Multiple Climate Change Scenarios and Runoff Response in Biliu River
Abstract
:1. Introduction
2. Methodology
2.1. CMIP3 and CMIP5 Datasets
2.1.1. Climate Models and Emission Scenarios
2.1.2. Downscaling Method
2.2. Hydrological Model
3. Study Region and Datasets
3.1. Biliu River Basin
3.2. Dataset
4. Results
4.1. SWAT Model Calibration and Validation Results
4.2. Precipitation and Temperature Variations
4.2.1. Temperature Variations
4.2.2. Precipitation Variations
4.3. Future Evaporation and Runoff Conditions under Climate Changes
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Menzel, L.; Bürger, G. Climate change scenarios and runoff response in the Mulde catchment (Southern Elbe, Germany). J. Hydrol. 2002, 267, 53–64. [Google Scholar] [CrossRef]
- Hawkins, E.; Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 2009, 90, 1095–1107. [Google Scholar] [CrossRef]
- Woldemeskel, F.M.; Sharma, A.; Sivakumar, B.; Mehrotra, R. A framework to quantify GCM uncertainties for use in impact assessment studies. J. Hydrol. 2014, 519, 1453–1465. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge Universty Press: New York, NY, USA, 2007. [Google Scholar]
- Sivakumar, B. Global climate change and its impacts on water resources planning and management: Assessment and challenges. Stoch. Environ. Res. Risk Assess. 2011, 25, 583–600. [Google Scholar] [CrossRef]
- Towler, E.; Rajagopalan, B.; Gilleland, E.; Summers, R.S.; Yates, D.; Katz, R.W. Modeling hydrologic and water quality extremes in a changing climate: A statistical approach based on extreme value theory. Water Resour. Res. 2010, 46, W11504. [Google Scholar] [CrossRef]
- Belcher, S.E.; Hacker, J.N.; Powell, D.S. Constructing design weather data for future climates. Build. Serv. Eng. Res. Technol. 2005, 26, 49–61. [Google Scholar] [CrossRef]
- Milzow, C.; Burg, V.; Kinzelbach, W. Estimating future ecoregion distributions within the Okavango Delta Wetlands based on hydrological simulations and future climate and development scenarios. J. Hydrol. 2010, 381, 89–100. [Google Scholar] [CrossRef]
- Chen, S.T.; Yu, P.S.; Tang, Y.H. Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. J. Hydrol. 2010, 385, 13–22. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, X.P.; Fu, G.T.; Zhou, H.C.; Wang, H. The impacts of climate change on water diversion strategies into a water deficit reservoir. J. Hydroinform. 2014, 16, 872–889. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. A summary of the CMIP5 experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Brekke, L.D.; Dettinger, M.D.; Maurer, E.P.; Anderson, M. Significance of model credibility in estimating climate projection distributions for regional hydroclimatological risk assessments. Clim. Chang. 2008, 89, 371–394. [Google Scholar] [CrossRef]
- Hoang, L.P.; Lauri, H.; Kummu, M.; Koponen, J.; van Vliet, M.T.H.; Supit, I.; Leemans, R.; Kabat, P.; Ludwig, F. Mekong River flow and hydrological extremes under climate change. Hydrol. Earth Syst. Sci. 2016, 20, 3027–3041. [Google Scholar] [CrossRef]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Wang, G.L.; Wang, D.G.; Trenberth, K.E.; Erfanian, A.; Yu, M.; Bosilovich, M.G.; Parr, D.T. The peak structure and future changes of the relationships between extreme precipitation and temperature. Nat. Clim. Chang. 2017, 7, 268–274. [Google Scholar] [CrossRef]
- Wang, X.Y.; Yang, T.; Li, X.L.; Shi, P.F.; Zhou, X.D. Spatio-temporal changes of precipitation and temperature over the Pearl River basin based on CMIP5 multi-model ensemble. Stoch. Environ. Res. Risk Assess. 2017, 31, 1077–1089. [Google Scholar] [CrossRef]
