Evaluating the Timing and Interdependence of Hydrologic Processes at the Watershed Scale Based on Continuously Monitored Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sensors and Field Measurements
2.3. Hydrologic Time-Series Data
3. Results
3.1. Time-Series Data
3.2. Timing of Hydrologic Processes
3.3. Comparison of Timing for Various Events
3.4. Relations among Hydrologic Variables
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Perry, C.A. Significant Floods in the United States during the 20th Century-USGS Measures a Century of Floods; US Geological Survey: Reston, VA, USA, 2000.
- Villarini, G.; Smith, J.A.; Baeck, L.M.; Vitolo, R.; Stephenson, D.B.; Krajewski, W.F. On the frequency of heavy rainfall for the Midwest of the United States. J. Hydrol. 2011, 400, 103–120. [Google Scholar] [CrossRef]
- Villarini, G.; Smith, J.A.; Vecchi, G.A. Changing frequency of heavy rainfall over the central United States. J. Clim. 2013, 26, 351–357. [Google Scholar] [CrossRef]
- Prior, J.C.; Boekhoff, J.L.; Howes, M.R.; Libra, R.D.; VanDorpe, P.E. Iowa’s Groundwater Basics; Iowa Department of Natural Resources: Des Moines, IA, USA, 2003.
- Schilling, K.E.; Gassman, P.W.; Kling, C.L.; Campbell, T.; Jha, M.K.; Wolter, C.F.; Arnold, J.G. The potential for agricultural land use change to reduce flood risk in a large watershed. Hydrol. Process. 2014, 28, 3314–3325. [Google Scholar] [CrossRef]
- Corbett, D.M. Stream-Gaging Procedure, a Manual Describing Methods and Practices of the Geological Survey; U.S. Government Publishing Office: Washington, DC, USA, 1943.
- Sauer, V.B. Standards for the Analysis and Processing of Surface-Water Data and Information Using Electronic Methods; US Geological Survey: Reston, VA, USA, 2002.
- NHWC. Available online: http://www.hydrologicwarning.org/content.aspx?page_id=0&club_id=617218 (accessed on 21 February 2018).
- Penna, D.; van Meerveld, H.J.; Oliviero, O.O.; Zuecco, G.; Assendelft, R.S.; Fontana, G.D.; Borga, M. Seasonal changes in runoff generation in a small forested mountain catchment. Hydrol. Process. 2015, 29, 2027–2042. [Google Scholar] [CrossRef]
- Miller, M.P.; Susong, D.D.; Shope, C.L.; Heilweil, V.M.; Stolp, B.J. Continuous estimation of baseflow in snowmelt-dominated streams and rivers in the Upper Colorado River Basin: A chemical hydrograph separation approach. Water Resour. Res. 2014, 50, 6986–6999. [Google Scholar] [CrossRef]
- Kronholm, S.C.; Capel, P.D. A comparison of high-resolution specific conductance-based end-member mixing analysis and a graphical method for baseflow separation of four streams in hydrologically challenging agricultural watersheds. Hydrol. Process. 2015, 29, 2521–2533. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Q.; Chow, T.L.; Li, S.; Danielescu, S. Baseflow separation in a small watershed in New Brunswick, Canada, using a recursive digital filter calibrated with the conductivity mass balance method. Hydrol. Process. 2013, 27, 2659–2665. [Google Scholar] [CrossRef]
