Central Asia’s Ili River Ecosystem as a Wicked Problem: Unraveling Complex Interrelationships at the Interface of Water, Energy, and Food
Abstract
:1. Introduction
2. The Ili River Ecosystem
3. Interrelationships between Water, Energy, and Food in the Ili River Ecosystem
3.1. China
3.2. Kazakhstan
3.3. Ecosystem-Wide Interdependencies
4. Climate
5. Geopolitical Determinants
6. Water, Energy, and Food in the Ili River Ecosystem: A Wicked Problem
- Finding the optimal balance among capture fisheries, aquaculture, irrigated crops, and pastures as contributors to food security;
- Balancing a portfolio of hydroelectric, thermal, and traditional energy sources;
- Responding to the spatial and temporal constraints imposed by climate change;
- Sorting out the cumulative effects of food and energy production on factors that regulate the ecology of the river, delta, and Lake Balkhash; and
- Addressing the complex, linked issues that influence cooperation across the international border.
7. Framework for Bridging Knowledge Gaps
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Asian Development Bank. Central Asia Atlas of Natural Resources; ADB: Manila, Philippines, 2010. [Google Scholar]
- Sun, H.; Chen, Y.; Li, W.; Li, F.; Chen, Y.; Hao, X.; Yang, Y. Variation and abrupt change of climate in Ili River basin, Xinjiang. J. Geograph. Sci. 2010, 20, 652–666. [Google Scholar] [CrossRef]
- Sorg, A.; Bolch, T.; Stoffel, M.; Solomina, O.; Beniston, M. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat. Clim. Chang. 2012, 2, 725–731. [Google Scholar] [CrossRef]
- World Bank Group. Turn Down the Heat; International Bank for Reconstruction and Development: Washington, DC, USA, 2014; pp. 182–188. [Google Scholar]
- Granit, J.; Jägerskog, A.; Lindström, A.; Björklund, G.; Bullock, A.; Löfgren, R.; de Gooijer, G.; Pettigrew, S. Regional options for addressing the water, energy and food nexus in Central Asia and the Aral Sea basin. Int. J. Water Res. Dev. 2012, 28, 419–432. [Google Scholar] [CrossRef]
- Kostianoy, A.B.; Kosarev, A.N. (Eds.) The Aral Sea Environment; Springer: Berlin, Germany, 2010. [Google Scholar]
- Hoff, H. Understanding the Nexus. Background Paper for the Bonn 2011 Conference; Stockholm Environment Institute: Stockholm, Sweden, 2011. [Google Scholar]
- Batie, S. Wicked problems and applied economics. Am. J. Agric. Econ. 2008, 90, 1176–1191. [Google Scholar]
- Guillaume, J.H.A.; Kummu, M.; Eisner, S.; Varis, O. Transferable principles for managing the nexus: Lessons from historical global water modelling in Central Asia. Water 2015, 7, 4200–4231. [Google Scholar] [CrossRef]
- Keskinen, M.; Guillaume, J.H.A.; Kattelus, M.; Porkka, M.; Räsänen, T.A.; Varis, O. The water-energy-food nexus and the transboundary context: Insights from large Asian rivers. Water 2016, 8, 193. [Google Scholar] [CrossRef]
- Petr, T. Lake Balkhash, Kazakhstan. Int. J. Salt Lake Res. 1992, 1, 21–46. [Google Scholar] [CrossRef]
- Amanbayev, Z.T.; Zapparov, M.P.; Tleulesova, A.I. Integrated water resources management in the Ili-Balkhash basin. In Integrated Water Resources Management in the Ili-Balkhash Basin; Kenshimov, A.K., Ed.; United Nations Development Program: Almaty, Kazakhstan, 2011; pp. 133–143. [Google Scholar]
- Depauw, E. Principal biomes of Central Asia. In Climate Change and Terrestrial Carbon Sequestration in Central Asia; Lal, R., Suleimenov, M., Stewart, B.A., Hansen, D.O., Doraiswamy, P., Eds.; Taylor and Francis: London, UK, 2007; pp. 3–24. [Google Scholar]
- Dostaj, Z.D.; Giese, E.; Hagg, W. Wasserressourcen und deren Nutzung im Ili-Balchas Becken; Zentrum für Internationale Entwicklungs-und Umweltforschung der Justus-Liebig-Universität: Giessen, Germany, 2006. [Google Scholar]
- Dostay, Z.; Alimkulov, S.; Tursunova, A.; Myrzakhmetov, A. Modern hydrological status of the estuary of Ili River. Appl. Water Sci. 2012, 2, 227–233. [Google Scholar] [CrossRef]
- Pachikin, K.; Erokhina, O.; Funakawa, S. Soils of Kazakhstan, their distribution and mapping. In Novel Measurement and Assessment Tools for Monitoring and Management of Land and Water Resources in Agricultural Landscapes of Central Asia; Mueller, M., Saparov, A., Lischeid, G., Eds.; Springer: Cham, Switzerland, 2014; pp. 519–533. [Google Scholar]
- Propastin, P. Problems of water resources management in the drainage basin of Lake Balkhash with respect to political development. In Climate Change and the Sustainable Use of Water Resources; Leal Filho, W., Ed.; Springer: Berlin, Germany, 2013; pp. 449–461. [Google Scholar]
- Kezer, K.; Matsuyama, H. Decrease in river runoff in the Lake Balkhash basin in Central Asia. Hydrol. Proc. 2006, 20, 1407–1423. [Google Scholar] [CrossRef]
- Imentai, A.; Thevs, N.; Schmidt, S.; Nurtazin, S.; Salmurzauli, R. Vegetation, fauna, and biodiversity of the Ile delta and southern Lake Balkhash—A review. J. Great Lakes Res. 2015, 41, 688–696. [Google Scholar] [CrossRef]
- Deng, H.; Chen, Y. Influences of recent climate change and human activities on water storage variations in Central Asia. J. Hydrol. 2017, 544, 46–57. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Henebry, G.M. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid Environ. 2009, 73, 963–977. [Google Scholar] [CrossRef]
- Qi, J.; Bobushev, T.S.; Kulmatov, R.; Groisman, P.; Gutman, G. Addressing global change challenges for Central Asian socio-ecosystems. Front. Earth Sci. 2012, 6, 115–121. [Google Scholar] [CrossRef]
- Xu, J.; Liu, S.; Guo, W.; Zhang, Z.; Wei, J.; Feng, T. Glacial area changes in the Ili River catchment (Northeastern Tian Shan) in Xinjiang, China, from the 1960s to 2009. Adv. Meteorol. 2015. Available online: http://dx.doi.org/10.1155/2015/847257 (accessed on 17 May 2017).
