An Integrative Framework to Control Nutrient Loss: Insights from Two Hilly Basins in China’s Yangtze River Delta
Abstract
:1. Introduction
2. Study Areas
2.1. Tianmu Lake Watershed
2.2. Qiandao Lake Watershed
3. Major Determinants of Water Quality
3.1. Changes in Drainage Areas
3.2. Changes in Water
3.3. Policy Intervention
4. Integrative Management to Mediate Nutrient Loss
5. Final Remarks and Broader Relevance
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, T.; Han, Y.; Li, Y.; Lu, Z.; Zhao, P. Urgency, development stage and coordination degree analysis to support differentiation management of water pollution emission control and economic development in the eastern coastal area of China. Ecol. Indic. 2016, 71, 406–415. [Google Scholar] [CrossRef]
- Tomita, A.; Nakura, Y.; Ishikawa, T. New direction for environmental water management. Mar. Pollut. Bull. 2016, 102, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.; Feng, H.; Witherell, B.B.; Alebus, M.; Mahajan, M.D.; Zhang, W.; Yu, L. Causes, assessment, and treatment of nutrient (N and P) pollution in rivers, estuaries, and coastal waters. Curr. Pollut. Rep. 2018, 4, 154–161. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Y.; Gu, B. Urban rivers as hotspots of regional nitrogen pollution. Environ. Pollut. 2015, 205, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Conley, D.J.; Paerl, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Havens, K.E.; Lancelot, C.; Likens, G.E. Controlling eutrophication: Nitrogen and phosphorus. Science 2009, 323, 1014–1015. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.J.; Wollheim, W.M.; Mulholland, P.J.; Webster, J.R.; Meyer, J.L.; Tank, J.L.; Marti, E.; Bowden, W.B.; Valett, H.M.; Hershey, A.E. Control of nitrogen export from watersheds by headwater streams. Science 2001, 292, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Qiu, S.; Mao, S.; Bao, R.; Deng, H. Evaluating water resource accessibility in Southwest China. Water 2019, 11, 1708. [Google Scholar] [CrossRef]
- Hering, D.; Carvalho, L.; Argillier, C.; Beklioglu, M.; Borja, A.; Cardoso, A.C.; Hellsten, S. Managing aquatic ecosystems and water resources under multiple stress—An introduction to the MARS project. Sci. Total Environ. 2015, 503, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Sheng, H.; Jiang, S.; Yuan, Z.; Zhang, C.; Elser, J.J. Intensification of phosphorus cycling in China since the 1600s. Proc. Natl. Acad. Sci. USA 2016, 113, 2609–2614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powers, S.M.; Bruulsema, T.W.; Burt, T.P.; Chan, N.I.; Elser, J.J.; Haygarth, P.M.; Sharpley, A.N. Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nat. Geosci. 2016, 9, 353–356. [Google Scholar] [CrossRef]
- Faulkner, S. Urbanization impacts on the structure and function of forested wetlands. Urban Ecosyst. 2004, 7, 89–106. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M. The links between biodiversity, ecosystem services and human well-being. In Ecosystem Ecology: A New Synthesis; Raffaelli, D.G., Frid, C.L.J., Eds.; Cambridge University Press: Cambridge, UK, 2003; pp. 110–139. [Google Scholar]
- Macintosh, K.A.; Mayer, B.K.; McDowell, R.W.; Powers, S.M.; Baker, L.A.; Boyer, T.H.; Rittmann, B.E. Managing diffuse phosphorus at the source versus at the sink. Environ. Sci. Technol. 2018, 52, 11995–12009. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhu, G.; Chen, W.; Gao, R.; Nie, X.; Yu, Z.; Diao, Y.; Li, X. Current situation of good water quality reservoirs in hilly region of south-east China: Protection practices of Tianmuhu Reservoir. J. Lake Sci. 2013, 25, 775–784. (In Chinese) [Google Scholar]
- Huan, Y.; Wang, L.; Muhos, M.; Kess, P. Investment Environment of Yangtze River Delta Economic Zone; University of Oulu: Oulo, Finland, 2011; pp. 1–44. [Google Scholar]
- Haas, J.; Ban, Y. Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze, River delta and the Pearl River delta. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 42–55. [Google Scholar] [CrossRef]
- Li, W. Recent Agriculture in the Yangtze Delta. A General Review; Agricultural Economics Research Institute: The Hague, The Netherlands, 2004; pp. 1–113. [Google Scholar]
- Wang, Y.; Dong, W.; Boelens, L. The interaction of city and water in the Yangtze River Delta, a natural/artificial comparison with Euro Delta. Sustainability 2018, 10, 109. [Google Scholar] [CrossRef]
