# Efficient and Accurate 3-D Numerical Modelling of Landslide Tsunami

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Numerical Method

^{3}is used here).

## 3. Model Validation and Scale Effect

#### 3.1. Validation: Subaerial and Submarine Landslide

#### 3.2. Model Scale Effect

## 4. Mesh Strategy and Application

#### 4.1. Numerical Cases

#### 4.2. Numerical Result and Mesh-Generation Scheme

## 5. Real-Word Application: Landslide Tsunami in Laxiwa Reservoir

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Renzi, E.; Sammarco, P. The hydrodynamics of landslide tsunamis: Current analytical models and future research directions. Landslides
**2016**, 13, 1369–1377. [Google Scholar] [CrossRef] - Genevois, R.; Ghirotti, M. The 1963 vaiont landslide. G. Geol. Appl.
**2005**, 1, 41–52. [Google Scholar] - Slevik, G.; Jensen, A.; Pedersen, G. Experimental investigation of impact generated tsunami; related to a potential rock slide, Western Norway. Coast. Eng.
**2009**, 56, 897–906. [Google Scholar] [CrossRef] - Huang, B.; Wang, S.C.; Zhao, Y.B. Impulse waves in reservoirs generated by landslides into shallow water. Coast. Eng.
**2017**, 123, 52–61. [Google Scholar] [CrossRef] - Heller, V.; Bruggemann, M.; Spinneken, J.; Rogers, B.D. Composite modelling of subaerial landslide-tsunamis in different water body geometries and novel insight into slide and wave kinematics. Coast. Eng.
**2016**, 109, 20–41. [Google Scholar] [CrossRef] - Watts, P. Wavemaker curves for tsunamis generated by underwater landslides. J. Waterw. Port Coast. Ocean. Eng.
**1998**, 124, 127–137. [Google Scholar] [CrossRef] - Heinrich, P. Nonlinear water waves generated by submarine and aerial landslides. J. Waterw. Port Coast. Ocean. Eng.
**1992**, 118, 249–266. [Google Scholar] [CrossRef] - Xiao, H.; Lin, P. Numerical Modeling and Experimentation of the Dam-Overtopping Process of Landslide-Generated Waves in an Idealized Mountainous Reservoir. J. Hydraul. Eng.
**2016**, 142, 04016059. [Google Scholar] [CrossRef] - Fritz, H.M.; Hager, W.H.; Minor, H.E. Landslide generated impulse waves. Exp. Fluids
**2003**, 35, 505–519. [Google Scholar] [CrossRef] - Fritz, H.; Hager, W.; Minor, H.E. Landslide generated impulse waves. 2. Hydrodynamic impact craters. Exp. Fluids
**2003**, 35, 520–532. [Google Scholar] [CrossRef] - Fritz, H.; Hager, W.; Minor, H.E. Near field characteristics of landslide generated impulse waves. J. Waterw. Port Coast. Ocean. Eng.
**2004**, 130, 287–302. [Google Scholar] [CrossRef] - Liu, P.F.; Wu, T.R.; Raichlen, F.; Synolakis, C.; Borrero, J. Runup and rundown generated by three-dimensional sliding masses. J. Fluid Mech.
**2005**, 536, 107–144. [Google Scholar] [CrossRef] [Green Version] - Wang, B.; Yao, L.; Zhao, H.; Zhang, C. The Maximum Height and Attenuation of Impulse Waves Generated by Subaerial Landslides. Shock Vib.
**2018**. [Google Scholar] [CrossRef] - Yavari-Ramshe, S.; Ataie-Ashtiani, B. Numerical modeling of subaerial and submarine landslide-generated tsunami waves-recent advances and future challenges. Landslides
**2016**, 13, 1325–1368. [Google Scholar] [CrossRef] - Yavari-Ramshe, S.; Ataie-Ashtiani, B. A rigorous finite volume model to simulate subaerial and submarine landslide-generated waves. Landslides
**2017**, 14, 203–221. [Google Scholar] [CrossRef] - Mao, J.; Zhao, L.; Liu, X.; Cheng, J.; Avital, E. A three-phases model for the simulation of landslide-generated waves using the improved conservative level set method. Comput. Fluids
**2017**, 159, 243–253. [Google Scholar] [CrossRef] - Viroulet, S.; Cebron, D.; Kimmoun, O.; Kharif, C. Shallow water waves generated by subaerial solid landslides. Geophys. J. Int.