- Koutroulis, A.G.; Grillakis, M.G.; Tsanis, I.K.; Papadimitriou, L. Evaluation of precipitation and temperature simulation performance of the CMIP3 and CMIP5 historical experiments. Clim. Dyn. 2016, 47, 1881–1898. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q. Comparative analysis of CMIP3 and CMIP5 global climate models for simulating the daily mean, maximum, and minimum temperatures and daily precipitation over China. J. Geophys. Res. Atmos. 2015, 120, 4806–4824. [Google Scholar] [CrossRef]
- Ayers, J.; Ficklin, D.L.; Stewart, I.T.; Strunk, M. Comparison of CMIP3 and CMIP5 projected hydrologic conditions over the Upper Colorado River Basin. Int. J. Climatol. 2016, 36, 3807–3818. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Letsinger, S.L.; Stewart, I.T.; Maurer, E.P. Assessing differences in snowmelt-dependent hydrologic projections using CMIP3 and CMIP5 climate forcing data for the western United States. Hydrol. Res. 2016, 47, 483–500. [Google Scholar] [CrossRef]
- Shamir, E.; Megdal, S.B.; Carrillo, C.; Castro, C.L.; Chang, H.I.; Chief, K.; Corkhill, F.E.; Eden, S.; Georgakakos, K.P.; Nelson, K.M.; et al. Climate change and water resources management in the Upper Santa Cruz River, Arizona. J. Hydrol. 2015, 521, 18–33. [Google Scholar] [CrossRef]
- Su, F.; Zhang, L.; Ou, T.; Chen, D.; Yao, T.; Tong, K.; Qi, Y. Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Glob. Planet. Chang. 2016, 136, 82–95. [Google Scholar] [CrossRef]
- Zhang, C.; Shoemaker, C.A.; Woodbury, J.D.; Cao, M.L.; Zhu, X.P. Impact of human activities on stream flow in the Biliu River basin, China. Hydrol. Process. 2013, 27, 2509–2523. [Google Scholar] [CrossRef]
- Raje, D.; Mujumdar, P.P. Reservoir performance under uncertainty in hydrologic impacts of climate change. Adv. Water Resour. 2010, 33, 312–326. [Google Scholar] [CrossRef]
- Vicuna, S.; Dracup, J.A.; Lund, J.R.; Dale, L.L.; Maurer, E.P. Basin-scale water system operations with uncertain future climate conditions: Methodology and case studies. Water Resour. Res. 2010, 46, W04505. [Google Scholar] [CrossRef]
- Paiva, R.C.D.; Durand, M.T.; Hossain, F. Spatiotemporal interpolation of discharge across a river network by using synthetic SWOT satellite data. Water Resour. Res. 2015, 51, 430–449. [Google Scholar] [CrossRef]
- Matin, M.A.; Bourque, C.P.A. Intra- and inter-annual variations in snow-water storage in data sparse desert-mountain regions assessed from remote sensing. Remote Sens. Environ. 2013, 139, 18–34. [Google Scholar] [CrossRef]
- Glenn, J.; Tonina, D.; Morehead, M.D.; Fiedler, F.; Benjankar, R. Effect of transect location, transect spacing and interpolation methods on river bathymetry accuracy. Earth Surf. Process. Landf. 2016, 41, 1185–1198. [Google Scholar] [CrossRef]
- CLIVAR Exchanges, World Climate Research Programme (WCRP). WCRP Coupled Model Intercomparison Project—Phase 5 (CMIP5); CLIVAR Exchanges No. 56, Vol. 16, No. 2; Indigo Press: Southampton, UK, 2011. [Google Scholar]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.A.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation; Version 2005; US Department of Agriculture (USDA) Agricultural Research Service (ARS): Temple, TX, USA, 2005.
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment. Part 1-Model development. J. Am. Water Resour. Assoc. 1998, 34, 1–17. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA). Protocols for Developing Nutrient TMDLs; Office of Water EPA 841-B-99-007; U.S. Environmental Protection Agency (EPA): Washington, DC, USA, 1999.