- Legates, D.R.; Mahmood, R.; Levia, D.F.; DeLiberty, T.L.; Quiring, S.M.; Houser, C.; Nelson, F.E. Soil moisture: A central and unifying theme in physical geography. Prog. Phys. Geogr. 2011, 35, 65–86. [Google Scholar] [CrossRef]
- Kim, S.; Lee, H.; Woo, C.N.; Kim, J. Soil moisture monitoring on a steep hillside. Hydrol. Process. 2007, 21, 2910–2922. [Google Scholar] [CrossRef]
- Meyles, E.; Williams, A.; Ternan, L.; Dowd, J. Runoff generation in relation to soil moisture patterns in a small Dartmoor catchment, Southwest England. Hydrol. Process. 2003, 17, 251–264. [Google Scholar] [CrossRef]
- Moore, G.W.; Jones, J.A.; Bond, B.J. How soil moisture mediates the influence of transpiration on streamflow at hourly to interannual scales in a forested catchment. Hydrol. Process. 2011, 25, 3701–3710. [Google Scholar] [CrossRef]
- Radatz, T.F.; Thompson, A.M.; Madison, F.W. Soil moisture and rainfall intensity thresholds for runoff generation in southwestern Wisconsin agricultural watersheds. Hydrol. Process. 2013, 27, 3521–3534. [Google Scholar] [CrossRef]
- Wenninger, J.; Uhlenbrook, S.; Tilch, N.; Leibundgut, C. Experimental evidence of fast groundwater responses in a hillslope/floodplain area in the Black Forest Mountains, Germany. Hydrol. Process. 2004, 18, 3305–3322. [Google Scholar] [CrossRef]
- Dhakal, A.S.; Sullivan, K. Shallow groundwater response to rainfall on a forested headwater catchment in northern coastal California: Implications of topography, rainfall, and throughfall intensities on peak pressure head generation. Hydrol. Process. 2014, 28, 446–463. [Google Scholar] [CrossRef]
- Ibrahimi, M.K.; Miyazaki, T.; Nishimura, T. A high measurement frequency based assessment of shallow groundwater fluctuations in Metouia Oasis, South Tunisia. Hydrol. Res. Lett. 2010, 4, 75–79. [Google Scholar] [CrossRef]
- Dudley-Southern, M.; Binley, A. Temporal responses of groundwater-surface water exchange to successive storm events. Water Resour. Res. 2015, 51, 1112–1126. [Google Scholar] [CrossRef] [Green Version]
- Prism, C.D. Northwest Alliance for Computational Science and Engineering. Available online: http://www.prism.oregonstate.edu/ (accessed on 21 February 2018).
- Sanford, W.E.; Selnick, D.L. Estimation of Evapotranspiration across the Conterminous United States Using a Regression with Climate and Land-Cover Data. J. Am. Water Resour. Assoc. 2013, 49, 217–230. [Google Scholar] [CrossRef]
- Service, U.S.N.R.C. Soil Survey Geographic (SSURGO) Data Base: Data Use Information; United States Department of Agriculture: Washington, DC, USA, 1995.
- Depth to Bedrock: Isopach of Unconsolidated Materials. Available online: https://catalog.data.gov/dataset/depth-to-bedrock-isopach-of-unconsolidated-materials (accessed on 21 February 2018).
- Penna, D.; Tromp-van, M.H.J.; Gobbi, A.B.M.; Dolla, F.G. The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrol. Earth Syst. Sci. 2011, 15, 689. [Google Scholar] [CrossRef] [Green Version]
- Abdul, A.; Gillham, R. Field studies of the effects of the capillary fringe on streamflow generation. J. Hydrol. 1989, 112, 1–18. [Google Scholar] [CrossRef]