- Gao, J.; Wei, Y.D.; Chen, W.; Yenneti, K. Urban land expansion and structural change in the Yangtze River Delta, China. Sustainability 2015, 7, 10281–10307. [Google Scholar] [CrossRef]
- Ma, Y. Comparison of advantages and weaknesses among three major urban agglomerations in China. Asian Soc. Sci. 2008, 4, 132–134. [Google Scholar] [CrossRef]
- Shi, G.; Jiang, N.; Li, Y.; He, B. Analysis of the dynamic urban expansion based on multi-sourced data from 1998 to 2013: A case study of Jiangsu Province. Sustainability 2018, 10, 3467. [Google Scholar] [CrossRef]
- Bai, Y.; Wong, C.P.; Jiang, B.; Hughes, A.C.; Wang, M.; Wang, Q. Developing China’s ecological redline policy using ecosystem services assessments for land use planning. Nat. Commun. 2018, 9, 3034. [Google Scholar] [CrossRef]
- Ma, X. Development and changes in industrial distribution in Shanghai in 1990. Contemp. China Hist. Stud. 2009, 16, 92–128. [Google Scholar]
- Shi, G.; Jiang, N.; Yao, L. Land use and cover change during the rapid economic growth period from 1990 to 2010: A case study of Shanghai. Sustainability 2018, 10, 426. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, H.; Ou, W.; Guo, J. A land-cover-based approach to assessing ecosystem services supply and demand dynamics in the rapidly urbanizing Yangtze River Delta region. Land Use Policy 2018, 72, 250–258. [Google Scholar] [CrossRef]
- Wu, Y.; Tao, Y.; Yang, G.; Ou, W.; Pueppke, S.; Sun, X.; Chen, G.; Tao, Q. Impact of land use change on multiple ecosystem services in the rapidly urbanizing Kunshan City of China: Past trajectories and future projections. Land Use Policy 2019, 85, 419–427. [Google Scholar] [CrossRef]
- Ghadouani, A.; Coggins, L.X. Science, technology and policy for water pollution control at the watershed scale: Current issues and future challenges. Phys. Chem. Earth 2011, 36, 335–341. [Google Scholar] [CrossRef]
- Sharpley, A.N.; McDowell, R.W.; Kleinman, P.J. Phosphorus loss from land to water: Integrating agricultural and environmental management. Plant Soil 2001, 237, 287–307. [Google Scholar] [CrossRef]
- Zhang, W.; Swaney, D.P.; Hong, B.; Howarth, R.W.; Han, H.; Li, X. Net anthropogenic phosphorus inputs and riverine phosphorus fluxes in highly populated headwater watersheds in China. Biogeochemistry 2015, 126, 269–283. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, D.; Li, H. Spatio-temporal dynamics of water quality and their linkages with the watershed landscape in highly disturbed headwater watersheds in China. Environ. Sci. Pollut. Res. 2018, 25, 35287–35300. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Pearl, H.W.; Qin, B.; Zhu, G.; Gao, G. Nitrogen and phosphorus inputs control phytoplankton growth in eutropic Lake Taihu, China. Limnol. Oceanogr. 2010, 55, 420–432. [Google Scholar] [CrossRef]
- Liu, Y.; Bi, J.; Lv, J.; Ma, Z.; Wang, C. Spatial multi-scale relationships of ecosystem services: A case study using a geostatistical methodology. Nat. Sci. Rep. 2017, 7, 9486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.; Jin, X.; Gan, L.; Jessup, L.H.; Pijanowski, B.C.; Yang, X.; Xiang, X.; Zhou, Y. Spatial identification and dynamic analysis of land use functions reveals distinct zones of multiple functions in eastern China. Sci. Total Environ. 2018, 642, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Lu, X. Drastic change in China’s lakes and reservoirs over the past decades. Nat. Sci. Rep. 2014, 4, 6041. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Jin, C.; Zhu, J. Controlling cyanobacteria and its effectiveness: An evaluation in four reservoirs for drinking water supply. In Tropical and Sub-Tropical Reservoir Limnology in China; Han, B.-P., Liu, Z., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 343–362. [Google Scholar]
- Wan, C.; Wu, X.; Hu, C.; Tao, G.; Qing, Z. Survey of benthic animals in reservoirs in Jiangsu Province and its comprehensive evaluation. J. Lake Sci. 2004, 16, 43–47. (In Chinese) [Google Scholar]
- Ge, Y.; Zhou, G.; Shao, Y.; Zhu, Z. analysis on the basic characteristics of Jiangsu reservoir. Jiangsu Water Res. 2018, 7, 69–72. (In Chinese) [Google Scholar]
- Hangzhou Second Water Source Qiandaohu Distribution Project. Available online: https://baike.baidu.com/item/千岛湖引水工程/10935578?fr=aladdin (accessed on 28 May 2019). (In Chinese).
