Next Article in Journal
A Serious Game Designed to Explore and Understand the Complexities of Flood Mitigation Options in Urban–Rural Catchments
Next Article in Special Issue
Variability of Arctic Sea Ice (1979–2016)
Previous Article in Journal
Swimming Pool Evaporative Water Loss and Water Use in the Balearic Islands (Spain)
Previous Article in Special Issue
Object-Based Convolutional Neural Networks for Cloud and Snow Detection in High-Resolution Multispectral Imagers
Open AccessArticle

Evaluation of Evapotranspiration Estimates in the Yellow River Basin against the Water Balance Method

Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
Author to whom correspondence should be addressed.
Water 2018, 10(12), 1884;
Received: 8 November 2018 / Revised: 12 December 2018 / Accepted: 14 December 2018 / Published: 19 December 2018
(This article belongs to the Special Issue Satellite Remote Sensing and Analyses of Climate Variability)
Evapotranspiration (ET), a critical process in global climate change, is very difficult to estimate at regional and basin scales. In this study, we evaluated five ET products: the Global Land Surface Evaporation with the Amsterdam Methodology (GLEAM, the EartH2Observe ensemble (E2O)), the Global Land Data Assimilation System with Noah Land Surface Model-2 (GLDAS), a global ET product at 8 km resolution from Zhang (ZHANG) and a supplemental land surface product of the Modern-ERA Retrospective analysis for Research and Applications (MERRA_land), using the water balance method in the Yellow River Basin, China, including twelve catchments, during the period of 1982–2000. The results showed that these ET products have obvious different performances, in terms of either their magnitude or temporal variations. From the viewpoint of multiple-year averages, the MERRA_land product shows a fairly similar magnitude to the ETw derived from the water balance method, while the E2O product shows significant underestimations. The GLEAM product shows the highest correlation coefficient. From the viewpoint of interannual variations, the ZHANG product performs best in terms of magnitude, while the E2O still shows significant underestimations. However, the E2O product best describes the interannual variations among the five ET products. Further study has indicated that the discrepancies between the ET products in the Yellow River Basin are mainly due to the quality of precipitation forcing data. In addition, most ET products seem to not be sensitive to the downward shortwave radiation. View Full-Text
Keywords: ET product; evaluation; water balance method; the Yellow River ET product; evaluation; water balance method; the Yellow River
Show Figures

Figure 1

MDPI and ACS Style

Wang, G.; Pan, J.; Shen, C.; Li, S.; Lu, J.; Lou, D.; Hagan, D.F.T. Evaluation of Evapotranspiration Estimates in the Yellow River Basin against the Water Balance Method. Water 2018, 10, 1884.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Search more from Scilit
Back to TopTop