- Varis, O.; Kummu, M. The major Central Asian river basins: An assessment of vulnerability. Int. J. Water Res. Dev. 2012, 28, 433–452. [Google Scholar] [CrossRef]
- Moseley, G. The Ili Kazakh Autonomous Chou; Harvard University Press: Cambridge, MA, USA, 1966; 163p. [Google Scholar]
- Wiens, H.J. Change in the ethnography and land use of the Ili Valley and region, Chinese Turkestan. Ann. Assoc. Am. Geograph. 1969, 59, 753–775. [Google Scholar] [CrossRef]
- Noda, J. Reconsidering the Ili crisis—The Ili region under Russian Rule (1871–1881). In Reconceptualizing Cultural and Environmental Change in Central Asia: An Historical Perspective on the Future; Watanabe, M., Kubota, J., Eds.; RIHN: Kyoto, Japan, 2010; pp. 163–197. [Google Scholar]
- Akiyama, T.; Li, J.; Kubota, J.; Konagaya, Y.; Watanabe, M. Perspectives on sustainability assessment: An integral approach to historical changes in social systems of water environment in the Ili River basin of Central Eurasia, 1900–2008. Water Futures 2012, 68, 595–627. [Google Scholar] [CrossRef]
- Christiansen, T.; Schöner, U. Irrigation Areas and Irrigation Water Consumption in the Upper Ili Catchment, NW-China; Zentrum für internationale Entwicklungs-und Umweltforschung der Justus-Liebig-Universität: Giessen, Germany, 2004. [Google Scholar]
- Wang, R.; Yu, J.; Zhao, Y.; Tian, J. The main experience learned from Israel’s agricultural development. Water Saving Irrig. 2010, 5, 61–63. [Google Scholar]
- Shen, Y.; Li, S.; Chen, Y.; Qi, Y.; Zhang, S. Estimation of regional irrigation water requirement and water supply risk in the arid region of Northwestern China 1989–2010. Agric. Water Manag. 2013, 128, 55–64. [Google Scholar] [CrossRef]
- Thevs, N.; Nurtazin, S.; Beckmann, V.; Salmyrzauli, R.; Khalil, A. Water consumption of agriculture and natural ecosystems along the Ili River in China and Kazakhstan. Water 2017, 9, 207. [Google Scholar] [CrossRef]
- Biba, S. Desecuritization in China’s behavior towards its transboundary rivers: The Mekong River, the Brahmaputra River, and the Irtysh and Ili Rivers. J. Contemp. China 2014, 23, 21–43. [Google Scholar] [CrossRef]
- Hagt, E. China’s water policies: Implications for Xinjiang and Kazakhstan. Central Asia-Caucasus Inst. Anal. 2003. Available online: http://www.cacianalyst.org/?q=node/1358 (accessed on 16 May 2017).
- Walker, K.F.; Yang, H.Z. Fish and fisheries in western China: Fish and fisheries at higher altitudes. In FAO Fisheries Technical Paper No. 385; Food and Agricultural Organization of the United Nations: Rome, Italy, 1999; pp. 237–278. [Google Scholar]
- Yan, G. Fisheries development in Xinjiang, China. In FAO Fisheries in Irrigation Systems of Arid Asia; Petr, T., Ed.; Food and Agricultural Organization of the United Nations: Rome, Italy, 2003; pp. 95–100. [Google Scholar]
- Bolton, K. Geopolitics of the Indo-Pacific: Emerging Conflicts, New Alliances; Black House Publishing: London, UK, 2013; pp. 99–102. [Google Scholar]
- Liu, W.; Chen, X. The Research of Farming and Livestock Development in the Area of Ili River Valley of Xinjiang Uyghur Autonomous Region; Jiangsu Institute of Urban Planning and Design: Nanjing, China; Available online: http://www.isocarp.net/Data/case_studies/2411.pdf (accessed on 17 May 2017).
- Demei, L.I. Chinese Wine Regions; Decanter China: London, UK. Available online: https://www.decanterchina.com/en/regions/china (accessed on 24 April 2018).
- Xinjiang’s Sea of Lavender. Available online: http://www.china.org.cn/english/travel/214565.htm (accessed on 1 November 2017).