- Statistical Communique of 2018 National Economic and Social Development in Chun’an County. Available online: http://www.qdh.gov.cn/art/2019/4/3/art_1388507_31968483.html?tdsourcetag=s_pcqq_aiomsg (accessed on 28 May 2019). (In Chinese)
- Guo, Z.; Li, Z.; Liu, J.; Zhu, F.; Perera, H.A.C.C. Status of reservoir fisheries in China and their effect on environment. In Tropical and Sub-Tropical Reservoir Limnology in China; Han, B.-P., Liu, Z., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 259–276. [Google Scholar]
- Han, Y.; Li, H.P.; Nie, X.F.; Xu, X.B. Nitrogen and phosphorus budget of different land use types in hilly area of Lake Taihu upper river basin. J. Lake Sci. 2012, 24, 829–837. (In Chinese) [Google Scholar]
- Huang, F.; Wu, J.; Lou, L.; Zhou, Z.; Wu, J. Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques. Water Res. 2010, 44, 1562–1572. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Chen, Q.; Ren, K.; Chen, K. Vertical distribution and retention mechanism of nitrogen and phosphorus in soils with different macrophytes of a natural river mouth wetland. Environ. Monit. Assess. 2015, 187, 97. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Li, D.; Zhang, Q.; Xiao, R.; Huang, F.; Wu, J. Temporal trend and source apportionment of water pollution in different functional zones of Qiantang River, China. Water Res. 2011, 45, 1781–1795. [Google Scholar] [CrossRef]
- Li, X.; Li, H.; Yang, G.; Hudson, N.; Zhang, H.; Nie, X. Variations of farming systems and their impacts on surface water environment in past 60 years in intensive agricultural area of Taihu Region, China. J. Water Res. Protect. 2015, 7, 647–658. [Google Scholar] [CrossRef]
- Xu, X.; Yang, G.; Tan, Y.; Zhuang, Q.; Li, H.; Wan, R.; Su, W.; Zhang, J. Ecological risk assessment of ecosystem services in the Taihu Lake Basin of China from 1985 to 2020. Sci. Total Environ. 2016, 554, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Luo, W.; Wu, X.; Wei, H.; Wang, B.; Phyoe, W.; Wang, F. Historical record of nutrients inputs into the Xin’an Reservoir and its potential environmental implication. Environ. Sci. Pollut. Res. 2017, 24, 20330–20341. [Google Scholar] [CrossRef]
- Zhu, G.; Chen, W.; Li, H.; Ren, L.; Gu, Z.; Zhao, L.; Gao, Y.; He, R.; Zhang, Y.; Cui, Y. Response of water quality to the catchment development and protection in Tianmuhu Reservoir, China. J. Lake Sci. 2013, 25, 809–817. (In Chinese) [Google Scholar]
- Qin, B.; Xu, P.; Wu, Q.; Lou, L.; Zhang, Y. Environmental issues of Lake Taihu, China. Hydrobiologia 2007, 581, 13–14. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Kendall, A.D.; Hyndman, D.W.; Diao, Y.; Geng, J.; Pang, J. Nitrogen transport and retention in a headwater catchment with dense distributions of lowland ponds. Sci. Total Environ. 2019, 683, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Tong, J. Soil erosion and regional ecological management in the headwater area of Eastern China—A case study in the Tianmu Mountains. In Hydrological Problems and Environmental Management in Highlands and Headwaters; Křeček, J., Rajwar, G.S., Haigh, M.J., Eds.; A. A. Balkema: Rotterdam, The Netherlands, 1996; pp. 35–42. [Google Scholar]
- Han, L.; Huang, W.; Yuan, X.; Zhao, Y.; Ma, Z.; Qin, J. Denitrification potential and influencing factors of the riparian zone soils in different watersheds, Taihu basin. Water Air Soil Pollut. 2017, 228, 108. [Google Scholar] [CrossRef]
- Yang, C. Pumped hydroelectric storage. In Storing Energy; Letcher, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 25–38. [Google Scholar]
- Xu, Y.W.; Yang, J. Developments and characteristics of pumped storage power station in China. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 163, p. 012089. [Google Scholar] [CrossRef]
- Province’s Largest Pumped Storage Station Put Into Operation. Available online: www.ourjiangsu.com/a/20171016/1508118973841.shtml (accessed on 10 December 2018).
