Removal of Selected Pharmaceuticals and Personal Care Products in Wastewater Treatment Plant in Jordan
Abstract
:1. Introduction
2. Materials and Methods
2.1. As-Samra WWTP
2.2. Chemicals
2.3. Sample Collection, Preparation, and Extractions
2.4. Analytical Methods
3. Results
3.1. Operating Conditions of As-Samra WWTP
3.2. Occurrence of PPCPs in WWTP
3.3. Removal Efficiency of PPCPs in WWTP
3.4. Comparison with Existing Studies
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Daughton, C.G. Emerging pollutants, and communicating the science of environmental chemistry and mass spectrometry: Pharmaceuticals in the environment. J. Am. Soc. Mass. Spectrom. 2001, 12, 1067–1076. [Google Scholar] [CrossRef] [Green Version]
- Ternes, T.A. Occurrence of drugs in German sewage treatment plants and rivers. Water Res. 1998, 32, 3245–3260. [Google Scholar] [CrossRef]
- Kümmerer, K. The presence of pharmaceuticals in the environment due to human use: Present knowledge and future challenges. J. Environ. Manag. 2009, 8, 2354–2358. [Google Scholar] [CrossRef] [PubMed]
- Bound, J.P.; Voulvoulis, N. Household Disposal of Pharmaceuticals as a Pathway for Aquatic Contamination in the United Kingdom. Environ. Health Perspect. 2005, 113, 1705–1711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolpin, D.W.; Furlong, E.T.M.; Meyer, T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–1211. [Google Scholar] [CrossRef] [PubMed]
- Bunch, A.; Bernot, M. Distribution of nonprescription pharmaceuticals in central Indiana streams and effects on sediment microbial activity. Ecotoxicology 2011, 20, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Carballa, M.; Omil, F.; Lema, J.M.; Llompart, M.; García-Jares, C.; Rodríguez, I.; Gómez, M.; Ternes, T. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res. 2004, 38, 2918–2926. [Google Scholar] [CrossRef] [PubMed]
- Jones, O.A.; Lester, J.N.; Voulvoulis, N. Pharmaceuticals: A threat to drinking water? Trends Biotechnol. 2005, 23, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Miège, C.; Choubert, J.M.; Ribeiro, L.; Eusèbe, M.; Coquery, M. Fate of pharmaceuticals and personal care products in wastewater treatment plants—Conception of a database and first results. Environ. Pollut. 2009, 157, 1721–1726. [Google Scholar] [CrossRef]
- Monteiro, S.C.; Boxall, A.B.A. Occurrence and fate of human pharmaceuticals in the environment. Rev. Environ. Contam. Toxicol. 2010, 202, 53–154. [Google Scholar]
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Sci. Total Environ. 2012, 429, 123–155. [Google Scholar] [CrossRef] [PubMed]
- Veach, A.M.; Bernot, M.J. Temporal variation of pharmaceuticals in an urban and agriculturally influenced stream. Sci. Total Environ. 2011, 409, 4553–4563. [Google Scholar] [CrossRef] [PubMed]
- Barnes, K.K.; Kolpin, D.W.; Furlong, E.T.; Zaugg, S.D.; Meyer, M.T.; Barber, L.B. A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States—I) Groundwater. Sci. Total Environ. 2008, 402, 192–200. [Google Scholar] [CrossRef] [PubMed]
- El-Ashry, M.; Saab, N.; Zeitoon, B. Water: Sustainable Management of a Scarce Resource; Annual Report of Arab Forum for Environment and Development; AFED: Beirut, Lebanon, 2010; pp. 125–136. [Google Scholar]
- Ministry of Water and Irrigation (MWI). The Annual Report of Ministry of Water and Irrigation; MWI: Amman, Jordan, 2018.
- Bartelt-Hunt, S.L.; Snow, D.D.; Damon, T.; Shockley, J.; Hoagland, K. The occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and surface waters in Nebraska. Environ. Pollut. 2009, 157, 786–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snow, D.D.; Damon-Powell, T.R.; Onanong, S.; Cassada, D.A. Sensitive and simplified analysis of natural and synthetic steroids in water and solids using on-line solid phase extraction and microwave-assisted solvent extraction coupled to liquid chromatography tandem mass spectrometry atmospheric pressure photoionization. Anal. Bioanal. Chem. 2013, 405, 1759–1771. [Google Scholar]
- Lee, S.; Paspalof, A.; Snow, D.; Richmond, E.; Rosi-Marshall, E.; Kelly, J. Occurrence and potential biological effects of amphetamine on stream communities. Environ. Sci. Technol. 2016, 50, 9727–9735. [Google Scholar] [CrossRef] [PubMed]
- D’Alessio, M.; Onanong, S.; Snow, D.; Ray, C. Occurrence and removal of three classes of pharmaceutical compounds at four wastewater treatment plants in Hawaii and their environmental fate. Sci. Total Environ. 2018, 631, 1360–1370. [Google Scholar] [CrossRef] [PubMed]
- The PubChem Project. 2018. Available online: https://pubchem.ncbi.nlm.nih.gov (accessed on 11 April 2018).