- Marshall, E.; Randhir, T.O. Spatial modeling of land cover change and watershed response using Markovian cellular automata and simulation. Water Resour. Res. 2008, 44, W04423. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.Z.; Zhang, X.C.; Zheng, F.L. Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. J. Hydrol. 2009, 377, 35–42. [Google Scholar] [CrossRef]
- Van Griensven, A.; Meixner, T.; Grunwald, S.; Bishop, T.; Diluzio, M.; Srinivasan, R. A global sensitivity analysis tool for the parameters of multi-variable catchment models. J. Hydrol. 2006, 324, 10–23. [Google Scholar] [CrossRef]
- Hao, F.H.; Cheng, T.G.; Yang, S.T. Non-Point Source Pollution Model; China Environmental Science Press: Beijing, China, 2006. [Google Scholar]
- Mcsweeney, C.F.; Jones, R.G.; Booth, B.B.B. Selecting ensemble members to provide regional climate change information. J. Clim. 2012, 25, 7100–7121. [Google Scholar] [CrossRef]
Model | Country | Resolution | Scenarios |
---|---|---|---|
BCCR_BCM2.0 | Norway | 2.81° × 2.81° | A1B, A2, B1 for each model respectively |
CSIRO_MK3.0 | Australia | 1.88° × 1.88° | |
MIROC3.2m | Japan | 2.81° × 2.81° | |
ACCESS1.0 | Australia | 1.88° × 2.48° | RCP8.5 and RCP4.5 for each model respectively |
BCC-CSM1.1(m) | China | 1.13° × 1.13° | |
CESM1(BGC) | USA | 1.3° × 0.9° | |
CESM1(CAM5) | USA | 1.3° × 0.9° | |
CMCC-CM | Italy | 0.75° × 0.75° | |
MPI-ESM-MR | Germany | 1.88° × 1.88° |
Climate Scenario | Precipitation (mm) | Runoff (mm) | Runoff Coefficient | Change Percentage (%) | ||
---|---|---|---|---|---|---|
Precipitation | Runoff | Runoff Coefficient | ||||
Historical observation | 739.43 | 275.43 | 0.37 | - | - | - |
BCCR_BCM2.0(A1B) | 741.76 | 258.55 | 0.35 | 0.31 | −6.13 | −6.43 |
BCCR_BCM2.0(A2) | 739.93 | 263.35 | 0.36 | 0.07 | −4.39 | −4.45 |
BCCR_BCM2.0(B1) | 735.28 | 260.24 | 0.35 | −0.56 | −5.52 | −4.98 |
CSIRO_MK3.0(A1B) | 790.78 | 300.37 | 0.38 | 6.94 | 9.06 | 1.97 |
CSIRO_MK3.0(A2) | 726.37 | 249.02 | 0.34 | −1.77 | −9.59 | −7.97 |
CSIRO_MK3.0(B1) | 678.03 | 217.10 | 0.32 | −8.30 | −21.18 | −14.04 |
MIROC3.2m(A1B) | 805.40 | 306.29 | 0.38 | 8.92 | 11.20 | 2.10 |
MIROC3.2m(A2) | 760.50 | 276.14 | 0.36 | 2.85 | 0.26 | −2.52 |
MIROC3.2m(B1) | 793.18 | 300.71 | 0.38 | 7.27 | 9.18 | 1.78 |
ACCESS1.0 (RCP4.5) | 841.15 | 331.45 | 0.39 | 13.76 | 20.34 | 5.79 |
ACCESS1.0 (RCP8.5) | 909.90 | 398.39 | 0.44 | 23.05 | 44.64 | 17.54 |
BCC-CSM1.1(m)(RCP4.5) | 752.82 | 261.36 | 0.35 | 1.81 | −5.11 | −6.80 |
BCC-CSM1.1(m)(RCP8.5) | 759.89 | 269.18 | 0.35 | 2.77 | −2.27 | −4.90 |
CESM1(BGC) (RCP4.5) | 741.93 | 254.00 | 0.34 | 0.34 | −7.78 | −8.09 |
CESM1(BGC) (RCP8.5) | 748.55 | 264.06 | 0.35 | 1.23 | −4.13 | −5.30 |
CESM1(CAM5) (RCP4.5) | 807.84 | 307.95 | 0.38 | 9.25 | 11.81 | 2.34 |
CESM1(CAM5) (RCP8.5) | 761.03 | 268.87 | 0.35 | 2.92 | −2.38 | −5.15 |
CMCC-CM (RCP4.5) | 675.31 | 204.83 | 0.30 | −8.67 | −25.63 | −18.57 |
CMCC-CM (RCP8.5) | 690.96 | 204.70 | 0.30 | −6.56 | −25.68 | −20.47 |
MPI-ESM-MR (RCP4.5) | 766.74 | 266.63 | 0.35 | 3.69 | −3.20 | −6.64 |
MPI-ESM-MR (RCP8.5) | 756.81 | 248.18 | 0.33 | 2.35 | −9.90 | −11.97 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Zhang, C.; Qi, W.; Cai, W.; Zhao, X.; Wang, X. Multiple Climate Change Scenarios and Runoff Response in Biliu River. Water 2018, 10, 126. https://doi.org/10.3390/w10020126
Zhu X, Zhang C, Qi W, Cai W, Zhao X, Wang X. Multiple Climate Change Scenarios and Runoff Response in Biliu River. Water. 2018; 10(2):126. https://doi.org/10.3390/w10020126
Chicago/Turabian StyleZhu, Xueping, Chi Zhang, Wei Qi, Wenjun Cai, Xuehua Zhao, and Xueni Wang. 2018. "Multiple Climate Change Scenarios and Runoff Response in Biliu River" Water 10, no. 2: 126. https://doi.org/10.3390/w10020126
APA StyleZhu, X., Zhang, C., Qi, W., Cai, W., Zhao, X., & Wang, X. (2018). Multiple Climate Change Scenarios and Runoff Response in Biliu River. Water, 10(2), 126. https://doi.org/10.3390/w10020126