] [CrossRef]
- Bouvard, M. Mobile Barrages & Intakes on Sediment Transporting Rivers; International Association of Hydraulic Engineering and Research (IAHR) Monograph: Rotterdam, The Netherlands, 1992. [Google Scholar]
- Haro, P.L.; García, J.T.; Castillo, L.G.; Carrillo, J.M. Dimrack, Matlab Central File Exchange 2019. Available online: https://www.mathworks.com/matlabcentral/fileexchange/72361-dimrack (accessed on 30 September 2019).
Name | Head (m) | Installed Capacity (MW) | Estimated Annual Production (GWh/year) | Turbines |
---|---|---|---|---|
Dudas [3] | 294.00 | 7.40 | 41.35 | 1 Pelton unit |
San Antonio [3] | 195.00 | 7.19 | 44.87 | 1 Pelton unit |
Jondachi-Sardinas [4] | 98.77 | 6.71 | 44.06 | 2 Francis units |
Nanegal [5] | 110.00 | 5.30 | 37.16 | 2 Francis units |
Alambi [5] * | 110.00 | 5.50 | 29.50 | 2 Francis units |
Tulipe [5] | ||||
Chuquiraguas [5] | 300.00 | 2.35 | 13.15 | 2 Pelton units |
Chanchán [5] | 220.00 | 7.25 | 38.78 | 3 Pelton units |
Chalpi A [6] ** | 398.62 | 7.67 | 24.70–35.96 (depending on urban water supply requirements) | 2 Pelton units |
Encantado [6] | ||||
Chalpi B [6] | ||||
Chalpi C [6] |
Autor | Required Length (m) | Shape of the Bars | Setting of the Rack, Void Ratio | Slope of the Experiments |
---|---|---|---|---|
Righetti & Lanzoni [7] | 0.91 | Prismatic with rounded edge | m = 0.20; b1 = 0.50 cm; bw = 2.00 cm | <3.5% |
Mostkow [8] | 1.01 | Prismatic | Not specified | |
Vargas [9] | 1.17 | Circular | Two setups: (a) m = 0.33; b1 = 0.50 cm; bw = 1 cm; (b) m = 0.5; b1 = 1 cm; bw = 1 cm | slope: 0°–20° |
Brunella et al. [10] | 1.56 | Circular | Two setups: (a) b1 = 0.60 or 0.30 cm; bw = 1.20 or 0.60 cm; m = 0.352 (b) b1 = 1.80 or 0.90 cm; bw = 1.20 or 0.60 cm; m = 0.664 | 0°–51° |
Noseda [11] | 1.96 | T- shaped | 0.16 < m < 0.28 0.57 < b1 < 1.17 cm | 0–20% |
Krochin [12] f = 0% | 2.04 | Prismatic | Not specified |
Length (m) | Width bw (m) | Bar Type (mm) | Width of the Bars (mm) | Direction of the Bars | Spacing between Bars, b1 (mm) | Void Ratio |
---|---|---|---|---|---|---|
0.90 | 0.50 | T30/25/2 | 30 | Longitudinal | 5.7 | 0.16 |
T30/25/2 | 8.5 | 0.22 | ||||
T30/25/2 | 11.7 | 0.28 | ||||
O30/30 | 11.7 | 0.28 | ||||
O30/30 | 45.0 | 0.60 |
Experimental Work Description | Flow Rates (L/s/m) | Void Ratios, m | Longitudinal Slope (%) | References |
---|---|---|---|---|
T-shaped bars with clear water. Flow profile, rack length, and discharge coefficients | 53.8, 77.0, 114.6, 138.8, 155.5 | m = 0.16, 0.22 and 0.28 | 0, 10, 20, 30, 33 | [22,23,24,25] |