- Spivak, L.F.; Muratova, N.R.; Vitkovskaya, I.S.; Batyrbaeva, M.Z.; Alibaev, K.U.; Moldazhanov, S.G. The results of space monitoring system of reservoirs on Ile tributaries in China. In Water Resources of Central Asia and Their Use; Institute of Geography: Almaty, Kazakhstan, 2016; pp. 424–432. [Google Scholar]
- Thevs, N.; Beckmann, V.; Akimalieva, A.; Köbbing, J.F.; Nurtazin, S.; Hirschelmann, S.; Piechottka, T.; Salmurzauli, R.; Baibagysov, A. Assessment of ecosystem services of the wetlands in the Ili River delta, Kazakhstan. Environ. Earth Sci. 2017. [Google Scholar] [CrossRef]
- Noda, J. Central Eurasian International Relations during the Eighteenth and Nineteenth Centuries; Brill: Leiden, The Netherlands, 2016. [Google Scholar]
- De Beurs, K.M.; Henebry, G.M. Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan. Remote Sens. Environ. 2004, 89, 497–509. [Google Scholar] [CrossRef]
- Timirkhanov, S.; Chaikin, B.; Makhambetova, Z.; Thorpe, A.; van Anrooy, R. Fisheries and Aquaculture in the Republic of Kazakhstan: A review; Food and Agricultural Organization of the United Nations: Rome, Italy, 2010. [Google Scholar]
- Petr, T.; Mitrofanov, V.P. The impact on fish stocks of river regulation in Central Asia and Kazakhstan. Lakes Reserv. Res. Manag. 1998, 3, 143–164. [Google Scholar] [CrossRef]
- Ismukhanov, K.; Mukhamedzhanov, V. The use of irrigation systems for sustainable production of agricultural and fish products in the Republic of Kazakhstan. In FAO Fisheries in Irrigation Systems of Arid Asia; Petr, T., Ed.; Food and Agricultural Organization of the United Nations: Rome, Italy, 2003; pp. 101–114. [Google Scholar]
- Graham, N.A.; Pueppke, S.G.; Uderbayev, T. The current status and future of Central Asia’s fish and fisheries: Confronting a wicked problem. Water 2017, 9, 701. [Google Scholar] [CrossRef]
- Chida, T. Science, development and modernization in the Brezhnev time. The water development in the Lake Balkhash basin. Cahiers du Monde Russe 2013, 54, 239–264. [Google Scholar] [CrossRef]
- Barabanova, A. Discussion. In Eighth Congress of Irrigation and Drainage; Central Electronic Press: Delhi, India, 1975; Volume 2, pp. 47–49. [Google Scholar]
- Kipshakbayev, N.K.; Abdrasilov, S.A. Effect of economic activity on the hydrologic regime and dynamics of the Ili delta. Hydrotech. Construct. 1994, 28, 416–420. [Google Scholar] [CrossRef]
- Starodubtsev, V.M.; Truskavetskiy, S.R. Desertification processes in the Ili River delta under anthropogenic pressure. Water Resour. 2011, 38, 253–256. [Google Scholar] [CrossRef]
- Shimizu, K.; Anzai, T.; Takahashi, N.; Kitamura, Y. An analysis on propriety of paddy rice and upland crop rotation system in the lower Ili River basin, Kazakhstan. J. Arid Land Stud. 2012, 22, 111–114. [Google Scholar]
- Petr, T.; Mitrofanov, V.P. Fisheries in arid countries of Central Asia and in Kazakhstan under the impact of agriculture. In Papers Contributed to the Regional Symposium on Sustainable Development of Inland Fisheries under Environmental Constraints and IPFC Working Party of Experts on Inland Fisheries; Petr, T., Morris, M., Eds.; Food and Agricultural Organization of the United Nations: Rome, Italy, 1995; pp. 40–79. [Google Scholar]
- Micklin, P.P. The Water Management Crisis in Soviet Central Asia. The Carl Beck Papers in Russian and East European Studies No. 905; University of Pittsburgh Center for Russian and East European Studies: Pittsburgh, PA, USA, 1991. [Google Scholar]
- Petr, T. Fish stocks and fisheries irrigation systems in arid Asia. In FAO Fisheries in Irrigation Systems of Arid Asia; Petr, T., Ed.; Food and Agricultural Organization of the United Nations: Rome, Italy, 2003; pp. 1–16. [Google Scholar]
- Laruelle, M.; Peyrouse, S. Globalizing Central Asia: Geopolitics and the Challenges of Economic Development; M. E. Sharpe: Armonk, NY, USA, 2013. [Google Scholar]
- Libert, B.; Lipponen, A. Challenges and opportunities for transboundary water cooperation in Central Asia: Findings from UNECE’s regional assessment and project work. Int. J. Water Resour. Dev. 2012, 28, 565–576. [Google Scholar] [CrossRef]
- Junk, W.J.; Bayley, P.B.; Sparks, R.E. The flood pulse concept in river-floodplain systems. Can. Spec. Publ. Fish. Aquatic Sci. 1989, 106, 110–127. [Google Scholar]
- Poujol, C.; Fourniau, V. Trade and economy (second half of nineteenth century to early twentieth century). In History of Civilizations of Central Asia; Palat, M.K., Tabyshalieva, A., Eds.; UNESCO Publishing: Paris, France, 2005; pp. 51–58. [Google Scholar]
- Qushimov, J.; Ganiev, I.M.; Rustamova, I.; Haitov, B.; Islam, K.R. Land degradation by agricultural activities in Central Asia. In Climate Change and Terrestrial Carbon Sequestration in Central Asia; Lal, R., Suleimenov, M., Stewart, B.A., Hansen, D.O., Doraiswamy, P., Eds.; Taylor and Francis: London, UK, 2007; pp. 137–146. [Google Scholar]
- Lebed, L. Possible changes in agriculture under the influence of climate change in Kazakhstan. In An Overview of Environmental Issues in Central Asia; Qi, J., Evered, K.T., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 149–159. [Google Scholar]
- United Nations. World Water Development Report 2014. Water and Energy; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2014; Volume 2. [Google Scholar]
- Abdullaev, I.; Rakhmatullaev, S. Setting up the agenda for water reforms in Central Asia: Does the nexus approach help? Environ. Earth Sci. 2016. [Google Scholar] [CrossRef]
- Salmurzauly, R.; Nurtazin, S.; Yessimsiitova, Z.; Bazarbaeva, Z. Expansion of the use of natural reeds (Phragmites australis) in the delta river Ili. J. Biotechnol. 2014, 185, S66. [Google Scholar] [CrossRef]
- Duan, J.; Wei, S.; Zeng, M.; Ju, Y. The energy industry in Xinjiang, China: Potential, problems, solutions. Power Mag. 2016. Available online: http://www.powermag.com/energy-industry-xinjiang-china-potential-problems-solutions-web/ (accessed on 15 May 2017).