- Jiang, Y.; Luo, Y.; Peng, S.; Wang, W.; Jiao, X. Agricultural water transfers in China: Current issues and perspectives. Procedia Eng. 2012, 28, 363–367. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, L.; Zhang, Q.; Musyimi, Z. The response of grain production to changes in quantity and quality of cropland in Yangtze River Delta, China. J. Sci. Food Agric. 2013, 95, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zhu, G.; Wu, Z.; Chen, W.; Zhu, M. Spatial-temporal variations of water quality parameters in Xin’anjiang Reservoir (Lake Qiandao) and the water protection strategy. J. Lake Sci. 2013, 25, 836–845. (In Chinese) [Google Scholar]
- Zheng, H.; Zhang, L. Chinese Practices of Ecological Compensation and Payments for Ecological and Environmental Services and its Policies in River Basins; World Bank: Washington, DC, USA, 2006. [Google Scholar]
- Hu, S. Present situation and management countermeasures of soil and water loss in Qiandaohu watershed. Soil Water Conserv. Sci. Technol. Shanxi 2001, 2, 41–42. (In Chinese) [Google Scholar] [CrossRef]
- Gu, Q.; Zhang, Y.; Ma, L.; Li, J.; Wang, K.; Zheng, K.; Zhang, X.; Sheng, L. Assessment of reservoir water quality using multivariate statistical techniques: A case study of Qiandao Lake, China. Sustainability 2016, 8, 243. [Google Scholar] [CrossRef]
- Huang, M.; Cao, F.; Jiang, C. Identification of sustainable development limiting factors and countermeasures of large deep lake—Exemplifying Qiandao Lake drainage area. Zhejiang Hydrotech. 2007, 4. (In Chinese) [Google Scholar] [CrossRef]
- Zhai, X.; Zhang, Y.; Wang, X.; Xia, J.; Liang, T. Non-point source pollution modelling using soil and water assessment tool and its parameter sensitivity analysis in Xin’anjiang catchment, China. Hydrol. Process. 2014, 28, 1627–1640. [Google Scholar] [CrossRef]
- Zhu, R.; Li, Q.; Wang, W.; Chu, L.; Yan, Y. Effects of local, river-network and catchment factors on fish assemblages in the headwater streams of the Xin’an basin, China. J. Freshw. Ecol. 2017, 32, 309–322. [Google Scholar] [CrossRef]
- Rohlf, G. Building New China, Colonizing Kokonor; Lexington Books: Lanham, MD, USA, 2016; p. 67. [Google Scholar]
- Agapiou, A.; Alexakis, D.; Sarris, A.; Themistocleous, K.; Papoutsa, C.; Hadjimitsis, D. Satellite-derived land use changes along the Xin’an river watershed for supporting water quality investigation for potential fishing grounds in Qiandao Lake, China. In Proceedings of the 2nd International Conference on Remote Sensing and Geoinformation of the Environment, Paphos, Cyprus, 4–10 April 2014; pp. 1–10. [Google Scholar] [CrossRef]
- Gu, Q.; Li, J.; Deng, J.; Lin, Y.; Ma, L.; Wu, C.; Wang, K.; Hong, Y. Eco-environmental vulnerability assessment of large drinking water resource: A case study of Qiandao Lake area, China. Front. Earth Sci. 2015, 9, 578–589. [Google Scholar] [CrossRef]
- Yang, X.; Yue, W.; Xu, H.; Wu, J.; He, Y. Environmental consequences of rapid urbanization in Zhejiang Province, East China. Int. J. Res. Public Health 2014, 11, 7045–7059. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Luo, D.; Luo, X.; Tang, D.; Chen, S. Agriculture non-point source pollution control measures of Qiandao lake area. J. Soil Water Conserv. 2004, 18, 126–129. (In Chinese) [Google Scholar]
- Battle Lines Drawn to Fish in China’s Thousand Island Lake. Available online: https://www.scmp.com/news/china/society/article/2141266/battle-lines-drawn-fish-chinas-1000-island-lake (accessed on 2 May 2019).