- Dı’az-Cruz, M.S.; de Alda, M.J.L.; Barcelo’, D. Determination of antimicrobials in sludge from infiltration basins at two artificial recharge plants by pressurized liquid extraction–liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2006, 1130, 72–82. [Google Scholar] [CrossRef]
- Buerge, I.J.; Poiger, T.; Muller, M.D.; Buser, H.R. Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environ. Sci. Technol. 2003, 37, 691–700. [Google Scholar] [CrossRef]
- Díaz-Garduño, B.; Pintado-Herrera, M.G.; Biel-Maeso, M.; Rueda-Marquez, J.J.; Lara-Martín, P.A.; Perales, J.A.; Manzano, M.A.; Garrido-Perez, C.; Martín-Díaz, M.L. Environmental risk assessment of effluents as a whole emerging contaminant: Efficiency of alternative tertiary treatments for wastewater depuration. Water Res. 2017, 119, 136–149. [Google Scholar] [CrossRef]
- Rodríguez-Gil, J.L.; Cáceres, N.; Dafouz, R.; Valcarcel, Y. Caffeine and paraxanthine contamination in aquatic systems: Global exposure distributions and probabilistic risk assessment. Sci. Total Environ. 2018, 612, 1058–1071. [Google Scholar] [CrossRef] [PubMed]
- Benista, M.J.; Nowak, J.Z. Paracetamol Mechanism of Action Applications and Safety Concern. Acta Pol. Pharm. 2014, 71, 11–23. [Google Scholar]
- Greenham, R.T.; Miller, K.Y.; Tong, A. Removal efficiencies of top-used pharmaceuticals at sewage treatment plants with various technologies. J. Environ. Chem. Eng. 2019, 7, 103294. [Google Scholar] [CrossRef]
- Comber, S.; Gardner, M.; Sörme, P.; Ellor, B. The removal of pharmaceuticals during wastewater treatment: Can it be predicted accurately? Sci. Total Environ. 2019, 676, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Rosal, R.; Rodríguez, A.; Perdigón-Melón, J.A.; Petre, A.; García-Calvo, E.; Gómez, M.J.; Agüera, A.; Fernández-Alba, A.R. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res. 2010, 44, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, K.; Lee, M.; Lee, B. Detection status and removal characteristics of pharmaceuticals in wastewater treatment effluent. J. Water Process. Eng. 2019, 31, 100828. [Google Scholar] [CrossRef]
- Mehrjouei, M.; Müller, S.; Moller, D. Energy consumption of three different € advanced oxidation methods for water treatment: A cost-effectiveness study. J. Clean. Prod. 2014, 65, 178–183. [Google Scholar] [CrossRef]
- Matamoros, V.; Bayona, J.M. Elimination of pharmaceuticals and personal care products in subsurface flow constructed wetlands. Environ. Sci. Technol. 2006, 40, 5811–5816. [Google Scholar] [CrossRef]
- Huber, C.; Bartha, B.; Harpaintner, R.; Schroder, P. Metabolism of acetaminophen (paracetamol) in plants—Two independent pathways result in the formation of a glutathione and a glucose conjugate. Environ. Sci. Pollut. Res. 2009, 16, 206–213. [Google Scholar] [CrossRef]
- Hijosa-Valsero, M.; Matamoros, V.; Martin-Villacorta, J.; Becares, E.; Bayona, J.M. Assessment of full scale natural systems for the removal of PPCPs from wastewater in small communities. Water Res. 2010, 44, 1429–1439. [Google Scholar] [CrossRef]
- Batt, A.L.; Kim, S.; Aga, D.S. Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations. Chemosphere 2007, 68, 428–435. [Google Scholar] [CrossRef] [PubMed]