- Richardson, M. China and the potential for conflict over water among Eurasian states. In Water Issues in Southeast Asia. Present Trends and Future Directions; Onn, L.P., Ed.; Institute of Southeast Asian Studies: Singapore, 2013; pp. 27–55. [Google Scholar]
- Abishev, I.A.; Medeu, A.R.; Malkovskiy, I.M.; Toleubaeva, L.S. Water resources of Kazakhstan and their use. In Water Resources of Central Asia and Their Use; Institute of Geography: Almaty, Kazakhstan, 2016; pp. 9–18. [Google Scholar]
- International Energy Agency. Water for energy. In World Energy Outlook 2012; IEA: Paris, France, 2012; pp. 501–528. [Google Scholar]
- Dorian, J.P. Central Asia: A major emerging energy player in the 21st century. Energy Policy 2006, 34, 544–555. [Google Scholar] [CrossRef]
- Tursunov, A.A. From the Aral Lake to the Lobnor Lake: Hydrology of the Discharges of Drainage Basins of Central Asia; Galym Publishers: Almaty, Kazakhstan, 2002. [Google Scholar]
- Endcoal. Database of Coal-Fired Plants in Operation and Planned for China’s Xinjiang Uyghur Autonomous Region. Available online: endcoal.org/plant-tracker (accessed on 4 April 2017).
- Li, J.; Zhuang, X.; Querol, X.; Font, O. Comparative study of coal qualities from three large coal basins in Xinjiang, Northwest China. Rev. Soc. Esp. Mineral. 2011, 15, 121–122. [Google Scholar]
- Li, Z.; Amorelli, A.; Liu, P. Informing Choices for Meeting China’s Energy Needs; Springer: Heidelberg, Germany, 2016. [Google Scholar]
- Goudie, A.S. Deserts in a warmer world. In Environmental Change in Drylands: Biogeographical and Geomorphological Perspectives; Millington, A.C., Pye, K., Eds.; Wiley: New York, NY, USA, 1994; pp. 1–29. [Google Scholar]
- Lioubimtseva, E.; Cole, R. Uncertainties of climate change in arid environments of Central Asia. Rev. Fisheries Sci. 2006, 14, 29–49. [Google Scholar] [CrossRef]
- Melillo, J.M.; McGuire, A.D.; Kicklighter, D.W.; Moore, B., III; Vorosmarty, C.J.; Schloss, A.L. Global climate change and terrestrial net primary production. Nature 1993, 363, 234–240. [Google Scholar] [CrossRef]
- Li, X.; Zhao, K.; Dodson, J.; Zhou, X. Moisture dynamics in central Asia for the last 15 kyr: New evidence from Ili Valley, Xinjiang, NW China. Quat. Sci. Rev. 2011, 30, 3457–3466. [Google Scholar] [CrossRef]
- Hartmann, I. Kazakhstan. In Encyclopedia of Global Warming and Climate Change, 2nd ed.; Philander, S.G., Ed.; Sage Publications: Thousand Oaks, CA, USA, 2012; pp. 824–826. [Google Scholar]
- Guo, L.; Li, L. Variation in the proportion of precipitation occurring as snow in the Tian Shan Mountains, China. Int. J. Climatol. 2015, 35, 1379–1393. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, C.; Hu, Q.; Tian, H. Temperature changes in Central Asia from 1979 to 2011 based on multiple datasets. J. Clim. 2014, 27, 1143–1167. [Google Scholar] [CrossRef]
- Aizen, V.B.; Aizen, E.M.; Melack, J.B.; Dozier, J. Climatic and hydrologic changes in the Tien Shan, Central Asia. J. Clim. 2014, 10, 1393–1404. [Google Scholar] [CrossRef]
- Farinotti, D.; Longuevergne, L.; Moholdt, G.; Duethmann, D.; Mölg, T.; Bolch, T.; Vorogushyn, S.; Güntner, A. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nat. Geosci. 2015, 8, 716–722. [Google Scholar] [CrossRef]
- Vilesov, E.N.; Gorbunov, A.P.; Morozova, V.N.; Seversky, E.V. Degradation of the glaciation and cryogenesis of modern moraines in the northern Tien Shan. Cryosphera Zemli 2006, 10, 69–73. [Google Scholar]
- Usmania, Z.; Shahgedanova, M.; Severskiy, I.; Nosenko, G.; Kapitsa, V. Assessment of glacier area change in the Tekes River Basin, Central Tien Shan, Kazakhstan between 1976 and 2013 using Landsat and KH-9 imagery. Cryosphere. (under review). Available online: https://www.the-cryosphere-discuss.net/tc-2016-82/ (accessed on 1 November 2017).