- Xu, Q. The Study of Agricultural Non-Point Source Pollution Control Policy System. Master’s Thesis, Michigan Technological University, Houghton, MI, USA, 2014. [Google Scholar]
- Xiao, R.; Su, S.; Mai, G.; Zhang, Z.; Yang, C. Quantifying determinants of cash crop expansion and their relative effects using logistic regression modeling and variance partitioning. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 258–263. [Google Scholar] [CrossRef]
- Li, H. Inheritance of the ecological culture with harmony between people and nature. In Chinese Dream and Practice in Zhejiang—Ecology; Pan, J., Shen, M., Eds.; Springer: Singapore, 2019; pp. 141–166. [Google Scholar]
- Su, S.; Xiao, R.; Jiang, Z.; Zhang, Y. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl. Geog. 2012, 34, 295–305. [Google Scholar] [CrossRef]
- Endo, E.; Oh, T. (Eds.) The Water-Energy-Food Nexus. Human-Environmental Security in the Asia-Pacific Ring of Fire; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Yun-lin, Z.; Chen, W.; Yang, D.; Huang, W.; Jiang, J. Relation of water environment of Tianmuhu Lake and fishery and tourism. Ecol. Sci. 2003, 22, 271–274. (In Chinese) [Google Scholar]
- Nie, X.; Li, P.; Huang, Q.; Diao, Y.; Jiang, J. Characteristics of nitrogen loss via runoff from typical land uses in hilly area of Tianmuhu watershed. J. Lake Sci. 2013, 25, 827–835. (In Chinese) [Google Scholar]
- Nie, X.; Li, H.; Jiang, J.; Diao, Y.; Li, P. Spatiotemporal variation of riverine nutrients in a typical hilly watershed in Southeast China using multivariate statistics tools. J. Mt. Sci. 2015, 12, 983–998. [Google Scholar] [CrossRef]
- Tong, Y.; Zhang, W.; Wang, X.; Couture, R.-M.; Larssen, T.; Zhao, Y.; Li, J.; Liang, H.; Liu, X.; Bu, X.; et al. Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006. Nat. Geosci. 2017, 10, 507–512. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, Y.; Arhonditsis, G.B.; Gao, J.; Chen, Q.; Wu, N.; Dong, F.; Shi, W. How successful are the restoration efforts of China’s lakes and reservoirs? Environ. Int. 2019, 123, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Diao, Y.; Han, Y.; Li, Z. Spatio-temporal change of tea plantation since 2000 and model-based prediction in the Tianhu Reservoir watershed. J. Lake Sci. 2013, 25, 799–808. (In Chinese) [Google Scholar]
- Li, H.; Chen, W.; Yang, G.; Xie, X. Reduction of nitrogen and phosphorus emission and zoning management targeting at water quality of lake or reservoir systems: A case study of Shahe Reservoir within Tianmuhu Reservoir area. J. Lake Sci. 2013, 25, 785–795. (In Chinese) [Google Scholar]
- Lidén, R.; Vasilyev, A.; Stålnacke, P.; Loigu, E.; Wittgren, H.B. Nitrogen source apportionment—A comparison between a dynamic and a statistical model. Ecol. Mod. 1999, 114, 235–250. [Google Scholar] [CrossRef]
- World Bank. Available online: http://documents.worldbank.org/curated/en/907641528515098050/pdf/China-Lake-and-River-PAD-05172018.pdf (accessed on 1 May 2019).
- Luo, X.; Wen, J.; Luo, D.; Fong, Z. Changing characteristic and trend analysis of water quality of Qiandao Lake. Chin. J. Eco Agric. 2006, 14, 208–212. (In Chinese) [Google Scholar]
- Huang, Q.; Zhang, Y.; Chen, W.; Dong, Y. Variation of hydrological characteristics of Tianmu Lake and its effect on the Tianmuhu wetland and ecological environment of Tianmu Lake. Wetl. Sci. 2007, 5, 51–57. (In Chinese) [Google Scholar]
- Cao, L.; Wang, W.; Yang, Y.; Yang, C.; Yuan, Z.; Xiong, S.; Diana, J. Environmental impact of aquaculture and countermeasures to aquaculture pollution in China. Environ. Sci. Pollut. Res. 2007, 14, 452–462. [Google Scholar]
- Tianmu Lake Tourist Region. Available online: http://www.changzhou.jiangsu.net/attraction/premier.php?name=Tianmu_Lake_Tourist_Region&city=Changzhou&id=97. (accessed on 14 April 2019).
- Tianmu Lake. Available online: http://www.chinadaily.com.cn/regional/2015-10/15/content_22186227.htm (accessed on 14 April 2019).