- Ghasemizade, M.; Schirmer, M. Subsurface flow contribution in the hydrological cycle: Lessons learned and challenges ahead—A review. Environ. Earth Sci. 2013, 69, 707–718. [Google Scholar] [CrossRef]
- Khaled, I.M.; Tsuyoshi, M.; Kohei, N.; Taku, N.; Hiromi, I. Experimental and modeling investigation of shallow water table fluctuations in relation to reverse Wieringermeer effect. Open J. Soil Sci. 2011, 1, 17–24. [Google Scholar] [CrossRef]
- Gillham, R. The capillary fringe and its effect on water-table response. J. Hydrol. 1984, 67, 307–324. [Google Scholar] [CrossRef]
- Scipal, K.; Scheffler, C.; Wagner, W. Soil moisture-runoff relation at the catchment scale as observed with coarse resolution microwave remote sensing. Hydrol. Earth Syst. Sci. Discuss. 2005, 2, 417–448. [Google Scholar] [CrossRef]
- Mellander, P.-E.; Melland, A.R.; Jordan, P.; Wall, D.P.; Murphy, P.N.C.; Shortle, G. Quantifying nutrient transfer pathways in agricultural catchments using high temporal resolution data. Environ. Sci. Policy 2012, 24, 44–57. [Google Scholar] [CrossRef]
- Cloke, H.; Anderson, M.G.; McDonnell, J.J.; Renaud, J.-P. Using numerical modelling to evaluate the capillary fringe groundwater ridging hypothesis of streamflow generation. J. Hydrol. 2006, 316, 141–162. [Google Scholar] [CrossRef]
- Fiori, A.; Romanelli, M.; Cavalli, D.J.; Russo, D. Numerical experiments of streamflow generation in steep catchments. J. Hydrol. 2007, 339, 183–192. [Google Scholar] [CrossRef]
- Wang, W. Stochasticity, Nonlinearity and Forecasting of Streamflow Processes; Ios Press: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Olyaie, E.; Banejad, H.; Chau, K.-W.; Melesse, A.M. A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: A case study in United States. Environ. Monit. Assess. 2015, 187, 189. [Google Scholar] [CrossRef] [PubMed]
- Chau, K.-W. Use of Meta-Heuristic Techniques in Rainfall-Runoff Modelling; Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2017. [Google Scholar]
- Taormina, R.; Chau, K.-W.; Sivakumar, B. Neural network river forecasting through baseflow separation and binary-coded swarm optimization. J. Hydrol. 2015, 529, 1788–1797. [Google Scholar] [CrossRef]
- Gholami, V.; Chau, K.-W.; Fadaee, F.; Torkaman, J.; Ghaffari, A. Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers. J. Hydrol. 2015, 529, 1060–1069. [Google Scholar] [CrossRef]
- Chen, X.Y.; Chau, K.-W. A hybrid double feedforward neural network for suspended sediment load estimation. Water Resour. Manag. 2016, 30, 2179–2194. [Google Scholar] [CrossRef]
- Wang, W.-C.; Xu, D.-M.; Chau, K.-W.; Lei, G.-J. Assessment of river water quality based on theory of variable fuzzy sets and fuzzy binary comparison method. Water Resour. Manag. 2014, 28, 4183–4200. [Google Scholar] [CrossRef]
- Borga, M.; Anagnostou, E.N.; Blöschl, G.; Creutin, J.-D. Flash flood forecasting, warning and risk management: The HYDRATE project. Environ. Sci. Policy 2011, 14, 834–844. [Google Scholar] [CrossRef]
- Hapuarachchi, H.; Wang, Q.; Pagano, T. A review of advances in flash flood forecasting. Hydrol. Process. 2011, 25, 2771–2784. [Google Scholar] [CrossRef]
