Future Climate Change and Its Impact on Runoff Generation from the Debris-Covered Inylchek Glaciers, Central Tian Shan, Kyrgyzstan
Abstract
:1. Introduction
- (1)
- How will global climate change affect the regional climate in Central Tian Shan and how large is the uncertainty between the used scenarios?
- (2)
- How do debris cover, ice cliffs and supraglacial lakes influence the melt rates?
- (3)
- How will melt and runoff at the Inylchek glaciers change in the future considering different climate scenarios?
2. Materials and Methods
2.1. Study Area
2.2. Hydrological Model
2.2.1. Spatially Distributed Surface Fluxes
2.2.2. Ablation at Debris-Covered Areas, Ice Cliffs and Supraglacial Lakes
2.2.3. Soil Moisture Storage and Runoff Generation
2.2.4. Consideration of Lake Merzbacher
2.3. Input Data
2.3.1. Meteorological Input Data
2.3.2. Calibration Data
2.3.3. Validation Values from Literature
2.3.4. Spatial Input
2.4. Model Calibration and Validation
2.4.1. Objective Functions
2.4.2. Calibration Procedure
3. Results
3.1. Climate Scenarios
3.2. Calibration Results
3.3. Melt- and Runoff Scenarios
4. Discussion
4.1. How Will Runoff and Melt Change in Future?
4.1.1. Annual Runoff Changes
4.1.2. ELA Changes
4.1.3. Monthly Runoff Changes
4.2. What Is the Contribution of Snow, Ice and Precipitation to Runoff?
4.3. How Important Are Debris Cover, Ice Cliffs and Supraglacial Lakes for Melt Rates at Debris-Covered Glaciers?
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kaser, G.; Grosshauser, M.; Marzeion, B. Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl. Acad. Sci. USA 2010, 107, 20223–20227. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.W. Water resources, land exploration and population dynamics in arid areas—The case of the Tarim River Basin in Xinjiang of China. Popul. Environ. 2005, 26, 471–503. [Google Scholar] [CrossRef]
- Feike, T.; Mamitimin, Y.; Li, L.; Doluschitz, R. Development of agricultural land and water use and its driving forces along the Aksu and Tarim River, PR China. Environ. Earth Sci. 2015, 73, 517–531. [Google Scholar] [CrossRef]
- Hou, P.; Beeton, R.; Carter, R.; Dong, X.; Li, X. Response to environmental flows in the lower Tarim River, Xinjiang, China: Ground water. J. Environ. Manag. 2007, 83, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Chen, Y.; Li, J. Impact of climate change on water resources in the Tarim River basin. Water Resour. Manag. 2004, 18, 439–458. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y. Impact of population growth and land-use change on water resources and ecosystems of the arid Tarim River Basin in Western China. Int. J. Sustain. Dev. World 2010, 13, 295–305. [Google Scholar] [CrossRef]
- Chen, Y.N.; Xu, C.C.; Hao, X.M.; Li, W.H.; Chen, Y.P.; Zhu, C.G.; Ye, Z.X. Fifty-year climate change and its effect on annual runoff in the Tarim River Basin, China. Quat. Int. 2009, 208, 53–61. [Google Scholar] [CrossRef]
- Kundzewicz, Z.; Merz, B.; Vorogushyn, S.; Hartmann, H.; Duethmann, D.; Wortmann, M.; Huang, S.; Su, B.; Jiang, T.; Krysanova, V. Analysis of changes in climate and river discharge with focus on seasonal runoff predictability in the Aksu River Basin. Environ. Earth Sci. 2015, 73, 501–516. [Google Scholar] [CrossRef]