- D’Alessio, M.; Yoneyama, B.; Kirs, M.; Kisand, V.; Ray, C. Pharmaceutically active compounds: Their removal during slow sand filtration and their impact on slow sand filtration bacterial removal. Sci. Total Environ. 2015, 524, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Radjenovic, J.; Petrovic, M.; Barceló, D. Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Anal. Bioanal. Chem. 2007, 387, 1365–1377. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Huang, J.; Chen, W.; Wang, B.; Wang, Y.; Deng, S.; Yu, G. Fate and removal of typical pharmaceutical and personal care products in a wastewater treatment plant from Beijing: A mass balance study. Front. Environ. Sci. Eng. 2016, 10, 491–501. [Google Scholar] [CrossRef]
- Kagle, J.; Porter, A.W.; Murdoch, R.W.; Rivera-Cancel, G.; Hay, A.G. Chapter 3 Biodegradation of Pharmaceutical and Personal Care Products. Adv. Appl. Microbiol. 2009, 67, 65–108. [Google Scholar] [CrossRef] [PubMed]
- Al-Mashaqbeh, O.A.; Ghrair, A.M.; Alsafadi, D.; Dalahmeh, S.S.; Bartelt-Hunt, S.L.; Snow, D.D. Analysis of Some Pharmaceuticals in surface water in Jordan. In Proceedings of the WSTA 13th Gulf Water Conference, Kuwait City, Kuwait, 12–14 March 2019. [Google Scholar]
- Balakrishna, K.; Rath, A.; Praveenkumarreddy, Y.; Guruge, K.S.; Subedi, B. A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotox. Environ. Saf. 2017, 137, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Papageorgiou, M.; Kosma, C.; Lambropoulou, D. Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece. Sci. Total Environ. 2016, 543, 547–569. [Google Scholar] [CrossRef]
- Lubliner, B.; Redding, M.; Ragsdale, D. Pharmaceuticals and Personal Care Products in Municipal Wastewater and Their Removal by Nutrient Treatment Technologies; Washington State Department of Ecology: Olympia, WA, USA, 2010.
- Nguyen, H.; Thai, P.; Kaserzon, S.; O’Brien, J.; Eaglesham, G.; Mueller, J. Assessment of drugs and personal care products biomarkers in the influent and effluent of two wastewater treatment plants in Ho Chi Minh City, Vietnam. Sci. Total Environ. 2018, 631, 469–475. [Google Scholar] [CrossRef]
- Onesios, K.M.; Yu, J.T.; Bouwer, E.J. Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: A review. Biodegradation 2009, 20, 441–466. [Google Scholar] [CrossRef]
- Ying, G.G.; Kookana, R.S.; Kolpin, D.W. Occurrence and removal of pharmaceutically active compounds in sewage treatment plants with different technologies. J. Environ. Monit. 2009, 11, 498–505. [Google Scholar] [CrossRef]
Compound | Chemical Structure | Family and Use | pKa | Log Kow | Water Solubility mg/L | Molecular Weight g/mol |
---|---|---|---|---|---|---|
1,7-dimethylxanthine a | | Stimulant | 9.9 | −0.78 | 1000 | 180.2 |
Acetaminophen a | | Analgesic | 9.38 | 0.46 | 14,000 | 151.2 |
Amphetamine a | | Stimulant | 10.1 | 1.76 | 28,000 | 135.2 |
Caffeine a | | Stimulant | 10.4 | −0.07 | 21,600 | 194.2 |
Carbamazepine a | | Anticonvulsant | 13.9 | 2.45 | 17.7 | 236.3 |
Cimetidine a | | Antiacid | 6.8 | 0.40 | 9380 | 252.3 |
Cotinine a | | Stimulant | 4.79 | 0.07 | 1,000,000 | 176.2 |
Diphenhydramine a | | Antihistamine | 8.98 | 3.27 | 3060 | 255.4 |
Methylenedioxy amphetamine (MDA) a | | Abuse drug | 9.67 | 1.64 | 22,500 | 179.2 |
Methylenedioxymethamphetamine (MDMA) a | | Abuse drug | 9.9 | 2.15 | 7034 | 193.3 |
Methamphetamine a | | Stimulant | 9.87 | 2.07 | 13,290 | 149.2 |
Morphine a | | Narcotic analgesic | 8.21 | 0.89 | 149 | 285.3 |
Phenazone a | | Analgesic | 1.4 | 0.38 | 51,900 | 188.2 |
Sulfachloropyradazine b | | Antibacterial | 5.7 | 0.31 | 8235 | 284.7 |