- He, R.R.; Gao, Y.X.; Wang, F.; Zhu, G.; Chen, W. Spatial-temporal distribution of nutrient and its causation in Tianmu Lake, China. J. Agro Environ. Sci. 2009, 28, 353–360. (In Chinese) [Google Scholar]
- Zhu, G.; Ciu, Y.; Han, X.; Li, H.; Zhu, M.; Deng, J.; Li, H.; Chen, W. Response of phytoplankton to nutrient reduction in Shahe Reservoir, Taihu catchment, China. J. Freshw. Ecol. 2015, 30, 41–58. [Google Scholar] [CrossRef]
- Yu, X.; Wang, L. The dilemma and path choice of reservoir fishery sustainable development based on the perspective of ecology: Verified by the illustration of Qiandao Lake aquatic environmental protection oriented fishery. Ecol. Econ. 2013, 3, 143–147. (In Chinese) [Google Scholar]
- Liu, Q.; Wang, Y.; Chen, L.; Chen, Y.; Liu, G.; Chen, M.; He, G.; Chen, L.; Hong, R. Impacts of aquatic environment protection oriented fishery on the structure of food web in Lake Qiandaohu. Acta Ecol. Sin. 2010, 30, 2774–2783. (In Chinese) [Google Scholar]
- Zhang, Y.; Jia, R. The implementation development of horizontal pilot eco-compensation policy in Xin’an River watershed in Anhui Province. China Econ. Trade Herald 2015, 13, 58–62. (In Chinese) [Google Scholar]
- Ma, Q.H.; Du, P.F. Evaluation on the effect of ecological compensation in Xin’an River basin. Chin. J. Environ. Manag. 2015, 3, 63–70. (In Chinese) [Google Scholar]
- Mims, S.D. Paddlefish: International status. In Paddlefish Aquaculture; Mims, S.D., Shelton, W.L., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 153–178. [Google Scholar]
- The World’s Best Caviar Doesn’t Come From Russia Anymore. Available online: https://bloomberg.com/news/articles/2017-09-19/the-world-s-best-caviar-doesn-t-come-from-russia-anymore (accessed on 2 May 2019).
- Chebanov, M.; Williot, P. An assessment of the characteristics of world production of Siberian sturgeon destined to human consumption. In The Siberian Sturgeon (Acipenser baerii, Brandt, 1869); Williot, P., Nonnotte, G., Chebanov, M., Eds.; Springer: Cham, Switzerland, 2018; pp. 217–286. [Google Scholar]
- FAO. Case Studies on Remuneration of Positive Externalities (RPE)/Payments for Environmental Services (PES); United Nations Food and Agricultural Organization: Rome, Italy, 2013. [Google Scholar]
- Liu, J. Disclosable Version of the ISR—Zhejiang Qiandao lake and Xin’an River Basin Water Resources and Ecological Environment Protection Project; World Bank: Washington, DC, USA, 2019. [Google Scholar]
- Liu, J.; Huijin, L. Economic value of water resources of the upper reaches of the Xin’an River Basin, China. J. Resour. Ecol. 2012, 3, 87–92. [Google Scholar]
- Lu, Y.; Xu, J.; Qin, F.; Wang, J. Payments for watershed services and practices in China: Achievements and challenges. Chin. Geogr. Sci. 2018, 28, 873–893. [Google Scholar] [CrossRef]
- Moore, S. China’s domestic hydropolitics: An assessment and implications for international transboundary dynamics. Int. J. Water Res. Dev. 2018, 34, 732–746. [Google Scholar] [CrossRef]
- Xu, F.; Baoligao, B.; Jia, J. Benefits of Xin’an River water resources and ecological compensation. Adv. Mater. Res. 2014, 1073, 1660–1663. [Google Scholar] [CrossRef]
- Wang, J.N.; Wang, Y.Q.; Liu, G.H.; Zhao, Y. The first eco-compensation for crossing provinces of downstream and upstream in China: A model of Xinanjiang River. Environ. Protect. 2016, 14, 38–40. (In Chinese) [Google Scholar]
- Zhao, J.; Shi, L.; Tang, L.; Gao, L.; Xie, G.; Cao, S.; Bai, Y.; Fang, C.; Bao, C.; Li, W.; et al. Principles and application of sustainable development. In Contemporary Ecology Research in China; Li, W., Ed.; Springer: Berlin, Germany, 2015; pp. 499–533. [Google Scholar]
- Horizontal Ecological Compensation Agreement for Upstream and Downstream of Xinanjiang River Basin; Zhejiang Provincial Ministry of Finance: Hangzhou, China, 2018.