- Aizen, V.B.; Aizen, E.M. Estimation of glacial runoff to the Tarim River, central Tien Shan. IAHS Publ. 1998, 248, 191–198. [Google Scholar]
- Pieczonka, T.; Bolch, T. Region-wide glacier mass budgets and area changes for the Central Tien Shan between 1975 and 1999 using Hexagon KH-9 imagery. Glob. Planet. Chang. 2015, 128, 1–13. [Google Scholar] [CrossRef]
- Shangguan, D.H.; Bolch, T.; Ding, Y.J.; Krohnert, M.; Pieczonka, T.; Wetzel, H.U.; Liu, S.Y. Mass changes of Southern and Northern Inylchek Glacier, Central Tian Shan, Kyrgyzstan, during similar to 1975 and 2007 derived from remote sensing data. Cryosphere 2015, 9, 703–717. [Google Scholar] [CrossRef]
- Liu, S.Y.; Ding, Y.J.; Shangguan, D.H.; Zhang, Y.; Li, J.; Han, H.D.; Wang, J.; Xie, C.W. Glacier retreat as a result of climate warming and increased precipitation in the Tarim river basin, northwest China. Ann. Glaciol. 2006, 43, 91–96. [Google Scholar] [CrossRef]
- Shangguan, D.; Liu, S.; Ding, Y.; Ding, L.; Xu, J.; Jing, L. Glacier changes during the last forty years in the Tarim Interior River basin, northwest China. Prog. Nat. Sci. 2009, 19, 727–732. [Google Scholar] [CrossRef]
- Osmonov, A.; Bolch, T.; Xi, C.; Kurban, A.; Guo, W. Glacier characteristics and changes in the Sary-Jaz River Basin (Central Tien Shan, Kyrgyzstan)–1990–2010. Remote. Sens. Lett. 2013, 4, 725–734. [Google Scholar] [CrossRef]
- Cruz, R.V.; Harasawa, H.; Lal, M.; Wu, S.; Anokhin, Y.; Punsalmaa, B.; Honda, Y.; Jafari, M.; Li, C.; Huu Ninh, N. Asia. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 469–506. [Google Scholar]
- Mannig, B.; Mueller, M.; Starke, E.; Merkenschlager, C.; Mao, W.; Zhi, X.; Podzun, R.; Jacob, D.; Paeth, H. Dynamical downscaling of climate change in Central Asia. Glob. Planet. Chang. 2013, 110, 26–39. [Google Scholar] [CrossRef]
- Reyers, M.; Pinto, J.G.; Paeth, H. Statistical-dynamical downscaling of present day and future precipitation regimes in the Aksu river catchment in Central Asia. Glob. Planet. Chang. 2013, 107, 36–49. [Google Scholar] [CrossRef]
- Konz, M.; Uhlenbrook, S.; Braun, L.; Shrestha, A.; Demuth, S. Implementation of a process-based catchment model in a poorly gauged, highly glacierized Himalayan headwater. Hydrol. Earth Syst. Sci. 2007, 11, 1323–1339. [Google Scholar] [CrossRef] [Green Version]
- Huss, M.; Farinotti, D.; Bauder, A.; Funk, M. Modelling runoff from highly glacierized alpine drainage basins in a changing climate. Hydrol. Process. 2008, 22, 3888–3902. [Google Scholar] [CrossRef]
- Shahgedanova, M.; Hagg, W.; Zacios, M.; Popovnin, V. An Assessment of the Recent Past and Future Climate Change, Glacier Retreat, and Runoff in the Caucasus Region Using Dynamical and Statistical Downscaling and HBV-ETH Hydrological Model. NATO Sci. Peace Secur. 2009, 63–72. [Google Scholar] [CrossRef]
- Hagg, W.; Hoelzle, M.; Wagner, S.; Mayr, E.; Klose, Z. Glacier and runoff changes in the Rukhk catchment, upper Amu-Darya basin until 2050. Glob. Planet. Chang. 2013, 110, 65–73. [Google Scholar] [CrossRef]
- Hagg, W.; Braun, L.N.; Weber, M.; Becht, M. Runoff modelling in glacierized Central Asian catchments for present-day and future climate. Nord. Hydrol. 2006, 37, 93–105. [Google Scholar] [CrossRef] [Green Version]