- Sorg, A.; Huss, M.; Rohrer, M.; Stoffel, M. The days of plenty might soon be over in glacierized Central Asian catchments. Environ. Res. Lett. 2014, 9. [Google Scholar] [CrossRef]
- Wang, X.; Wu, K.; Jiang, L.; Liu, S.; Ding, Y.; Jiang, Z.; Guo, W. Wide expansion of glacial lakes in Tianshan mountains during 1990–2010. Acta Geogr. Sinica 2013, 68, 983–993. [Google Scholar]
- Stucki, V.; Wegerich, K.; Rahaman, M.M.; Varis, O. Introduction: Water and security in Central Asia—Solving Rubik’s cube. Int. J. Water Resour. Dev. 2012, 28, 395–397. [Google Scholar] [CrossRef]
- Zhupankhan, A.; Tussupova, K.; Berndtsson, R. Could changing power relationships lead to better water sharing in Central Asia? Water 2017, 9, 139. [Google Scholar] [CrossRef]
- Khamzayeva, A. Water resources management in Central Asia: Security implications and prospects for regional cooperation. In Water Resources Management in Central Asia. Regional and International Issues at Stake; Khamzayeva, A., Rahimov, S., Islamov, U., Maksudov, F., Maksudova, D., Sakiev, B., Eds.; CIBOD Foundation: Barcelona, Spain, 2009; pp. 9–32. [Google Scholar]
- Baizakova, Z. The Irtysh and Ili Transboundary Rivers: The Kazakh-Chinese Path to Compromise. Available online: http://centralasiaprogram.org/archives/7374 (accessed on 9 January 2018).
- Chellaney, B. Water, Peace, and War. Confronting the Global Water Crisis; Rowman & Littlefield: Lanham, MD, USA, 2013. [Google Scholar]
- Wegerich, K. Water resources in Central Asia: Regional stability or patchy make-up? Central Asian Surv. 2011, 2, 275–290. [Google Scholar] [CrossRef]
- Abdullaev, I.; Rakhmatullaev, S. Data management for integrated water resources management in Central Asia. J. Hydroinform. 2014, 16, 1425–1440. [Google Scholar] [CrossRef]
- Boute, A. The water-energy-climate nexus under international law: A Central Asian perspective. Michigan J. Environ. Law 2016, 5, 371–434. [Google Scholar]
- Paroda, R. Addressing challenges for sustainable agriculture in Central Asia. In Climate Change and Terrestrial Carbon Sequestration in Central Asia; Lal, R., Suleimenov, M., Stewart, B.A., Hansen, D.O., Doraiswamy, P., Eds.; Taylor and Francis: London, UK, 2007; pp. 109–126. [Google Scholar]
- Pueppke, S.G.; Iklasov, M.K.; Beckmann, V.; Nurtazin, S.T.; Thevs, N.; Sharakhmetov, S.; Hoshino, B. Challenges for sustainable use of the fish resources from Lake Balkhash, a fragile lake in an arid ecosystem. Sustainability 2018, 10, 1234. [Google Scholar] [CrossRef]
- Bazarbayev, A.T.; Bayekenova, M.K. The challenge of water provision for pasture lands: A restrictive factor for livestock breeding development in Kazakhstan. In An Overview of Environmental Issues in Central Asia; Qi, J., Evered, K.T., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 201–208. [Google Scholar]
- Suleimenov, M.; Iniguez, L.; Mursayeva, M. Policy reforms and livestock development in Central Asia. In Policy Reforms and Agricultural Development in Central Asia; Babu, S.C., Djalalov, S., Eds.; Springer: New York, NY, USA, 2006; pp. 277–310. [Google Scholar]
- Lerman, Z. Agricultural recovery in the former Soviet Union: An overview of 15 years of land reform and farm restructuring. Post-Communist Econ. 2008, 20, 391–412. [Google Scholar] [CrossRef]
- Organization for Economic Cooperation and Development. OECD Review of Agricultural Policies: Kazakhstan; OECD Publishing: Paris, France, 2013. [Google Scholar]
- Central Committee of the Communist Party of China. The 13th Five Year Plan for Economic and Social Development of the People’s Republic of China (2016–2020); Compilation and Translation Bureau, Central Committee of the Communist Party of China: Beijing, China, 2016. [Google Scholar]
- Eritja, M.C.; Estapa, J.S.; Rafols, X.P. Towards improved regional co-operation over water uses in Central Asia: The case of hydroelectric energy and inland fisheries. Asian J. Int. Law 2016, 6, 119–158. [Google Scholar] [CrossRef]
- Rahaman, M.M. Principles of transboundary water resources management and water-related agreements in Central Asia: An analysis. Int. J. Water Resour. Dev. 2012, 28, 475–491. [Google Scholar] [CrossRef]
- Stone, R. Transboundary rivers for China and Kazakhstan, no meeting of the minds on water. Science 2012, 337, 405–407. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; He, D. Transboundary water vulnerability and its drivers in China. J. Geogr. Sci. 2009, 19, 189–199. [Google Scholar] [CrossRef]
- Ho, S. China’s transboundary river policies towards Kazakhstan: Issue-linkages and incentives for cooperation. Water Int. 2017, 42, 142–162. [Google Scholar] [CrossRef]
- Peyrouse, S. The hydroelectric sector in Central Asia and the growing role of China. China Eurasia Forum Quart. 2007, 5, 131–148. [Google Scholar]
- Li, Z.; Wu, F. China and shared water resources. Geopolitics, domestic institutions and global government. In China’s Global Quest for Resources. Energy, Food and Water; Wu, F., Zhang, H., Eds.; Routledge: Abingdon, UK, 2017; pp. 59–78. [Google Scholar]
- United Nations Development Programme. Intergovernmental Water Relations in Ile-Balkhash Basin; UNDP Regional Center for Europe and China: Almaty, Kazakhstan, 2011; Available online: http://centralasia.iwlearn.org/publications/projectdocuments/national-component-in-kazakhstan/intergovernmental-water-relations-in-the-ili-balkhash-basin (accessed on 24 April 2018).