**2013**, 193, 747–762. [Google Scholar] [CrossRef] [Green Version] - Seo, S.N.; Liu, P.L.F. Edge waves generated by the landslide on a sloping beach. Coast. Eng.
**2013**, 73, 133–150. [Google Scholar] [CrossRef] - Jing, H.X.; Liu, C.G.; Tao, J.H. An extended form of Boussinesq-type equations for nonlinear water waves. J. Hydrodyn.
**2015**, 27, 696–707. [Google Scholar] [CrossRef] - Yin, Y.p.; Huang, B.; Chen, X.; Liu, G.; Wang, S. Numerical analysis on wave generated by the Qianjiangping landslide in Three Gorges Reservoir, China. Landslides
**2015**, 12, 355–364. [Google Scholar] [CrossRef] - Biscarini, C. Computational fluid dynamics modelling of landslide generated water waves. Landslides
**2010**, 7, 117–124. [Google Scholar] [CrossRef] - Rzadkiewicz, S. Numerical simulation of submarine landslides and their hydraulic effects. J. Waterw. Port Coast. Ocean. Eng.
**1997**, 123, 149–157. [Google Scholar] [CrossRef] - Wang, Y.; Liu, P.L.F.; Mei, C.C. Solid landslide generated waves. J. Fluid Mech.
**2011**, 675, 529–539. [Google Scholar] [CrossRef] - Lo, H.Y.; Liu, P.L.F. On the analytical solutions for water waves generated by a prescribed landslide. J. Fluid Mech.
**2017**, 821, 85–116. [Google Scholar] [CrossRef] - Ma, G.; Shi, F.; Kirby, J.T. Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean. Model.
**2012**, 43–44, 22–35. [Google Scholar] [CrossRef] - Gallerano, F.; Cannata, G.; Lasaponara, F.; Petrelli, C. A new three-dimensional finite-volume non-hydrostatic shock-capturing model for free surface flow. J. Hydrodyn.
**2017**, 29, 552–566. [Google Scholar] [CrossRef] - Miao, J.L.; Chen, J.Q.; Zhang, Y.X.; Huang, C.L. Numerical Simulation of Impulsive Wave Generated by Landslide on Reservoir Bank Using Two-dimensional Smoothed Particle Hydrodynamics Method. Bull. Soil Water Conserv.
**2013**, 33, 175–179. [Google Scholar] - Tao, Y.; Jiagang, L.I. Numerical Analysis on Landslides Based on A SPH Depth Integral Model. J. Water Resour. Archit. Eng.
**2015**, 13, 112–116. [Google Scholar] - Yeylaghi, S.; Moa, B.; Buckham, B.; Oshkai, P.; Vasquez, J.; Crawford, C. ISPH modelling of landslide generated waves for rigid and deformable slides in Newtonian and non-Newtonian reservoir fluids. Adv. Water Resour.
**2017**, 107, 212–232. [Google Scholar] [CrossRef] - Wieczorek, G.F.; Geist, E.L.; Motyka, R.J.; Jakob, M. Hazard assessment of the Tidal Inlet landslide and potential subsequent tsunami, Glacier Bay National Park, Alaska. Landslides
**2007**, 4, 205–215. [Google Scholar] [CrossRef] - Manenti, S.; Amicarelli, A.; Todeschini, S. WCSPH with Limiting Viscosity for Modeling Landslide Hazard at the Slopes of Artificial Reservoir. Water
**2018**, 10, 515. [Google Scholar] [CrossRef] - Ataie-Ashtiani, B.; Yavari-Ramshe, S. Numerical simulation of wave generated by landslide incidents in dam reservoirs. Landslides
**2011**, 8, 417–432. [Google Scholar] [CrossRef] - Heller, V.; Hager, W.H.; Minor, H.E. Scale effects in subaerial landslide generated impulse waves. Exp. Fluids
**2008**, 44, 691–703. [Google Scholar] [CrossRef] - Kouh, J.S.; Chen, Y.J.; Chau, S.W. Numerical study on scale effect of form factor. Ocean. Eng.
**2009**, 36, 403–413. [Google Scholar] [CrossRef] - Hill, J.; Collins, G.S.; Avdis, A.; Kramer, S.C.; Piggott, M.D. How does multiscale modelling and inclusion of realistic palaeobathymetry affect numerical simulation of the Storegga Slide tsunami? Ocean. Model.
**2014**, 83, 11–25. [Google Scholar] [CrossRef] [Green Version] - Paik, J.; Shin, C. Multiphase flow modeling of landslide induced impulse wave by VOF method. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 14–18 November 2015. [Google Scholar]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys.