- Hagg, W.; Braun, L.; Kuhn, M.; Nesgaard, T. Modelling of hydrological response to climate change in glacierized Central Asian catchments. J. Hydrol. 2007, 332, 40–53. [Google Scholar] [CrossRef] [Green Version]
- Sorg, A.; Huss, M.; Rohrer, M.; Stoffel, M. The days of plenty might soon be over in glacierized Central Asian catchments. Environ. Res. Lett. 2014, 9, 104018. [Google Scholar] [CrossRef] [Green Version]
- Wortmann, M.; Krysanova, V.; Kundzewicz, Z.W.; Su, B.; Li, X. Assessing the influence of the Merzbacher Lake outburst floods on discharge using the hydrological model SWIM in the Aksu headwaters, Kyrgyzstan/NW China. Hydrol. Process. 2014, 28, 6337–6350. [Google Scholar] [CrossRef]
- Luo, Y.; Arnold, J.; Liu, S.; Wang, X.; Chen, X. Inclusion of glacier processes for distributed hydrological modeling at basin scale with application to a watershed in Tianshan Mountains, northwest China. J. Hydrol. 2013, 477, 72–85. [Google Scholar] [CrossRef]
- Bolch, T. Asian glaciers are a reliable water source. Nature 2017, 545, 161–162. [Google Scholar] [CrossRef] [PubMed]
- Scherler, D.; Bookhagen, B.; Strecker, M.R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci. 2011, 4, 156–159. [Google Scholar]
- Carenzo, M.; Pellicciotti, F.; Mabillard, J.; Reid, T.; Brock, B.W. An enhanced temperature index model for debris-covered glaciers accounting for thickness effect. Adv. Water Resour. 2016, 94, 457–469. [Google Scholar] [CrossRef] [PubMed]
- Østrem, G. Ice melting under a thin layer of moraine, and the existence of ice cores in moraine ridges. Geogr. Ann. A 1959, 41, 228–230. [Google Scholar] [CrossRef]
- Mihalcea, C.; Mayer, C.; Diolaiuti, G.; Lambrecht, A.; Smiraglia, C.; Tartari, G. Ice ablation and meteorolopical conditions on the debris-covered area of Baltoro glacier, Karakoram, Pakistan. Ann. Glaciol. 2006, 43, 292–300. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.Y.; Ding, Y.J. Glacier meltwater and runoff modelling, Keqicar Baqi glacier, Southwestern Tien Shan, China. J. Glaciol. 2007, 53, 91–98. [Google Scholar] [CrossRef]
- Juen, M.; Mayer, C.; Lambrecht, A.; Han, H.; Liu, S. Impact of varying debris cover thickness on ablation: A case study for Koxkar Glacier in the Tien Shan. Cryosphere 2014, 8, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Ragettli, S.; Bolch, T.; Pellicciotti, F. Heterogeneous glacier thinning patterns over the last 40 years in Langtang Himal, Nepal. Cryosphere 2016, 10, 2075–2097. [Google Scholar] [CrossRef]
- Hagg, W.; Mayer, C.; Lambrecht, A.; Helm, A. Sub-debris melt rates on Southern Inylchek Glacier, Central Tian Shan. Geogr. Ann. A 2008, 90, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Nuimura, T.; Fujita, K.; Yamaguchi, S.; Sharma, R.R. Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992–2008. J. Glaciol. 2012, 58, 648–656. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y.; Kääb, A. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 2013, 7, 1263–1286. [Google Scholar] [CrossRef] [Green Version]
- Mavlyudov, B. Glacial karst, why it important to research. Acta Carsol. 2006, 35, 55–67. [Google Scholar] [CrossRef]
- Buri, P.; Pellicciotti, A. Aspect controls the survival of ice cliffs on debris-covered glaciers. Proc. Natl. Acad. Sci. USA 2018, 201713892. [Google Scholar] [CrossRef] [PubMed]
