# Trunk Network Rehabilitation for Resilience Improvement and Energy Recovery in Water Distribution Networks

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Trunk Network

#### 2.2. Resilience Index

#### 2.3. Trunk Network Design and Energy Recovery

#### 2.4. Optimization and TN Design Procedure

## 3. Results

#### 3.1. Fossolo Network

#### 3.2. Balerma Irrigation Network

## 4. Conclusions

## Author Contributions

## Acknowledgments

## Conflicts of Interest

## References

- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A New Heuristic Optimization Algorithm: Harmony Search. Simulation
**2001**, 76, 60–68. [Google Scholar] [CrossRef] - Maier, H.R.; Simpson, A.R.; Zecchin, A.C.; Foong, W.K.; Phang, K.Y.; Seah, H.Y.; Tan, C.L. Ant colony optimization for design of water distribution systems. J. Water Res. Plan. Manag.
**2003**, 139, 200–209. [Google Scholar] [CrossRef] - Suribabu, C.R.; Neelakantan, T.R. Design of water distribution networks using particle swarm optimization. Urban Water J.
**2006**, 3, 111–120. [Google Scholar] [CrossRef] - Baños, R.; Reca, J.; Martínez, J.; Gil, C.; Márquez, A.L. Resilience indexes for water distribution network design: A performance analysis under demand uncertainty. Water Res. Manag.
**2011**, 25, 2351–2366. [Google Scholar] [CrossRef] - Shokoohi, M.; Tabesh, M.; Nazif, S.; Dini, M. Water quality based multi-objective optimal design of water distribution systems. Water Res. Manag.
**2017**, 31, 93–108. [Google Scholar] [CrossRef] - Marques, J.; Cunha, M.; Savić, D. Using real options in the optimal design of water distribution networks. J. Water Res. Plan. Manag.
**2014**, 141, 1–10. [Google Scholar] [CrossRef] - Schwartz, R.; Housh, M.; Ostfeld, A. Least-Cost Robust Design Optimization of Water Distribution Systems under Multiple Loading. J. Water Res. Plan. Manag.
**2016**, 142. [Google Scholar] [CrossRef] - Giustolisi, O.; Laucelli, D.; Colombo, A.F. Deterministic versus stochastic design of water distribution networks. J. Water Res. Plan. Manag.
**2009**, 135, 117–127. [Google Scholar] [CrossRef] - Lansey, K.E.; Duan, N.; Mays, L.W.; Tung, Y.K. Water distribution system design under uncertainties. J. Water Res. Plan. Manag.
**1989**, 115, 630–645. [Google Scholar] [CrossRef] - Zheng, F.; Simpson, A.; Zecchin, A. Improving the efficiency of multi-objective evolutionary algorithms through decomposition: An application to water distribution network design. Environ. Model. Softw.
**2015**, 69, 240–252. [Google Scholar] [CrossRef] - Geem, Z.W. Multiobjective optimization of water distribution networks using fuzzy theory and harmony search. Water
**2015**, 7, 3613–3625. [Google Scholar] [CrossRef] - Prasad, T.D.; Park, N.S. Multiobjective genetic algorithms for design of water distribution networks. J. Water Res. Plan. Manag.
**2004**, 130, 73–82. [Google Scholar] [CrossRef] - Ramos, H.M.; Borga, A.; Simão, M. New design solutions for low-power energy production in water pipe systems. Water Sci. Eng.
**2009**, 2, 69–84. [Google Scholar] - Carravetta, A.; Houreh, S.D.; Ramos, H.M. Pumps as Turbines: Fundamentals and Applications, 1st ed.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Pérez-Sánchez, M.; Sánchez-Romero, F.J.; Ramos, H.M.; López-Jiménez, P.A. Energy recovery in existing water networks: Towards greater sustainability. Water
**2017**, 9, 97. [Google Scholar] [CrossRef] - De Marchis, M.; Freni, G. Pump as turbine implementation in a dynamic numerical model: cost analysis for energy recovery in water distribution network. J. Hydroinform.
**2015**, 17, 347–360. [Google Scholar] [CrossRef] - Carravetta, A.; del Giudice, G.; Fecarotta, O.; Ramos, H.M. PAT design strategy for energy recovery in water distribution networks by electrical regulation. Energies
**2013**, 6, 411–424. [Google Scholar] [CrossRef] - Meirelles, G., Jr.; Luvizotto, E.; Brentan, B.M.; Ramos, H.M. Leakage Control and Energy Recovery Using Variable Speed Pumps as Turbines. J. Water Res. Plan. Manag.
**2017**, 144. [Google Scholar] [CrossRef] - Carravetta, A.; Del Giudice, G.; Fecarotta, O.; Ramos, H.M. Energy production in water distribution networks: A PAT design strategy. Water Res. Manag.
**2012**, 26, 3947–3959. [Google Scholar] [CrossRef] - Lydon, T.; Coughlan, P.; McNabola, A. Pump-as-turbine: Characterization as an energy recovery device for the water distribution network. J. Hydraul. Eng.
**2017**, 143. [Google Scholar] [CrossRef] - Afshar, A.; Jemaa, F.B.; Marino, M.A. Optimization of hydropower plant integration in water supply system. J. Water Res. Plan. Manag.
**1990**, 116, 665–675. [Google Scholar] [CrossRef] - Meirelles, G.; Brentan, B.M., Jr.; Luvizotto, E. Optimal design of water supply networks using an energy recovery approach. Renew. Energy
**2018**, 117, 404–413. [Google Scholar] [CrossRef] - Campbell, E.; Izquierdo, J.; Montalvo, I.; Ilaya-Ayza, A.; Pérez-García, R.; Tavera, M. A flexible methodology to sectorize water supply networks based on social network theory concepts and multi-objective optimization. J. Hydroinform.
**2016**, 18, 62–76. [Google Scholar] [CrossRef] - Di Nardo, A.; Di Natale, M.; Giudicianni, C.; Greco, R.; Santonastaso, G.F. Complex network and fractal theory for the assessment of water distribution network resilience to pipe failures. Water Sci. Technol. Water Supply
**2018**, 18, 767–777. [Google Scholar] [CrossRef] - Bragalli, C.; D'Ambrosio, C.; Lee, J.; Lodi, A.; Toth, P. On the optimal design of water distribution networks: A practical MINLP approach. Optim. Eng.
**2012**, 13, 219–246. [Google Scholar] [CrossRef] - Reca, J.; Martínez, J. Genetic algorithms for the design of looped irrigation water distribution networks. Water Resour. Res.
**2006**, 42, 1–9. [Google Scholar] [CrossRef] - Di Nardo, A.; Di Natale, M.; Santonastaso, G.F.; Tzatchkov, V.G.; Alcocer-Yamanaka, V.H. Water network sectorization based on graph theory and energy performance indices. J. Water Resour. Plan. Manag.
**2013**, 140, 620–629. [Google Scholar] [CrossRef] - Hajebi, S.; Temate, S.; Barrett, S.; Clarke, A.; Clarke, S. Water distribution network sectorisation using structural graph partitioning and multi-objective optimization. Proc. Eng.
**2014**, 89, 1144–1151. [Google Scholar] [CrossRef] - Moore, E.F. The Shortest Path through a Maze; Part II: The Annals of the Computation Laboratory of Harvard University Volume XXX; Harvard University Press: Cambridge, MA, USA, 1959; pp. 285–292. [Google Scholar]
- Todini, E. Looped water distribution networks design using a resilience index based heuristic approach. Urban Water
**2000**, 2, 115–122. [Google Scholar] [CrossRef] - Eberhart, R.; Kennedy, J. A New Optimizer Using Particle Swarm Theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995 (MHS ’95), Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar]
- Brentan, B.M.; Campbell, E.; Meirelles, G.L.; Luvizotto, E.; Izquierdo, J. Social Network Community Detection for DMA Creation: Criteria Analysis through Multilevel Optimization. Math. Probl. Eng.
**2017**, 2017. [Google Scholar] [CrossRef] - Meirelles, G., Jr.; Luvizotto, E.; Brentan, B.M. Selection and location of Pumps as Turbines substituting pressure reducing valves. Renew. Energy
**2017**, 109, 392–405. [Google Scholar] - Letting, L.K.; Hamam, Y.; Abu-Mahfouz, A.M. Estimation of Water Demand in Water Distribution Systems Using Particle Swarm Optimization. Water
**2017**, 9, 593. [Google Scholar] [CrossRef] - Rossman, A.L. EPANET 2.0 User’s Manual; EPA/600/R-00/057; U.S. Environmental Protection Agency: Cincinnati, OH, USA, 2000.
- ABNT–Brazilian Association of Technical Standards. Project of Water Distribution Network for Public Supply; NBR 12218; ABNT–Brazilian Association of Technical Standards: Rio de Janeiro, Brazil, 1994. (In Portuguese) [Google Scholar]

