The Application of a Multi-Beam Echo-Sounder in the Analysis of the Sedimentation Situation of a Large Reservoir after an Earthquake
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Bathymetric Theory
2.3. Equipment
2.4. Field Survey
2.5. Data Processing
2.6. Storage Capacity Calculation Methods
3. Results
3.1. Comparison of the Calculation Method
3.2. Accuracy and Reliability of Terrain Data Obtained by the MBES
3.3. Characteristic Deposited Feature on the River Bed
3.3.1. Longitudinal Bed Profiles along the Thalweg
3.3.2. Sectional Shape and Wetted Cross-Section Surface Loss
3.3.3. Sedimentation Situation
3.4. Storage Capacity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Mulu, A.; Dwarakish, G.S. Different approach for using trap efficiency for estimation of reservoir sedimentation. An overview. Aquat. Procedia 2015, 4, 847–852. [Google Scholar] [CrossRef]
- Alemu, M.M. Integrated watershed management and sedimentation. J. Environ. Prot. 2016, 7, 490–494. [Google Scholar] [CrossRef]
- Schwindt, S.; Franca, M.J.; Schleiss, A.J. Effects of lateral and vertical constrictions on flow in rough steep channels with bedload. J. Hydraul. Eng. 2017, 143. [Google Scholar] [CrossRef]
- Pandey, A.; Chaube, U.C.; Mishra, S.K.; Kumar, D. Assessment of reservoir sedimentation using remote sensing and recommendations for desilting patratu reservoir, India. Int. Assoc. Sci. Hydrol. Bull. 2014, 61, 711–718. [Google Scholar] [CrossRef]
- Morris, G.L.; Fan, J. Reservoir Sedimentation Handbook: Design and Management of Dams, Reservoirs, and Watersheds for Sustainable Use; McGraw-Hill: New York, NY, USA, 1998; ISBN 007043302X. [Google Scholar]
- O’Connor, J.E.; Grant, G.E. A Geological Framework for Interpreting Downstream Effects of Dams on Rivers, A Peculiar River. Am. Geophys. Union 2013, 203–219. [Google Scholar] [CrossRef]
- Rashid, M.U.; Shakir, A.S.; Khan, N.M.; Latif, A.; Qureshi, M.M. Optimization of multiple reservoirs operation with consideration to sediment evacuation. Water Resour. Manag. 2015, 29, 2429–2450. [Google Scholar] [CrossRef]
- Schleiss, A.J.; Cesare, G.D. Physical model experiments on reservoir sedimentation. J. Hydraul. Res. 2010, 48, 54–57. [Google Scholar]
- Wisser, D.; Frolking, S.; Hagen, S.; Bierkens, M.F.P. Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs. Water Resour. Res. 2013, 49, 5732–5739. [Google Scholar] [CrossRef]
- Schleiss, A.J.; Franca, M.J.; Juez, C. Reservoir sedimentation. J. Hydraul. Res. 2016, 54, 595–614. [Google Scholar] [CrossRef]
- Morris, G.L. Sediment management and sustainable use of reservoirs. Mod. Water Resour. Eng. 2014, 279–337. [Google Scholar] [CrossRef]
- Beusen, A.H.W.; Bouwman, A.F.; Van Beek, L.P.H.; Mogollón, J.M.; Middelburg, J.J. Global riverine N and P transport to ocean increased during the twentieth century despite increased retention along the aquatic continuum. Biogeosciences 2015, 13, 2441–2451. [Google Scholar] [CrossRef]
- Schmitter, P.; Fröhlich, H.L.; Dercon, G.; Hilger, T.; Thanh, N.H.; Lam, N.T. Redistribution of carbon and nitrogen through irrigation in intensively cultivated tropical mountainous watersheds. Biogeochemistry 2012, 109, 133–150. [Google Scholar] [CrossRef]
- Faghihirad, S.; Lin, B.; Falconer, R.A. Application of a 3D layer integrated numerical model of flow and sediment transport processes to a reservoir. Water 2015, 7, 5239–5257. [Google Scholar] [CrossRef]