- Zhou, Y.; Ma, J.; Zhang, Y.; Qin, B.; Jeppesen, E.; Shi, K.; Brookes, J.D.; Spencer, R.G.M.; Zhu, G.; Gao, G. Improving water quality in China: Environmental investment pays dividends. Water Res. 2017, 118, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Putt, A.E.; MacIsaac, E.A.; Herunter, H.E.; Cooper, A.B.; Selbie, D.T. Eutrophication forcings on a peri-urban lake ecosystem: Context for integrated watershed to airshed management. PLoS ONE 2019, 14, e0219241. [Google Scholar] [CrossRef] [PubMed]
- Bonansea, M.; Rodriguez, M.C.; Pinotti, L.; Ferrero, S. Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina). Remote Sens. Environ. 2015, 158, 28–41. [Google Scholar] [CrossRef]
- Ducrot, R.; Le Page, C.; Bommel, P.; Kuper, M. Articulating land and water dynamics with urbanization: An attempt to model natural resources management at the urban edge. Comput. Environ. Urban Syst. 2004, 28, 85–106. [Google Scholar] [CrossRef]
- Mereu, S.; Sušnik, J.; Trabucco, A.; Daccache, A.; Vamvakeridou-Lyroudia, L.; Renoldi, S.; Assimacopoulos, D. Operational resilience of reservoirs to climate change, agricultural demand, and tourism: A case study from Sardinia. Sci. Total Environ. 2016, 543, 1028–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrent, J.; Barberis, E.; Gil-Sotres, F. Agriculture as a source of phosphorus for eutrophication in southern Europe. Soil Use Manag. 2007, 23 (Suppl. S1), 25–35. [Google Scholar] [CrossRef]
- Rashid, I.; Romshoo, S.H. Impact of anthropogenic activities on water quality of Lidder River in Kashmir Himalayas. Environ. Monit. Assess. 2013, 185, 4705–4719. [Google Scholar] [CrossRef] [PubMed]
- Sharip, Z.; Zakaria, S. Lakes and reservoir in Malaysia: Management and research challenges. In Proceedings of the 12th World Lake Conference, Jaipur, India, 28 October–2 November 2007; Sengupta, M., Dalwani, R., Eds.; International Lake Environment Committee: Shiga, Japan, 2007; pp. 1349–1355. [Google Scholar]
- Wu, G.; Zhang, Q.; Zheng, X.; Mu, L.; Dai, L. Water quality of Lugu Lake: Changes, causes and measurements. Int. J. Sust. Dev. World Ecol. 2010, 15, 10–17. [Google Scholar] [CrossRef]
- Laurence, W.F.; Sayer, J.; Cassman, K.G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 2014, 29, 107–116. [Google Scholar] [CrossRef]
- Tilman, D. Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices. Proc. Nat. Acad. Sci. USA 1999, 96, 5995–6000. [Google Scholar] [CrossRef] [Green Version]
- El-Kateb, H.; Zhang, H.; Zhang, P.; Mosandl, R. Soil erosion and surface runoff on different vegetation covers and slope gradients: A field experiment in Southern Shaanxi Province, China. Catena 2013, 105, 1–10. [Google Scholar] [CrossRef]
- Delang, C.O.; Yuan, Z. China’s Grain for Green Program; Springer: Cham, Switzerland, 2015; pp. 1–213. [Google Scholar]
- Rozelle, S. Grain to Green: Cost-effectiveness and sustainability of China’s conservations set-aside program. Land Econ. 2005, 81, 247–264. [Google Scholar]
- Lü, Y.; Ma, Z.; Zhang, L.; Fu, B.; Gao, G. Redlines for the greening of China. Environ. Sci. Policy 2013, 33, 346–353. [Google Scholar] [CrossRef]
- Xu, X.; Tan, Y.; Yang, G.; Barnett, J. China’s ambitious ecological red lines. Land Use Policy 2018, 79, 447–451. [Google Scholar] [CrossRef]
- Chen, B.; Krajewski, W.F.; Helmers, M.J.; Zhang, Z. Spatial variability and temporal persistence of event runoff coefficients for cropland hillslopes. Water Resour. Res. 2019, 55, 1583–1597. [Google Scholar] [CrossRef]
- Chen, W.; He, B.; Nover, D.; Lu, H.; Liu, J.; Sun, W.; Chen, W. Farm ponds in southern China: Challenges and solutions for conserving a neglected wetland ecosystem. Sci. Total Environ. 2019, 659, 1322–1334. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Yin, C.; Tang, H. Nutrient retention by multipond systems: Mechanisms for the control of nonpoint source pollution. J. Environ. Q. 1998, 27, 1009–1017. [Google Scholar] [CrossRef]
- Salin, K.R.; Ataguba, G.A. Aquaculture and the environment: Towards sustainability. In Sustainable Aquaculture; Hai, F.I., Visvanathan, C., Boopathy, R., Eds.; Springer: Cham, Switzerland, 2018; pp. 1–62. [Google Scholar]
- Li, Z.; Liu, J.; Wang, Q.; De Silva, S.S. Inland aquaculture: Trends and prospects. In Aquaculture in China: Success Stories and Modern Trends; Gui, J., Tang, Q., Li, Z., Liu, J., De Silva, S.S., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 2018; pp. 25–37. [Google Scholar]
- Simonit, S.; Perrings, C. Sustainability and the value of the ‘regulating’ services: Wetlands and water quality in Lake Victoria. Ecol. Econ. 2011, 70, 1189–1199. [Google Scholar] [CrossRef]
- Jiangsu Liyang Tianmu Lake Ecological Restoration Project. Available online: http://www.cn-natural.com/EN/pro3301.html (accessed on 18 March 2019).