**Figure 4.**Dimensionless curves of PATs [18].

**Figure 8.**Results of TN rehabilitation for the Fossolo network: (

**a**) Energy benefit; (

**b**) Energy produced; (

**c**) Minimum resilience; and, (

**d**) Average increase in pipe diameters.

**Figure 11.**Pressure zones for the initial scenario and for TNs with 20% and 60% of the pipes: (

**a**) Without leakage; and, (

**b**) Pipe burst on node 22.

**Figure 13.**Scenarios for the TN size: (

**a**) 20%; (

**b**) 60%; and, (

**c**) 90%; the red lines represent the TN and the blue squares the water sources.

**Figure 14.**Results of TN rehabilitation for the Balerma irrigation network: (

**a**) Energy benefit; (

**b**) Energy produced; (

**c**) Minimum resilience; and, (

**d**) Average increase in pipes diameters.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Meirelles, G.; Brentan, B.; Izquierdo, J.; Ramos, H.; Luvizotto, E., Jr.
Trunk Network Rehabilitation for Resilience Improvement and Energy Recovery in Water Distribution Networks. *Water* **2018**, *10*, 693.
https://doi.org/10.3390/w10060693

**AMA Style**

Meirelles G, Brentan B, Izquierdo J, Ramos H, Luvizotto E Jr.
Trunk Network Rehabilitation for Resilience Improvement and Energy Recovery in Water Distribution Networks. *Water*. 2018; 10(6):693.
https://doi.org/10.3390/w10060693

**Chicago/Turabian Style**

Meirelles, Gustavo, Bruno Brentan, Joaquín Izquierdo, Helena Ramos, and Edevar Luvizotto, Jr.
2018. "Trunk Network Rehabilitation for Resilience Improvement and Energy Recovery in Water Distribution Networks" *Water* 10, no. 6: 693.
https://doi.org/10.3390/w10060693