- Ibrayev, T.; Badjanov, B.; Li, M. Methodology of measuring processes and evaluation of water resources of the Republic of Kazakhstan. In Novel Measurement and Assessment Tools for Monitoring and Management of Land and Water Resources in Agricultural Landscapes of Central Asia; Mueller, L., Saparov, A., Lischeid, G., Eds.; Springer: Heidelberg, Germany, 2013; pp. 563–575. [Google Scholar]
- Mueller, L.; Suleimenov, M.; Karimov, A.; Qadir, M.; Saparov, A.; Balgabayev, N.; Helming, K.; Lischeid, G. Land and water resources of Central Asia, their utilization and ecological status. In Novel Measurement and Assessment Tools for Monitoring and Management of Land and Water Resources in Agricultural Landscapes of Central Asia; Mueller, L., Saparov, A., Lischeid, G., Eds.; Springer: Heidelberg, Germany, 2013; pp. 3–59. [Google Scholar]
- Benson, D.; Gain, A.K.; Rouillard, J.J. Water governance in a comparative perspective: From IWRM to a ‘nexus’ approach? Water Altern. 2015, 8, 756–773. [Google Scholar]
- Zinzani, A. Irrigation management transfer and WUAs’ dynamics: Evidence from the South-Kazakhstan Province. Environ. Earth Sci. 2015, 73, 765–777. [Google Scholar] [CrossRef]
- Sokolov, V. Experiences with IWRM in the Central Asia and Caucasus regions. Water Int. 2006, 31, 59–70. [Google Scholar] [CrossRef]
- Biswis, A.K. Integrated water resources management: A reassessment. Water Int. 2004, 2, 248–256. [Google Scholar] [CrossRef]
- Groll, M.; Opp, C.; Kulmatov, R.; Ikramova, M.; Normatov, I. Water quality, potential conflicts and solutions—an upstream—downstream analysis of the transnational Zarafshan River (Tajikistan, Uzbekistan). Environ. Earth Sci. 2015, 73, 743–763. [Google Scholar] [CrossRef]
- Keskinen, M.; Varis, O. Water-energy-food nexus in large Asian river basins. Water 2016, 8, 446. [Google Scholar] [CrossRef]
- Allouche, J.; Middleton, C.; Gyawali, D. Technical veil, hidden politics: Interrogating the power linkages behind the nexus. Water Altern. 2015, 8, 610–626. [Google Scholar]
- Varis, O.; Kummu, M.; Salmivaara, A. Ten major rivers in monsoon Asia-Pacific: An assessment of vulnerability. Appl. Geogr. 2012, 32, 441–454. [Google Scholar] [CrossRef]
- Wolf, A.T.; Yoffe, S.B.; Giordano, M. International Water Law: Indicators for Identifying Basins at Risk; UNESCO: Paris, France, 2003. [Google Scholar]
- Bazilian, M.; Rogner, H.; Howells, M.; Hermann, S.; Arent, D.; Gielen, D.; Steduto, P.; Mueller, A.; Komor, P.; Tol, R.S.J.; et al. Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy Policy 2011, 39, 7896–7906. [Google Scholar] [CrossRef]
- Villiamayo-Tomas, S.; Grundmann, P.; Epstein, G.; Evans, T.; Kimmich, C. The water-energy-food security nexus through the lenses of the value chain and the institutional analysis and development frameworks. Water Altern. 2015, 8, 735–755. [Google Scholar]
- Muller, M. The ‘Nexus’ as a step back towards a more coherent water resource management paradigm. Water Altern. 2015, 8, 675–694. [Google Scholar]
- Albrecht, T.R.; Crootof, A.; Scott, C.A. The water-energy-food nexus: A systematic review of methods for nexus assessment. Environ. Res. Lett. 2018, 13. in press. [Google Scholar] [CrossRef]
- Maas, A.; Issayeva, G.; Rüttinger, K.; Umirbekov, A. Climate Change and the Water-Energy-Agriculture Nexus in Central Asia; Adelphi Research: Berlin, Germany, 2012. [Google Scholar]
- Bach, H.; Bird, J.; Clausen, T.J.; Jensen, K.M.; Lange, R.B.; Taylor, R.; Viriyasakultorn, V.; Wolf, A. Transboundary River Basin Management: Addressing Water, Energy and Food Security; Mekong River Commission: Vientiane, Laos, 2012. [Google Scholar]
- Olsson, G. Water, energy and food interactions—Challenges and opportunities. Front. Environ. Sci. Eng. 2013, 7, 787–793. [Google Scholar] [CrossRef]
- Baubekova, A. Integrated Modeling in Support of Transboundary Water Cooperation in Central Asia: Ili-Balkhash Watershed. Master’s Thesis, Central European University, Budapest, Hungary, 2014. [Google Scholar]
- Pahl-Wostl, C. The importance of social learning in restoring multifunctionality of rivers and floodplains. Ecol. Soc. 2006, 11, 10. Available online: http://www.ecologyandsociety.org/vo111/iss1/art10 (accessed on 3 April 2018). [CrossRef]
- Pahl-Wostl, C. A conceptual framework for analyzing adaptive capacity and multi-level learning processes in resource governance regimes. Glob. Environ. Chang. 2009, 19, 354–365. [Google Scholar] [CrossRef]
- Kaup, K. China, ethnic conflict in the world’s largest multinational state. In Encyclopedia of Modern Ethnic Conflicts, 2nd ed.; Rudolph, J.R., Jr., Ed.; ABC-CLIO: Santa Barbara, CA, USA, 2016; Volume 1, pp. 99–118. [Google Scholar]
- Pahl-Wostl, C. Transitions towards adaptive management of water facing climate and global change. Water Res. Manag. 2007, 21, 49–62. [Google Scholar] [CrossRef]
- Implementation Completion Report on a Loan in the Amount of US$80 Million to the Republic of Kazakhstan for an Irrigation and Drainage Improvement Project. Available online: http://documents.worldbank.org/curated/en/798361468038343156/pdf/316480rev.pdf (accessed on 9 March 2018).