- White, D.; Fennessy, S. Modeling the suitability of wetland restoration potential at the watershed scale. In Wetland Creation, Restoration and Conservation. The State of Science; Mitsch, W.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 359–378. [Google Scholar]
- Kusler, J.A.; Kentula, M.E. (Eds.) Wetland Creation and Restoration. The Status of Science; Island Press: Washington, DC, USA, 1990. [Google Scholar]
- Royer, T.V.; Tank, J.L.; David, M.B. Transport and fate of nitrate in headwater agricultural streams in Illinois. J. Environ. Q. 2004, 33, 1296–1304. [Google Scholar] [CrossRef] [PubMed]
- Faccini, F.; Paliaga, G.; Piana, P.; Sacchini, A.; Watkins, C. The Bisagno stream catchment (Genoa, Italy) and its major floods: Geomorphic and land use variations in the last three centuries. Geomorphology 2016, 273, 14–27. [Google Scholar] [CrossRef]
- Piana, P.; Faccini, F.; Luino, F.; Paliaga, G.; Sacchini, A.; Watkins, C. Geomorphological landscape research and flood management in a heavily modified Tyrrhenian catchment. Sustainability 2019, 11, 4594. [Google Scholar] [CrossRef]
- Simon, D.; de Jesus, C.; Boonchuwong, P.; Mohottala, K. The role of reservoir and lacustrine fisheries in rural development: Comparative evidence from Sri Lanka, Thailand and the Philippines. In Reservoir and Culture-based Fisheries: Biology and Management; De Silva, S., Ed.; Australian Centre for International Agricultural Research: Canberra, Australia, 2001; pp. 56–63. [Google Scholar]
- Tianmu Lake Basin Ecological Observation Research Station Officially Unveiled. Available online: http://www.niglas.cas.cn/xwdt_1/zhxw/201712/t20171227_4923531.html (accessed on 29 May 2019). (In Chinese).
- Newsome, D.; Moore, S.A.; Dowling, R.K. Natural Area Tourism; Channel View Publications: Clevedon, UK, 2017. [Google Scholar]
- 2018 National Economic and Social Development Statistics Bulletin, Xin’an County. Available online: http://www.qdh.gov.cn/art/2019/4/3/art_1388507_31968483.html?tdsourcetag=s_pcqq_aiomsg (accessed on 9 August 2019). (In Chinese)
- Ho, S.C. Status of limnological research and training in Malaysia. In Limnology in Developing Countries; Gopal, B., Wetzel, R.G., Eds.; International Association for Limnology: New Delhi, India, 1995; Volume 1, pp. 163–189. [Google Scholar]
- Baluyut, E.A. Introduction of fish stocking in lakes and reservoirs in South East Asia: A review. In Fish and Fisheries of Lakes and Reservoirs in Southeast Asia and Africa; van Dense, L.T., Morris, M.J., Eds.; Westbury Publishing: Otley, UK, 1999; pp. 117–141. [Google Scholar]
- De Silva, S. (Ed.) Reservoir and Culture-based Fisheries: Biology and Management; Australian Centre for International Agricultural Research: Canberra, Australia, 2001; pp. 1–390. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pueppke, S.G.; Zhang, W.; Li, H.; Chen, D.; Ou, W. An Integrative Framework to Control Nutrient Loss: Insights from Two Hilly Basins in China’s Yangtze River Delta. Water 2019, 11, 2036. https://doi.org/10.3390/w11102036
Pueppke SG, Zhang W, Li H, Chen D, Ou W. An Integrative Framework to Control Nutrient Loss: Insights from Two Hilly Basins in China’s Yangtze River Delta. Water. 2019; 11(10):2036. https://doi.org/10.3390/w11102036
Chicago/Turabian StylePueppke, Steven G., Wangshou Zhang, Hengpeng Li, Dongqiang Chen, and Weixin Ou. 2019. "An Integrative Framework to Control Nutrient Loss: Insights from Two Hilly Basins in China’s Yangtze River Delta" Water 11, no. 10: 2036. https://doi.org/10.3390/w11102036
APA StylePueppke, S. G., Zhang, W., Li, H., Chen, D., & Ou, W. (2019). An Integrative Framework to Control Nutrient Loss: Insights from Two Hilly Basins in China’s Yangtze River Delta. Water, 11(10), 2036. https://doi.org/10.3390/w11102036