**1981**, 39, 201–225. [Google Scholar] [CrossRef] - Fuster, D.; Bagué, A.; Boeck, T.; Le Moyne, L.; Leboissetier, A.; Popinet, S.; Ray, P.; Scardovelli, R.; Zaleski, S. Simulation of primary atomization with an octree adaptive mesh refinement and VOF method. Int. J. Multiph. Flow
**2009**, 35, 550–565. [Google Scholar] [CrossRef] [Green Version] - Ransley, E.; Greaves, D.; Raby, A.; Simmonds, D.; Jakobsen, M.M.; Kramer, M. RANS-VOF modelling of the wavestar point absorber. Renew. Energy
**2017**, 109, 49–65. [Google Scholar] [CrossRef] - Meireles, I.; Bombardelli, F.; Matos, J. Experimental testing and numerical simulation of the non-aerated skimming flow over steeply sloping stepped spillways. In Proceedings of the 33rd IAHR Congress, Vancouver, BC, Canada, 4–9 August 2009; pp. 1972–1979. [Google Scholar]
- Huayang, H.; Jian, W. Numerical Simulation of the Process for Micro-lens Manufacturing. In Proceedings of the Asia Communications and Photonics Conference, Optical Society of America, Guangzhou, China, 10–13 November 2017; p. Su2A-184. [Google Scholar]
- Tajnesaie, M.; Shakibaeinia, A.; Hosseini, K. Meshfree particle numerical modelling of sub-aerial and submerged landslides. Comput. Fluids
**2018**, 172, 109–121. [Google Scholar] [CrossRef] - Gabl, R.; Seibl, J.; Gems, B.; Aufleger, M. 3-D-numerical approach to simulate an avalanche impact into a reservoir. Nat. Hazards Earth Syst. Sci. Discuss.
**2015**, 3, 4121–4157. [Google Scholar] [CrossRef] - Serrano-Pacheco, A.; Murillo, J.; García-Navarro, P. A finite volume method for the simulation of the waves generated by landslides. J. Hydrol.
**2009**, 373, 273–289. [Google Scholar] [CrossRef] - Mergili, M.; Frank, B.; Fischer, J.T.; Huggel, C.; Pudasaini, S.P. Computational Experiments on the 1962 and 1970 Landslide Events at Huascarán (Peru) with r.Avaflow: Lessons Learned for Predictive Mass Flow Simulations. Geomorphology
**2018**, 322, 14. [Google Scholar] [CrossRef] - Zhang, K.; Wang, S.; Bao, H.; Zhao, X. Characteristics and Influencing Factors of Rainfall-Induced Landslide and Debris Flow Hazards in Shaanxi Province, China. Nat. Hazards Earth Syst. Sci.
**2019**, 19, 93–105. [Google Scholar] [CrossRef] - Das, K.; Green, S.; Basu, D.; Janetzke, R.; Stamatakos, J. Effect of slide deformation and geometry on waves generated by submarine landslides: A numerical investigation. In Proceedings of the Offshore Technology Conference, Offshore Technology Conference, Huston, TX, USA, 4–7 May 2009. [Google Scholar]
- Tan, H.; Chen, S. A hybrid DEM-SPH model for deformable landslide and its generated surge waves. Adv. Water Resour.
**2017**, 108, 256–276. [Google Scholar] [CrossRef] - Tan, H.; Xu, Q.; Chen, S. Subaerial Rigid Landslide-Tsunamis: Insights from a Block DEM-SPH Model. Eng. Anal. Bound. Elem.
**2018**, 95, 297–314. [Google Scholar] [CrossRef] - Whittaker, C.; Nokes, R.; Lo, H.Y.; Liu, P.F.; Davidson, M. Physical and numerical modelling of tsunami generation by a moving obstacle at the bottom boundary. Environ. Fluid Mech.
**2017**, 17, 929–958. [Google Scholar] [CrossRef] - Savage, B.M.; Crookston, B.M.; Paxson, G.S. Physical and numerical modeling of large headwater ratios for a 15 labyrinth spillway. J. Hydraul. Eng.
**2016**, 142, 04016046. [Google Scholar] [CrossRef] - Wang, S.S.; Roache, P.J.; Schmalz, R.A.; Jia, Y.; Smith, P.E. Verification and Validation of 3D Free-Surface Flow Models; American Society of Civil Engineers: Reston, VA, USA, 2009.
- Watts, P. Tsunami features of solid block underwater landslides. J. Waterw. Port Coast. Ocean. Eng.
**2000**, 126, 144–152. [Google Scholar] [CrossRef] - Whittaker, C.; Nokes, R.; Davidson, M. Tsunami forcing by a low Froude number landslide. Environ. Fluid Mech.
**2015**, 15, 1215–1239. [Google Scholar] [CrossRef]