- Narbayev, T.; Zauerbek, A.K.; Narbayev, M.; Narbayeva, K. Improvement of the methodology and scientific-technical basis of the adjustment parameters of reservoirs in the pool of undrained rivers (case study of Ile River basin). News Nat. Acad. Sci. Rep. Kazakhstan Ser. Geol. Tech. Sci. 2017, 3, 100–113. [Google Scholar]
- Barrett, T.; Feola, G.; Khusnitdinova, M.; Krylova, V. Adapting agricultural water use to climate change in a post-Soviet context: Challenges and opportunities in Southeast Kazakhstan. Hum. Ecol. 2017, 45, 747–762. [Google Scholar] [CrossRef] [PubMed]
- Mukhtarov, F. Translating water policy innovations into Kazakhstan: The importance of context. In Water Governance, Policy and Knowledge Transfer: International Studies on Contextual Water Management; De Boer, C., Vinke-de Kruijf, J., Özerol, G., Bressers, H.T.A., Eds.; Routledge: London, UK, 2013; pp. 113–127. [Google Scholar]
- Project Appraisal Document on a Proposed Loan in the Amount of US$102,902,440 to the Republic of Kazakhstan for a Second Irrigation and Drainage Improvement Project. Available online: http://documents.worldbank.org/curated/en/917891468272048966/pdf/PAD2920P086592010Box377346B00OUO090.pdf (accessed on 9 March 2018).
- Miller, T.R. Constructing sustainability science: Emerging perspectives and research trajectories. Sustain. Sci. 2013, 8, 279–293. [Google Scholar] [CrossRef]
- Spangenberg, J.H. Sustainability science: A review, an analysis and some empirical lessons. Environ. Conserv. 2011, 38, 275–287. [Google Scholar] [CrossRef]
- McDonnell, R.A. Challenges for integrated water resources management: How do we provide the knowledge to support truly integrated thinking? Int. J. Water Res. Dev. 2008, 24, 131–143. [Google Scholar] [CrossRef]
- Ibrabaev, T.; Badjanov, B.; Li, M. Long-term monitoring and water resource management in the Republic of Kazakhstan. In Novel Measurement and Assessment Tools for Monitoring and Management of Land and Water Resources in Central Asia; Mueller, L., Saparov, A., Lischeid, G., Eds.; Springer: Heidelberg, Germany, 2013; pp. 75–89. [Google Scholar]
- Propastin, P. Remote Sensing Based Study on Vegetation Dynamics in Drylands of Kazakhstan. Ph.D. Thesis, Georg-August-Universität, Göttingen, Germany, 2006. [Google Scholar]
- Brunson, M.W.; Baker, M.A. Translational training for tomorrow’s environmental scientists. J. Environ. Stud. Sci. 2016, 6, 295–299. [Google Scholar] [CrossRef]
- Benda, L.; Poff, N.L.; Tague, C.; Palmer, M.A.; Pizzuto, J.; Cooper, S.; Stanley, E.; Moglen, G. How to avoid train wrecks when using science in environmental problem solving. BioScience 2002, 52, 1127–1136. [Google Scholar] [CrossRef]
- Propastin, P. Assessment of climate and human induced disaster risk over shared water resources in the Balkhash Lake drainage basin. In Climate Change and the Sustainable Use of Water Resources; Leal Filho, W., Ed.; Springer: Berlin, Germany, 2013; pp. 41–54. [Google Scholar]
- Weitz, N. Cross-Sectoral Integration in the Sustainable Development Goals: A Nexus Approach; Stockholm Environment Institute: Stockholm, Sweden, 2014. [Google Scholar]
- Bizikova, L.; Roy, D.; Swanson, D.; Venema, H.D.; McCandless, M. The Water-Energy-Food Security Nexus: Towards a Practical Planning and Decision-Support Framework for Landscape Investment and Risk Management; International Institute for Sustainable Development: Winnipeg, MB, Canada, 2013. [Google Scholar]
- Hall, T.E.; O’Rourke, M. Responding to communication challenges in transdisciplinary sustainability science. In Heuristics of Transdisciplinary Sustainability Studies: Solution-Oriented Approaches to Complex Problems; Huutoniemi, K., Tapio, P., Eds.; Routledge: Oxford, UK, 2014; pp. 119–139. [Google Scholar]
- Celis, D.; De Pauw, E.; Geerken, R. Assessment of Land Cover and Land Use in Central and West Asia and North Africa. Part 2. Hot Spots of Land Cover Change and Drought Vulnerability; International Center for Agricultural Research in Dry Areas: Aleppo, Syria, 2007. [Google Scholar]
- Kappas, M.; Propastin, P. Monitoring and assessment of dryland ecosystems with remote sensing. In Dryland East Asia: Land Dynamics Amid Social and Climate Change; Chen, J., Wan, S., Henebry, G., Qi, J., Gutman, G., Sun, G., Kappas, M., Eds.; DeGruyter Higher Education Press: Berlin, Germany, 2014; pp. 311–349. [Google Scholar]
- Lebed, L.; Qi, J.; Heilman, P. Monitoring rangeland ecosystems with remote sensing: An example from Kazakhstan. In An Overview of Environmental Issues in Central Asia; Qi, J., Evered, K.T., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 135–146. [Google Scholar]