- Regonda, S.; Seo, D.-J.; Lawrence, B.; Brown, J.D.; Demargne, J. Short-term ensemble streamflow forecasting using operationally-produced single-valued streamflow forecasts—A Hydrologic Model Output Statistics (HMOS) approach. J. Hydrol. 2013, 497, 80–96. [Google Scholar] [CrossRef]
- Adams, B.; Bloomfield, J.P.; Gallagher, A.J.; Jackson, C.R.; Rutter, H.K.; Williams, A.T. An early warning system for groundwater flooding in the Chalk. Q. J. Eng. Geol. Hydrogeol. 2010, 43, 185–193. [Google Scholar] [CrossRef]
Station ID | Soil Water Content at 5, 10, 20, and 50 cm Depths | Precipitation | Streamflow | Depth to Water Table | Period | |
---|---|---|---|---|---|---|
USGS 05411900 | X | 26 Mar 2014 | present | |||
RGS0043 | X | X | 15 May 2014 | present | ||
RGS0044 | X | X | 15 May 2014 | present | ||
RGS0045 | X | X | 19 Apr 2014 | present | ||
RGS0046 | X | X | X | 19 Apr 2014 | present | |
RGS0047 | X | X | 15 May 2014 | present | ||
USGS Well | X | 23 Jan 2009 | 17 Oct 2014 |
Period | Number of Points | SWC5 cm | SWC10 cm | SWC20 cm | SWC50 cm |
---|---|---|---|---|---|
1 May 2014–3 Sep 2014 | 12000 | 0.70 | 0.73 | 0.86 | 0.95 |
3 Sep 2014–16 Oct 2014 | 4128 | 0.49 | 0.63 | 0.85 | 0.53 |
DWT (m) | Number of Points | SWC5 cm | SWC10 cm | SWC20 cm | SWC50 cm |
---|---|---|---|---|---|
0.0–2.0 | 4868 | 0.89 | 0.84 | 0.90 | 0.88 |
2.0–3.0 | 4379 | 0.07 | 0.22 | 0.47 | 0.78 |
3.0–4.5 | 6881 | 0.24 | 0.21 | 0.21 | 0.36 |
e1 | e2 | e3 | e4 | e5 | e6 | |||
---|---|---|---|---|---|---|---|---|
Analyzed time window | initial | 16 Jun 18:00 | 18 Jun 18:00 | 19 Jun 13:00 | 29 Jun 18:00 | 30 Jun 12:00 | 13 Oct 00:00 | |
final | 17 Jun 12:00 | 19 Jun 12:00 | 20 Jun 06:00 | 30 Jun 12:00 | 01 Jul 06:00 | 16 Oct 23:00 | ||
duration (h) | 18.00 | 18.00 | 17.00 | 18.00 | 18.00 | 95.00 | ||
Streamflow | initial (m3/s) | 0.54 | 1.27 | 12.69 | 0.88 | 4.73 | 0.42 | |
final (m3/s) | 2.15 | 15.63 | 8.55 | 5.61 | 11.04 | 0.82 | ||
peak (m3/s) | 5.01 | 29.17 | 51.82 | 23.50 | 52.67 | 4.28 | ||
volume (mm) | 1.05 | 4.82 | 14.32 | 5.44 | 13.32 | 3.70 | ||
time to peak from first rain (h) | 6.50 | 8.25 | 10.25 | 6.00 | 6.00 | 32.75 | ||
time between response and first rain (h) | 5.50 | 3.25 | 1.00 | 1.00 | 1.25 | 32.00 | ||
Soil Water Content | initial (%) | 5 cm | 14.80 | 33.60 | 38.40 | 35.00 | 37.75 | 19.00 |
10 cm | 18.60 | 36.60 | 40.60 | 37.50 | 39.50 | 21.20 | ||
20 cm | 23.80 | 34.60 | 39.60 | 36.00 | 38.50 | 24.80 | ||
50 cm | 33.00 | 35.40 | 37.80 | 38.25 | 40.75 | 26.00 | ||
final (%) | 5 cm | 33.80 | 38.80 | 38.40 | 38.00 | 38.25 | 33.20 | |
10 cm | 35.80 | 40.60 | 40.40 | 39.75 | 40.25 | 35.25 | ||
20 cm | 31.00 | 39.80 | 40.20 | 38.50 | 39.25 | 34.40 | ||
50 cm | 35.00 | 37.80 | 41.20 | 40.50 | 41.25 | 35.80 | ||
peak (%) | 5 cm | 36.80 | 41.00 | 41.60 | 42.00 | 42.50 | 40.20 | |
10 cm | 37.20 | 42.40 | 43.80 | 42.50 | 43.50 | 40.40 | ||
20 cm | 31.00 | 40.40 | 41.60 | 39.50 | 41.00 | 37.40 | ||
50 cm | 35.00 | 37.80 | 41.80 | 40.50 | 43.00 | 36.20 | ||