**Figure 2.**Water surface elevation $\eta $ at different time. (

**a**) t = 1.5 s; (

**b**) t = 3 s: experimental data (circle), current solution (black), and Nasa-vof2D results (red) of Heinrich [7].

**Figure 3.**Water surface elevation $\eta $ varying with time at different positions. (

**a**) x = 1.2 m and (

**b**) x = 1.8 m correspond to the relative positions x/h = 5.0 and 7.5 in Heller et al. [5]: experimental data (circle), current solution (black), ISPH results (ISPH(a), blue; ISPH(b), red) of Yeylaghi et al. [29], DEM-SPH results (green) [49], and DualSHPysics results (DualSPHysics(a), orange; DualSPHysics(b), purple) of Heller et al. [5]. DualSPHysics(a) results are obtained using a reduced slide front-impact velocity of 1.32 m/s, and DualSPHysics(b) results are obtained using an unreduced slide front-impact velocity of 2.43 m/s; ISPH(a) results are obtained with particle resolution of 0.01 m, and ISPH(b) results are obtained with particle resolution of 0.005 m. The particle resolution in DualSPHysics is 0.01 m.

**Figure 4.**Comparison between numerical and experimental wave profiles in the near field: (

**a**) t = 0.5 s; (

**b**) t = 1.5 s; and (

**c**) t = 3 s.

**Figure 5.**Wave gauges: Comparison between experimental and computed waves in the propagation field: (

**a**) x = 4 m; (

**b**) x = 8 m; and (

**c**) x = 12 m.

**Figure 6.**Calculation results of uniform mesh of different sizes in the near field: (

**a**) t = 5 s; (

**b**) t = 10 s.

**Figure 7.**Calculation results of uniform mesh of different sizes in the propagation field: (

**a**) t = 15 s; (

**b**) t = 20 s; (

**c**) t = 50 s; and (

**d**) t = 60 s.

**Figure 8.**Computational results of different mesh schemes compared with that of original global uniform mesh calculation: (

**a**) t = 15 s; (

**b**) t = 20 s; (

**c**) t = 50 s; and (

**d**) t = 60 s.

**Figure 9.**Large-scale numerical model of Laxiwa Reservoir, China. (

**a**) Laxiwa terrain. (

**b**) Geometric model.

**Figure 10.**Mesh scheme application for engineering. The size of block 1: 130 m × 170 m × 150 m; the size of block 2: 1000 m × 750 m × 400 m; the size of block 3: 750 m × 1100 m × 300 m; the size of block 4: 800 m × 1500 m × 300 m.