T-shaped bars in a flow with gravels. Occlusion factor with three different gravels: d50 = 8.3, 14.8, and 22.0 mm | 114.6, 138.8, 155.5 | m = 0.16, 0.22 and 0.28 | 0, 10, 20, 30, 33 | [26,27] |
Circular bars with clear water. Flow profile, rack length, and discharge coefficients | 53.8, 77.0, 114.6, 138.8, 155.5, 198.0 | m = 0.28, 0.60 | 0, 10, 20, 30, 33 | [24,25,28] |
Circular bars in a flow with gravels. Occlusion factor with three different gravels: d50 = 22.0 and 58 mm | 114.6, 138.8, 155.5, 198.0, 250.0 | m = 0.28, 0.60 | 0, 10, 20, 30, 33 | [29,30] |
Bar Type | m | a | b |
---|---|---|---|
T | 0.16 | 3.3 | 0.05 |
T | 0.22 | 2.1 | 0.05 |
T | 0.28 | 1.5 | 0.05 |
O | 0.28 | 1.45 | 0.05 |
O | 0.60 | 0.70 | 0.20 |
Intake | Width of the River, Br (m) | Width of the Intake, B (m) | Design Flowrate, QD (m3/s) | Bar Type | Longitudinal Slope, tanθ (%) | b1 (m) | bw (m) | Void Ratio, m (-) | Rack Length, L |
---|---|---|---|---|---|---|---|---|---|
Chalpi A | 35.00 | 6.00 | 2.20 | T | 20 | 0.050 | 0.030 | 0.625 | 1.20 |
Encantado | 16.00 | 5.00 | 1.14 | T | 20 | 0.050 | 0.030 | 0.625 | 0.70 |
Chalpi B | 12.00 | 3.50 | 0.47 | T | 20 | 0.050 | 0.030 | 0.625 | 0.50 |
Chalpi C | 5.00 | 1.00 | 0.12 | T | 20 | 0.0254 | 0.020 | 0.559 | 0.60 |
Jondachi Sardinas | 40.00 | 9.00 | 8.80 | Prismatic | 21 | 0.050 | 0.030 | 0.625 | 2.50 |
Nanegal | 48.00 | 10.00 | 7.00 | T | 20 | 0.050 | 0.030 | 0.625 | 3.00 |
Alambi | 17.00 | 8.00 | 11.50 | T | 20 | 0.050 | 0.030 | 0.625 | 3.00 |
Tulipe | 6.00 | 6.00 | 1.40 | T | 20 | 0.050 | 0.030 | 0.625 | 1.20 |
Chuquiraguas | 11.00 | 6.00 | 1.40 | T | 20 | 0.050 | 0.030 | 0.625 | 1.20 |
Chanchán | 10.00 | 5.00 | 4.83 | T | 20 | 0.050 | 0.030 | 0.625 | 2.30 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, J.T.; Castillo, L.G.; Haro, P.L.; Carrillo, J.M. Multi-Parametrical Tool for the Design of Bottom Racks DIMRACK—Application to Small Hydropower Plants in Ecuador. Water 2019, 11, 2056. https://doi.org/10.3390/w11102056
García JT, Castillo LG, Haro PL, Carrillo JM. Multi-Parametrical Tool for the Design of Bottom Racks DIMRACK—Application to Small Hydropower Plants in Ecuador. Water. 2019; 11(10):2056. https://doi.org/10.3390/w11102056
Chicago/Turabian StyleGarcía, Juan T., Luis G. Castillo, Patricia L. Haro, and José M. Carrillo. 2019. "Multi-Parametrical Tool for the Design of Bottom Racks DIMRACK—Application to Small Hydropower Plants in Ecuador" Water 11, no. 10: 2056. https://doi.org/10.3390/w11102056
APA StyleGarcía, J. T., Castillo, L. G., Haro, P. L., & Carrillo, J. M. (2019). Multi-Parametrical Tool for the Design of Bottom Racks DIMRACK—Application to Small Hydropower Plants in Ecuador. Water, 11(10), 2056. https://doi.org/10.3390/w11102056