time between max SWC and first rain (h) | 5 cm | 7.25 | 5.00 | 1.50 | 1.25 | 1.50 | 28.00 | |
10 cm | 8.25 | 5.00 | 1.50 | 1.50 | 4.25 | 28.00 | ||
20 cm | 13.75 | 5.00 | 2.00 | 1.50 | 1.50 | 28.50 | ||
50 cm | 11.50 | 13.50 | 5.00 | 13.25 | 4.25 | 53.00 | ||
time between response and first rain (h) | 5 cm | 0.00 | 0.50 | 1.00 | 0.75 | 0.50 | 14.50 | |
10 cm | 0.00 | 0.75 | 1.25 | 1.00 | 0.50 | 15.00 | ||
20 cm | 0.00 | 1.50 | 1.00 | 1.00 | 0.50 | 18.75 | ||
50 cm | 0.50 | 3.50 | 1.00 | 1.00 | 1.50 | 25.50 | ||
Rain | total (mm) | 35.64 | 49.07 | 33.40 | 24.03 | 35.46 | 70.97 | |
discharge/rain | 0.03 | 0.10 | 0.43 | 0.23 | 0.38 | 0.05 | ||
max intensity (mm/15-min) | 12.37 | 4.78 | 12.01 | 11.46 | 5.46 | 1.96 | ||
Time between max intensity and first rain (h) | 0.25 | 4.00 | 1.25 | 1.00 | 1.25 | 27.25 | ||
Time between % total rain and first rain (h) | 25% | 0.00 | 3.25 | 1.00 | 0.75 | 1.00 | 18.50 | |
50% | 0.25 | 4.00 | 1.25 | 1.00 | 1.50 | 24.25 | ||
75% | 4.75 | 4.75 | 1.50 | 1.25 | 3.50 | 28.00 | ||
100% | 9.50 | 11.75 | 16.25 | 13.50 | 14.00 | 80.50 | ||
Groundwater-Depth to Water Table | initial (m) | 2.99 | 2.47 | 1.21 | 1.41 | 1.09 | 4.40 | |
final (m) | 2.57 | 1.24 | 0.86 | 1.09 | 0.89 | 3.18 | ||
minimum (m) | 2.57 | 1.24 | 0.66 | 1.08 | 0.77 | 3.18 | ||
time between minimum and first rain (h) | 15.00 | 13.50 | 1.75 | 14.50 | 5.25 | 90.00 | ||
time between response and first rain (h) | 0.50 | 2.75 | 0.00 | 1.00 | 1.50 | 29.00 |
Model | Predictors | δ (h) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pcumu | DWTt-δ | SMt-δ | Qt-δ | 5 | 10 | 15 | 20 | 25 | 30 | 35 | |
1 | X | X | X | X | 0.52 | 0.44 | 0.42 | 0.39 | 0.37 | 0.36 | 0.37 |
2 | X | X | X | 0.52 | 0.43 | 0.41 | 0.38 | 0.36 | 0.35 | 0.36 | |
3 | X | X | X | 0.51 | 0.41 | 0.39 | 0.36 | 0.34 | 0.33 | 0.33 | |
4 | X | X | 0.22 | 0.37 | 0.37 | 0.36 | 0.35 | 0.35 | 0.36 | ||
5 | X | X | 0.15 | 0.32 | 0.33 | 0.33 | 0.32 | 0.32 | 0.33 | ||
6 | X | X | 0.51 | 0.41 | 0.39 | 0.36 | 0.33 | 0.32 | 0.33 | ||
7 | X | 0.15 | 0.32 | 0.33 | 0.32 | 0.32 | 0.32 | 0.33 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arenas, A.; Schilling, K.; Niemeier, J.; Weber, L. Evaluating the Timing and Interdependence of Hydrologic Processes at the Watershed Scale Based on Continuously Monitored Data. Water 2018, 10, 261. https://doi.org/10.3390/w10030261
Arenas A, Schilling K, Niemeier J, Weber L. Evaluating the Timing and Interdependence of Hydrologic Processes at the Watershed Scale Based on Continuously Monitored Data. Water. 2018; 10(3):261. https://doi.org/10.3390/w10030261
Chicago/Turabian StyleArenas, Antonio, Keith Schilling, James Niemeier, and Larry Weber. 2018. "Evaluating the Timing and Interdependence of Hydrologic Processes at the Watershed Scale Based on Continuously Monitored Data" Water 10, no. 3: 261. https://doi.org/10.3390/w10030261
APA StyleArenas, A., Schilling, K., Niemeier, J., & Weber, L. (2018). Evaluating the Timing and Interdependence of Hydrologic Processes at the Watershed Scale Based on Continuously Monitored Data. Water, 10(3), 261. https://doi.org/10.3390/w10030261