- An, R.D.; Li, J. Characteristic analysis of the plunging of turbidity currents. J. Hydrodyn. Ser. B 2010, 22, 274–282. [Google Scholar] [CrossRef]
- Elci, S.; Bor, A.; Caliskan, A. Using numerical models and acoustic methods to predict reservoir sedimentation. Lake Reserv. Manag. 2009, 25, 297–306. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Melesse, B.; Tsunekawa, A.; Tsubo, M.; Meshesha, D.; Balana, B.B. Reservoir sedimentation and its mitigating strategies: A case study of Angereb reservoir (NW Ethiopia). J. Soils Sediments 2012, 12, 291–305. [Google Scholar] [CrossRef]
- Kubinský, D.; Lehotský, M.; Weis, K. Changes in bathymetry and land cover of riparian zone of an old artificial water reservoir vel’ký kolpašký. Carpath. J. Earth Environ. Sci. 2014, 9, 171–178. [Google Scholar]
- Wang, L.; Yu, J. Modelling detention basins measured from high-resolution light detection and ranging data. Hydrol. Process. 2012, 26, 2973–2984. [Google Scholar] [CrossRef]
- Lima, J.R.D.C.; Shinozakimendes, R.A.; Almeida, A.Q.D. Bathymetry estimation of the Saco reservoir-PE with the help of orbital data. Eng. Agríc. 2013, 33, 1017–1023. [Google Scholar] [CrossRef]
- Rollet, N.; Mcgiveron, S.; Hashimoto, T.; Hackney, R.; Petkovic, P.; Higgins, K. Seafloor features and fluid migration in the Capel and Faust basins, offshore eastern Australia. Mar. Pet. Geol. 2012, 35, 269–291. [Google Scholar] [CrossRef]
- Song, G.S.; Lo, S.C.; Fish, J.P. Underwater slope measurement using a tilted multibeam sonar head. IEEE J. Ocean. Eng. 2014, 39, 419–429. [Google Scholar] [CrossRef]
- Cox, M.J.; Warren, J.D.; Demer, D.A.; Cutter, G.R.; Brierley, A.S. Three-dimensional observations of swarms of Antarctic krill (euphausia superba) made using a multi-beam echosounder. Deep-Sea Res. 2010, 57, 508–518. [Google Scholar] [CrossRef]
- Xu, Q.; Fan, X.M.; Huang, R.Q.; Westen, C.V. Landslide dams triggered by the Wenchuan earthquake, Sichuan province, South West China. Bull. Eng. Geol. Environ. 2009, 68, 373–386. [Google Scholar] [CrossRef]
- Yin, Y.P.; Wang, F.; Ping, S. Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides 2009, 6, 139–152. [Google Scholar] [CrossRef]
- Wei, F.; Chernomorets, S.; Aristov, K.; Petrakov, D.; Tutubalina, O.; Su, P. A seismically triggered landslide in the Niujuan valley near the epicenter of the 2008 Wenchuan earthquake. J. Earth Sci. 2010, 21, 901–909. [Google Scholar] [CrossRef]
- Yanalak, M. Effect of gridding method on digital terrain model profile data based on scattered data. J. Comput. Civ. Eng. 2003, 17, 58–67. [Google Scholar] [CrossRef]
- Aykut, N.O.; Akpınar, B.; Aydın, Ö. Hydrographic data modeling methods for determining precise seafloor topography. Comput. Geosci. 2013, 17, 661–669. [Google Scholar] [CrossRef]
- Hutchinson, M.F. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. J. Hydrol. 1989, 106, 211–232. [Google Scholar] [CrossRef]
- Khan, A.; Richards, K.S.; Parker, G.T.; Mcrobie, A.; Mukhopadhyay, B. How large is the upper Indus basin? the pitfalls of auto-delineation using dams. J. Hydrol. 2014, 509, 442–453. [Google Scholar] [CrossRef]
- Standards for Hydrographic Surveys (S-44); International Hydrographic Bureau: Monte Carlo, Monaco, February 2008.