**Figure 11.**Highest initial wave in the near field at t = 10 s: (

**a**) 6-m global uniform mesh; (

**b**) 3-m global uniform mesh; and (

**c**) mesh-scheme solution.

**Figure 12.**Wave height in the propagation field at t = 30 s: (

**a**) 6-m global uniform mesh; (

**b**) 3-m global uniform mesh; and (

**c**) mesh scheme solution.

Parameter | Value |
---|---|

slide length (two right angle sides) | 0.5 m |

slide width | 0.55 m |

slide mass | 140 kg |

still water depth (h${}_{0}$) | 1 m |

water density ($\rho $) | 1000 kg/m${}^{3}$ |

initial slide position | 1 cm below the undisturbed free surface |

slope inclination | ${45}^{\circ}$ |

channel width | 0.55 m |

channel length | 20 m |

wave gauges position | x = 4 m, x = 8 m, x = 12 m |

Parameter | Value |
---|---|

slide length (${l}_{s}$) | 0.599 m |

slide width (w) | 0.577 m |

slide thickness (s) | 0.12 m |

slide density (${\rho}_{s}$) | 1540 kg/m${}^{3}$ |

slide mass (${m}_{s}$) | 60.14 kg |

still water depth (h${}_{0}$) | 0.24 m |

slide front initial position (${x}_{s}$) | −0.55 m |

water density ($\rho $) | 1000 kg/m${}^{3}$ |

channel width | 0.6 m |

channel length | 24 m |

channel height | 1.5 m |

relative wave probe distances ($x/{h}_{0}$) | 3.0, 5.0, 7.5, 10.0, 15.0, 22.5, 35.0 |

Mesh Size (m) | $\mathbf{r}({\mathbf{s}}_{1}/{\mathbf{s}}_{2})$ | $\mathbf{MATKE}\left({\mathbf{m}}^{2}\xb7{\mathbf{kg}}^{-1}/{\mathbf{s}}^{2}\right)$ | $\mathbf{Relative}\phantom{\rule{4pt}{0ex}}\mathbf{Error}\left(\mathit{\epsilon}\right)$ | GCI (%) |
---|---|---|---|---|

3.0 | — | 0.003621 | — | — |

2.5 | 1.2 | 0.003854 | 0.06046 | 17.18 |

2 | 1.25 | 0.003976 | 0.03068 | 6.82 |

1.5 | 1.33 | 0.004024 | 0.01193 | 1.94 |

Case | Mesh Size (m) | Number of Mesh |
---|---|---|

1 | 1.5 | 2,960,000 |

2 | 2 | 1,260,000 |

3 | 2.5 | 633,600 |

4 | 3 | 360,000 |

5 | 3.5 | 233,376 |

6 | 4 | 157,500 |

7 | 4.5 | 107,892 |

8 | 5 | 79,200 |

9 | 5.5 | 60,060 |

10 | 6 | 45,000 |

11 | 6.5 | 33,264 |

12 | 7 | 29,104 |

13 | 7.5 | 22,400 |

14 | 8 | 19,740 |

Mesh Schemes | Mesh Number | Calculation Time (Hour) |
---|---|---|

1.5 m global uniform mesh | 2,960,000 | 5.9 |

Mesh scheme 1 | 960,000 | 1.45 |

Mesh scheme 2 | 490,000 | 0.27 |

Parameter | Value |
---|---|

landslide type | rigid block |

landslide volume | 86,960 m${}^{3}$ |

landslide density | 2650 kg/m${}^{3}$ |

dam height | 250 m |

still water surface height | 230 m |

water density ($\rho $) | 1000 kg/m${}^{3}$ |

calculation region in x,y,z direction | 3045 m $\times 2340$ m $\times 805$ m |

Mesh Schemes | Mesh Number | Calculation Time (Hour) |
---|---|---|

3-m global uniform mesh | 16,297,154 | 22.3 |

6-m global uniform mesh | 2,238,731 | 2.5 |

Mesh scheme | 7,427,669 | 4.8 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Li, G.; Chen, G.; Li, P.; Jing, H.
Efficient and Accurate 3-D Numerical Modelling of Landslide Tsunami. *Water* **2019**, *11*, 2033.
https://doi.org/10.3390/w11102033

**AMA Style**

Li G, Chen G, Li P, Jing H.
Efficient and Accurate 3-D Numerical Modelling of Landslide Tsunami. *Water*. 2019; 11(10):2033.
https://doi.org/10.3390/w11102033

**Chicago/Turabian Style**

Li, Guodong, Guoding Chen, Pengfeng Li, and Haixiao Jing.
2019. "Efficient and Accurate 3-D Numerical Modelling of Landslide Tsunami" *Water* 11, no. 10: 2033.
https://doi.org/10.3390/w11102033