Detecting Snowfall Events over Mountainous Areas Using Optical Imagery
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Topography
2.3. MODIS Data
2.4. Meteorological Data
3. Methodology
3.1. Preprocessing Optical Data
3.2. Extracting Snow Cover
3.3. Estimating Snow Grain Size
3.4. Detecting Snowfall Events
4. Results
4.1. Single Snowfall Detection Results
4.2. Snowfall Distribution Pattern of Each Quarter
4.3. Snowfall Distribution Pattern for the Entire Hydrological Year
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Dedieu, J.P.; Lessard-Fontaine, A.; Ravazzani, G.; Cremonese, E.; Shalpykova, G.; Beniston, M. Shifting mountain snow patterns in a changing climate from remote sensing retrieval. Sci. Total Environ. 2014, 493, 1267–1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Fayad, A.; Gascoin, S.; Faour, G.; López-Moreno, J.I.; Drapeau, L.; Page, M.L.; Escadafal, R. Snow hydrology in mediterranean mountain regions: A review. J. Hydrol. 2017, 551, 374–396. [Google Scholar] [CrossRef]
- Stoffel, M.; Wyżga, B.; Marston, R.A. Floods in mountain environments: A synthesis. Geomorphology 2016, 272, 1–9. [Google Scholar] [CrossRef]
- Stephens, G.L.; O’Brien, D.; Webster, P.J.; Pilewski, P.; Kato, S.; Li, J.-L. The albedo of earth. Rev. Geophys. 2015, 53, 141–163. [Google Scholar] [CrossRef]
- Levizzani, V.; Laviola, S.; Cattani, E. Detection and measurement of snowfall from space. Remote Sens. 2011, 3, 145–166. [Google Scholar] [CrossRef]
- You, Y.; Wang, N.-Y.; Ferraro, R.; Rudlosky, S. Quantifying the snowfall detection performance of the gpm microwave imager channels over land. J. Hydrometeorol. 2017, 18, 729–751. [Google Scholar] [CrossRef]
- Liu, G.; Seo, E.-K. Detecting snowfall over land by satellite high-frequency microwave observations: The lack of scattering signature and a statistical approach. J. Geophys. Res. Atmos. 2013, 118, 1376–1387. [Google Scholar] [CrossRef]
- Milani, L.; Kulie, M.S.; Casella, D.; Dietrich, S.; L’Ecuyer, T.S.; Panegrossi, G.; Porcù, F.; Sanò, P.; Wood, N.B. Cloudsat snowfall estimates over antarctica and the southern ocean: An assessment of independent retrieval methodologies and multi-year snowfall analysis. Atmos. Res. 2018, 213, 121–135. [Google Scholar] [CrossRef]
- Panegrossi, G.; Rysman, J.-F.; Casella, D.; Marra, A.; Sanò, P.; Kulie, M. Cloudsat-based assessment of gpm microwave imager snowfall observation capabilities. Remote Sens. 2017, 9, 1263. [Google Scholar] [CrossRef]
- Kim, J.; Jung, I.; Park, K.; Yoon, S.; Lee, D. Hydrological utility and uncertainty of multi-satellite precipitation products in the mountainous region of South Korea. Remote Sens. 2016, 8, 608. [Google Scholar] [CrossRef]
- Dozier, J.; Painter, T.H. Multispectral and hyperspectral remote sensing of alpine snow properties. Annu. Rev. Earth Planet. Sci. 2004, 32, 465–494. [Google Scholar] [CrossRef]
- Frei, A.; Tedesco, M.; Lee, S.; Foster, J.; Hall, D.K.; Kelly, R.; Robinson, D.A. A review of global satellite-derived snow products. Adv. Space Res. 2012, 50, 1007–1029. [Google Scholar] [CrossRef] [Green Version]