Coordinate | Type of Dam | Height (m) | Length (m) | Installed Capacity (MW) |
31°02′07″ N 103°34′26″ E | Embankment Concrete-face Rock-fill | 156 | 663 | 760 |
Basin Area (km2) | Designated Dead Storage (m3) | Designated Flood Regulation Storage (m3) | Designated Utilizable Storage (m3) | Designated Total Storage (m3) |
2.27 × 104 | 2.24 × 108 | 5.39 × 108 | 7.74 × 108 | 1.11 × 109 |
No. | Device | Range | Accuracy | Description |
---|---|---|---|---|
1 | Sonic 2022 | 0.5 m–500 m (depth) | 1.25 cm | Echosounder |
2 | IMU-108 | ±30° (angle) | 0.03° RMS (angle) | Attitude sensor |
±10 m (heave) | 5 cm or 5% (heave) | |||
3 | VS111 toolkit | - | <0.02 m (position) | GPS compass |
<0.10° RMS (heading) | ||||
4 | Minos-X | 0.5 m–6000 m (depth) | ±0.05% (depth) | Sound velocity Profiler |
1375 m/s–1625 m/s (sound velocity) | ±0.025 m/s (sound velocity) | |||
5 | Trimble R8 | - | <0.01 m (horizontal position) | RTK-GPS |
<0.02 m (vertical position) |
No. | Elevation (m) | Storage Calculated by Cross-Section Method V1 (m3) | Storage Calculated by Triangular Prism Method V2 (m3) | Relative Error(%) |
---|---|---|---|---|
1 | 820 | 2,015,360 | 1,968,752 | 2.37 |
2 | 825 | 2,905,420 | 2,774,756 | 4.71 |
3 | 830 | 3,840,031 | 3,633,206 | 5.69 |
4 | 835 | 4,816,596 | 4,535,003 | 6.21 |
5 | 840 | 5,846,240 | 5,4746,08 | 6.79 |
6 | 845 | 6,932,660 | 6,449,968 | 7.48 |
7 | 850 | 8,061,938 | 7,461,832 | 8.04 |
NO. | Distance from the Dam (km) | No. | Distance from the Dam (km) | No. | Distance from the Dam (km) |
---|---|---|---|---|---|
M1 | 0.23 | M12 | 6.62 | M23 | 12.73 |
M2 | 0.63 | M13 | 6.95 | M24 | 13.03 |
M3 | 1.05 | M14 | 7.66 | M25 | 13.37 |
M4 | 1.64 | M15 | 8.21 | M26 | 14.13 |
M5 | 2.29 | M16 | 8.75 | M27 | 14.61 |
M6 | 2.82 | M17 | 9.38 | M28 | 15.25 |
M7 | 3.57 | M18 | 9.97 | M29 | 15.81 |
M8 | 4.27 | M19 | 10.41 | M30 | 16.46 |
M9 | 4.97 | M20 | 11.16 | S1 | 13.15 |
M10 | 5.65 | M21 | 11.92 | S2 | 13.65 |
M11 | 6.21 | M22 | 12.39 | S3 | 14.15 |
S4 | 14.64 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.-L.; Qin, L.-L.; Wang, R.; Li, J.; Wang, X.-M.; Tang, X.-L.; An, R.-D. The Application of a Multi-Beam Echo-Sounder in the Analysis of the Sedimentation Situation of a Large Reservoir after an Earthquake. Water 2018, 10, 557. https://doi.org/10.3390/w10050557
Yan Z-L, Qin L-L, Wang R, Li J, Wang X-M, Tang X-L, An R-D. The Application of a Multi-Beam Echo-Sounder in the Analysis of the Sedimentation Situation of a Large Reservoir after an Earthquake. Water. 2018; 10(5):557. https://doi.org/10.3390/w10050557
Chicago/Turabian StyleYan, Zhong-Luan, Lei-Lei Qin, Rui Wang, Jia Li, Xiao-Ming Wang, Xi-Liang Tang, and Rui-Dong An. 2018. "The Application of a Multi-Beam Echo-Sounder in the Analysis of the Sedimentation Situation of a Large Reservoir after an Earthquake" Water 10, no. 5: 557. https://doi.org/10.3390/w10050557
APA StyleYan, Z. -L., Qin, L. -L., Wang, R., Li, J., Wang, X. -M., Tang, X. -L., & An, R. -D. (2018). The Application of a Multi-Beam Echo-Sounder in the Analysis of the Sedimentation Situation of a Large Reservoir after an Earthquake. Water, 10(5), 557. https://doi.org/10.3390/w10050557