- Pflugmacher, D.; Krankina, O.N.; Cohen, W.B.; Friedl, M.A.; Sulla-Menashe, D.; Kennedy, R.E.; Nelson, P.; Loboda, T.V.; Kuemmerle, T.; Dyukarev, E.; et al. Comparison and assessment of coarse resolution land cover maps for Northern Eurasia. Remote Sens. Environ. 2011, 115, 3539–3553. [Google Scholar] [CrossRef]
- Propastin, P.; Kappas, M.; Muratova, N.R. A remote sensing based monitoring system for discrimination between climate and human-induced vegetation change in Central Asia. Manag. Environ. Qual. 2008, 19, 579–596. [Google Scholar] [CrossRef]
- Cotterman, K.A.; Kendall, A.D.; Basso, B.; Hyndman, D.W. Groundwater depletion and climate change: Future prospects of crop production in the Central High Plains aquifer. Clim. Chang. 2017. [Google Scholar] [CrossRef]
- Basso, B.; Hyndman, D.W.; Kendall, A.D.; Grace, P.R.; Robertson, G.P. Can impacts of climate change and agricultural adaptation strategies be accurately quantified if crop models are annually re-initialized? PLoS ONE 2015. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, A.I.J.M.; Renzullo, L.J. Water resource monitoring systems and the role of satellite observations. Hydrol. Earth Syst. Sci. 2011, 15, 39–55. [Google Scholar] [CrossRef] [Green Version]
- Torbick, N.; Chowdhury, D.; Salas, W.; Qi, J. Monitoring rice agriculture across Myanmar using time series Sentinel-1 assisted by Landsat-8 and PALSAR-2. Remote Sens. 2017, 9. [Google Scholar] [CrossRef]
- Hyndman, D.W.; Kendall, A.D.; Welty, N.R.H. Evaluating temporal and spatial variations in recharge and streamflow using the integrated landscape hydrology model (ILHM). Subsurf. Hydrol. Data Integ. Prop. Process. 2007, 171, 121–141. [Google Scholar]
Wicked Problems Characteristic | Examples from the Ili River Ecosystem |
---|---|
Difficult to define with multiple solutions, none absolutely right or wrong | Is the main issue resource scarcity or unsustainable exploitation or diversion of water? |
Societally complex with changing assumptions | Collapse of centralized Soviet control, rise of China as an economic powerhouse, disappearance of glaciers as source of water |
Tradeoffs and unexpected consequences | Conflicting upstream and downstream priorities; water versus energy versus food |
Dynamic over time with strong economic drivers | Self-sufficiency aspirations of new Central Asian republics, China’s One Belt One Road initiative |
Incomplete and contradictory knowledge | Extent of water withdrawals disputed, measurements unavailable or missing |
Interconnection with other wicked problems | Climate change; status of the internal political situation in Xinjiang [132] |
Knowledge Gap | Data and Analytical Needs |
---|---|
Changes in land use/land cover in the ecosystem | Analysis and rigorous interpretation of available remote sensing imagery |
Broad consequences of changes in population size, density, and resulting consumption patterns | Demographic change data and analysis, including settlement patterns in connection with measures of carrying capacity |
Ecosystem-wide impacts of dam construction | Detailed spatial and temporal hydrological data; nutrient flow measurements; modeling and simulation at the ecosystem scale |
Options for sustainable food production in the ecosystem | Pasture and cropping data series, including inputs, costs, and yields; comprehensive modeling of fisheries; climate projections |
Social constraints to implementation of policy and technology options | Knowledge of stakeholder priorities and willingness/ability to adopt technology; rigorous and objective policy analysis |
Understanding of future tradeoffs between water, energy, and food | Ability to forecast based on rigorous analysis of available data; scenario analysis |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pueppke, S.G.; Nurtazin, S.T.; Graham, N.A.; Qi, J. Central Asia’s Ili River Ecosystem as a Wicked Problem: Unraveling Complex Interrelationships at the Interface of Water, Energy, and Food. Water 2018, 10, 541. https://doi.org/10.3390/w10050541
Pueppke SG, Nurtazin ST, Graham NA, Qi J. Central Asia’s Ili River Ecosystem as a Wicked Problem: Unraveling Complex Interrelationships at the Interface of Water, Energy, and Food. Water. 2018; 10(5):541. https://doi.org/10.3390/w10050541
Chicago/Turabian StylePueppke, Steven G., Sabir T. Nurtazin, Norman A. Graham, and Jiaguo Qi. 2018. "Central Asia’s Ili River Ecosystem as a Wicked Problem: Unraveling Complex Interrelationships at the Interface of Water, Energy, and Food" Water 10, no. 5: 541. https://doi.org/10.3390/w10050541
APA StylePueppke, S. G., Nurtazin, S. T., Graham, N. A., & Qi, J. (2018). Central Asia’s Ili River Ecosystem as a Wicked Problem: Unraveling Complex Interrelationships at the Interface of Water, Energy, and Food. Water, 10(5), 541. https://doi.org/10.3390/w10050541