- Dozier, J.; Green, R.O.; Nolin, A.W.; Painter, T.H. Interpretation of snow properties from imaging spectrometry. Remote Sens. Environ. 2009, 113, S25–S37. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. Modis snow-cover products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A. Accuracy assessment of the modis snow products. Hydrol. Processes 2007, 21, 1534–1547. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Foster, J.L.; Kumar, S.V. Development and evaluation of a cloud-gap-filled modis daily snow-cover product. Remote Sens. Environ. 2010, 114, 496–503. [Google Scholar] [CrossRef]
- Marchane, A.; Jarlan, L.; Hanich, L.; Boudhar, A.; Gascoin, S.; Tavernier, A.; Filali, N.; Le Page, M.; Hagolle, O.; Berjamy, B. Assessment of daily modis snow cover products to monitor snow cover dynamics over the moroccan atlas mountain range. Remote Sens. Environ. 2015, 160, 72–86. [Google Scholar] [CrossRef]
- Domine, F.; Albert, M.; Huthwelker, T.; Jacobi, H.-W.; Kokhanovsky, A.A.; Lehning, M.; Picard, G.; Simpson, W.R. Snow physics as relevant to snow photochemistry. Atmos. Chem. Phys. 2008, 8, 171–208. [Google Scholar] [CrossRef] [Green Version]
- Fierz, C.; Armstrong, R.L.; Durand, Y.; Etchevers, P.; Greene, E.; McClung, D.M.; Nishimura, K.; Satyawali, P.K.; Sokratov, S.A. The International Classification for Seasonal Snow on the Ground; IHP-VII Technical Documents in Hydrology No. 83, IACS Contribution No. 1; UNESCO-IHP: Paris, France, 2009. [Google Scholar]
- Colbeck, S.C. An overview of seasonal snow metamorphism. Rev. Geophys. Space Phys. 1982, 20, 45–61. [Google Scholar] [CrossRef]
- Flanner, M.G.; Zender, C.S. Linking snowpack microphysics and albedo evolution. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Lyapustin, A.; Tedesco, M.; Wang, Y.J.; Aoki, T.; Hori, M.; Kokhanovsky, A. Retrieval of snow grain size over greenland from modis. Remote Sens. Environ. 2009, 113, 1976–1987. [Google Scholar] [CrossRef]
- Zege, E.P.; Katsev, I.L.; Malinka, A.V.; Prikhach, A.S.; Heygster, G.; Wiebe, H. Algorithm for retrieval of the effective snow grain size and pollution amount from satellite measurements. Remote Sens. Environ. 2011, 115, 2674–2685. [Google Scholar] [CrossRef]
- Wiebe, H.; Heygster, G.; Zege, E.; Aoki, T.; Hori, M. Snow grain size retrieval sgsp from optical satellite data: Validation with ground measurements and detection of snow fall events. Remote Sens. Environ. 2013, 128, 11–20. [Google Scholar] [CrossRef]
- Wang, J.; Feng, X.; Xiao, P.; Ye, N.; Zhang, X.; Cheng, Y. Snow grain-size estimation over mountainous areas from modis imagery. IEEE Geosci. Remote Sens. Lett. 2018, 15, 97–101. [Google Scholar] [CrossRef]
- Hu, R.J. The Natural Geography of Tianshan Mountain in China; China Environmental Science Press: Beijing, China, 2004. [Google Scholar]
- Yang, Z.N. Glacier Water Resources in China; Gansu Science and Technology Press: Lanzhou, China, 1991. [Google Scholar]
- Reuter, H.I.; Nelson, A.; Jarvis, A. An evaluation of void filling interpolation methods for srtm data. Int. J. Geogr. Inf. Sci. 2007, 21, 983–1008. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanré, D.; Deuze, J.L.; Herman, M.; Morcrette, J.J. Second simulation of the satellite signal in the solar spectrum, 6s: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A.; Zege, E.P. Scattering optics of snow. Appl. Opt. 2004, 43, 1589–1602. [Google Scholar] [CrossRef] [PubMed]