Sulfamethazine b | | Antibacterial | 7.45 | 0.8 | 1500 | 278.3 |
Sulfamethoxazole b | | Antibiotic | 6.1 | 0.48 | 3942 | 253.3 |
Thiabendazole b | | Fungicide and parasiticide | 4.64 | 2.47 | 50 | 201.2 |
Trimethoprim a | | Antibiotic | 7.12 | 0.91 | 400 | 290.3 |
Sampling Date | Flow Rate (m3/day) | Sampling Point | pH | Chemical Oxygen Demand (COD), (mg/L) | Biological Oxygen Demand (BOD5), (mg/L) | Total Suspended Solids (TSS), (mg/L) | Total Nitrogen (T-N), (mg/L) | Total Phosphorus (T-P), (mg/L) |
---|---|---|---|---|---|---|---|---|
17 June 2017 | 322,246 | Influent | 7.29 | 1247 | 620 | 480 | 96 | 11.4 |
Effluent | 7.02 | 51.7 | 8 | 18.0 | 12.2 | 2.2 | ||
6 July 2017 | 336,045 | Influent | 7.11 | 1183 | 540 | 501 | 98 | 11.3 |
Effluent | 7.10 | 44.5 | 5 | 10.0 | 14.4 | 6.5 |
PPCPs | Influent Concentration (µg/L) | Average Concentration (µg/L) | Effluent Concentration (µg/L) | Average Concentration (µg/L) | Efficiency Removal | ||
---|---|---|---|---|---|---|---|
17 June 2017 | 6 July 2017 | 17 June 2017 | 6 July 2017 | ||||
1,7-Dimethylxanthine | 7.47 | 13.5 | 10.49 | 0.018 | 0.009 | 0.014 | 99.9 |
Acetaminophen | 28.7 | 44.7 | 36.7 | 0.038 | 0.044 | 0.041 | 99.9 |
Amphetamine | 0.005 | 0.252 | 0.129 | 0.014 | 0.037 | 0.026 | 80.2 |
Caffeine | 182.5 | 128.8 | 155.6 | 0.092 | 0.08 | 0.086 | 99.9 |
Carbamazepine | 1.54 | 0.67 | 1.104 | 0.831 | 0.881 | 0.856 | 22.5 |
Cimetidine | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | |
Cotinine | 4.67 | 5.29 | 4.98 | 0.030 | 0.125 | 0.078 | 98.4 |
Diphenhydramine | <0.005 | <0.005 | <0.005 | 0.061 | 0.026 | 0.044 | −770.0 |
MDA | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | 0.0 |
MDMA | 0.018 | <0.005 | 0.012 | <0.005 | <0.005 | <0.005 | 56.5 |
Methamphetamine | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | |
Morphine | 0.042 | 0.049 | 0.046 | <0.005 | <0.005 | <0.005 | 89.0 |
Phenazone | 0.042 | 0.032 | 0.037 | 0.017 | <0.005 | 0.011 | 70.3 |
Sulfachloropyridazine | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | |
Sulfamethazine | 0.021 | 0.116 | 0.069 | 0.052 | 0.034 | 0.043 | 37.2 |
Sulfamethoxazole | 0.349 | <0.005 | 0.177 | 0.161 | 0.031 | 0.096 | 45.8 |
Thiabendazole | 0.012 | 0.017 | 0.015 | 0.013 | 0.021 | 0.017 | −17.2 |
Trimethoprim | 0.128 | 0.213 | 0.171 | <0.005 | <0.005 | <0.005 | 97.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Mashaqbeh, O.; Alsafadi, D.; Dalahmeh, S.; Bartelt-Hunt, S.; Snow, D. Removal of Selected Pharmaceuticals and Personal Care Products in Wastewater Treatment Plant in Jordan. Water 2019, 11, 2004. https://doi.org/10.3390/w11102004
Al-Mashaqbeh O, Alsafadi D, Dalahmeh S, Bartelt-Hunt S, Snow D. Removal of Selected Pharmaceuticals and Personal Care Products in Wastewater Treatment Plant in Jordan. Water. 2019; 11(10):2004. https://doi.org/10.3390/w11102004
Chicago/Turabian StyleAl-Mashaqbeh, Othman, Diya Alsafadi, Sahar Dalahmeh, Shannon Bartelt-Hunt, and Daniel Snow. 2019. "Removal of Selected Pharmaceuticals and Personal Care Products in Wastewater Treatment Plant in Jordan" Water 11, no. 10: 2004. https://doi.org/10.3390/w11102004
APA StyleAl-Mashaqbeh, O., Alsafadi, D., Dalahmeh, S., Bartelt-Hunt, S., & Snow, D. (2019). Removal of Selected Pharmaceuticals and Personal Care Products in Wastewater Treatment Plant in Jordan. Water, 11(10), 2004. https://doi.org/10.3390/w11102004