- Barth, E.L. Cloud formation along mountain ridges on Titan. Planet. Space Sci. 2010, 58, 1740–1747. [Google Scholar] [CrossRef]
- Chow, F.K.; Wekker, S.F.J.D.; Snyder, B.J. Mountain Weather Research and Forecasting; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Huang, X.; Deng, J.; Wang, W.; Feng, Q.; Liang, T. Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau. Remote Sens. Environ. 2017, 190, 274–288. [Google Scholar] [CrossRef]
- Wilson, A.M.; Parmentier, B.; Jetz, W. Systematic land cover bias in collection 5 modis cloud mask and derived products—A global overview. Remote Sens. Environ. 2014, 141, 149–154. [Google Scholar] [CrossRef]
- Deng, J.; Huang, X.; Feng, Q.; Ma, X.; Liang, T. Toward improved daily cloud-free fractional snow cover mapping with multi-source remote sensing data in China. Remote Sens. 2015, 7, 6986–7006. [Google Scholar] [CrossRef]
- Dong, C.; Menzel, L. Producing cloud-free modis snow cover products with conditional probability interpolation and meteorological data. Remote Sens. Environ. 2016, 186, 439–451. [Google Scholar] [CrossRef]
- Laiti, L.; Giovannini, L.; Zardi, D.; Belluardo, G.; Moser, D. Estimating hourly beam and diffuse solar radiation in an alpine valley: A critical assessment of decomposition models. Atmosphere 2018, 9, 117. [Google Scholar] [CrossRef]
- Tong, J.; Déry, S.J.; Jackson, P.L. Topographic control of snow distribution in an alpine watershed of western Canada inferred from spatially-filtered modis snow products. Hydrol. Earth Syst. Sci. 2009, 13, 319–326. [Google Scholar] [CrossRef]
Station | Longitude (°N) | Latitude (°E) | Altitude (m) | PE | Station | Longitude (°N) | Latitude (°E) | Altitude (m) | PE |
---|---|---|---|---|---|---|---|---|---|
Caijiahu | 44.20 | 87.53 | 441.0 | 75 | Miquan | 43.58 | 87.39 | 601.2 | 94 |
Shihezi | 44.32 | 86.05 | 443.7 | 70 | Urumchi | 43.78 | 87.62 | 918.7 | 88 |
Ulanwusu | 44.28 | 85.82 | 469.0 | 98 | Xinyuan | 43.45 | 83.30 | 929.1 | 133 |
Manas | 44.32 | 86.20 | 472.2 | 87 | Hejing | 42.32 | 86.40 | 1102.0 | 78 |
Wusu | 44.43 | 84.67 | 478.3 | 110 | Baluntai | 42.73 | 86.30 | 1738.3 | 74 |
Shawan | 44.33 | 85.62 | 523.2 | 105 | Xiaoquzi | 43.57 | 87.10 | 2161.0 | 118 |
Hutubi | 44.13 | 86.82 | 523.5 | 85 | Mushizhan | 43.28 | 87.12 | 2355.6 | 121 |
Fukang | 44.17 | 87.92 | 567.9 | 86 | Bayanbulak | 43.03 | 84.15 | 2458.9 | 108 |
Changji | 44.02 | 87.43 | 579.3 | 79 | Xidagou | 43.10 | 86.83 | 3543.8 | 109 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhang, Y.; Cheng, Y.; Zhang, X.; Feng, X.; Huang, W.; Zhou, H. Detecting Snowfall Events over Mountainous Areas Using Optical Imagery. Water 2018, 10, 1514. https://doi.org/10.3390/w10111514
Wang J, Zhang Y, Cheng Y, Zhang X, Feng X, Huang W, Zhou H. Detecting Snowfall Events over Mountainous Areas Using Optical Imagery. Water. 2018; 10(11):1514. https://doi.org/10.3390/w10111514
Chicago/Turabian StyleWang, Jiangeng, Yonghong Zhang, Yinyi Cheng, Xueliang Zhang, Xuezhi Feng, Wei Huang, and Hao Zhou. 2018. "Detecting Snowfall Events over Mountainous Areas Using Optical Imagery" Water 10, no. 11: 1514. https://doi.org/10.3390/w10111514