- Sakai, A.; Takeuchi, N.; Fujita, K.; Nakawo, M. Role of supraglacial ponds in the ablation process of a debris-covered glacier in the Nepal Himalayas, Debris-Covered Glaciers. IAHS Publ. 2000, 265, 119–130. [Google Scholar]
- Han, H.D.; Wang, J.A.; Wei, J.F.; Liu, S.Y. Backwasting rate on debris-covered Koxkar glacier, Tuomuer mountain, China. J. Glaciol. 2010, 56, 287–296. [Google Scholar] [CrossRef]
- Benn, D.I.; Bolch, T.; Hands, K.; Gulley, J.; Luckman, A.; Nicholson, L.I.; Quincey, D.; Thompson, S.; Toumi, R.; Wiseman, S. Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Sci. Rev. 2012, 114, 156–174. [Google Scholar] [CrossRef] [Green Version]
- Reid, T.D.; Brock, B.W. Assessing ice-cliff backwasting and its contribution to total ablation of debris-covered Miage glacier, Mont Blanc massif, Italy. J. Glaciol. 2014, 60, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Sakai, A.; Nakawo, M.; Fujita, K. Distribution characteristics and energy balance of ice cliffs on debris-covered glaciers, Nepal Himalaya. Arct. Antarct. Alp. Res. 2002, 34, 12–19. [Google Scholar] [CrossRef]
- Benn, D.I.; Wiseman, S.; Hands, K.A. Growth and drainage of supraglacial lakes on debris-mantled Ngozumpa Glacier, Khumbu Himal, Nepal. J. Glaciol. 2001, 47, 626–638. [Google Scholar] [CrossRef]
- Mayr, E.; Juen, M.; Mayer, C.; Usubaliev, R.; Hagg, W. Modeling Runoff from the Inylchek Glaciers and Filling of Ice-Dammed Lake Merzbacher, Central Tian Shan. Geogr. Ann. A 2014, 96, 609–625. [Google Scholar] [CrossRef]
- Mikolaichuk, A.V.; Apayarov, F.K.; Chernavskaja, Z.I.; Skrinnik, L.I.; Ghes, M.D.; Neyevin, A.V.; Charimov, T.A. Geological Map of Khan-Tengri Massif—Explanatory Note; ISTC Project No. KR-920. Available online: http://www.kyrgyzstan.ethz.ch/fileadmin/download/kr920/explanatory_note_kr920.pdf (accessed on 22 October 2018).
- Aizen, V.B.; Aizen, E.M.; Melack, J.M. Climate snow cover, glaciers and runoff in the Tien Shan, Central Asia. Water Resour. Bull. 1995, 31, 1113–1129. [Google Scholar] [CrossRef]
- Glazirin, G.E.; Popov, V.I. Lednik Severnyi Inylchek za poslednie poltora veka [Northern Inylchek Glacier in the last 150 years]. Materialy Glyatsiologicheskikh Issledovannii (Data Glaciol. Stud.) 1999, 87, 165–168. (In Russian) [Google Scholar]
- Glazirin, G. A century of investigations on outbursts of the icedammed lake Merzbacher (central Tien Shan). Austr. J. Earth Sci. 2010, 103, 171–179. [Google Scholar]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-filled SRTM for the globe Version 4. The CGIAR-CSI SRTM 90 m Database. 2008. Available online: http://srtm.csi.cgiar.org (accessed on 7 November 2017).
- Mukherjee, K.; Bolch, T.; Goerlich, F.; Kutuzov, S.; Osmonov, A.; Pieczonka, T.; Shesterova, I. Surge-type glaciers in the Tien Shan (Central Asia). Arct. Antarct. Alp. Res. 2017, 49, 147–171. [Google Scholar] [CrossRef]
- Mayer, C.; Lambrecht, A.; Hagg, W.; Helm, A.; Scharrer, K. Post-drainage ice dam response at Lake Merzbacher, Inylchek glacier, Kyrgyzstan. Geogr. Ann. A 2008, 90, 87–96. [Google Scholar] [CrossRef]
- Braun, L.; Weber, M.; Schulz, M. Consequences of climate change for runoff from Alpine regions. Ann. Glaciol. 2000, 31, 19–25. [Google Scholar] [CrossRef]
- Mayr, E.; Hagg, W.; Mayer, C.; Braun, L. Calibrating a spatially distributed conceptual hydrological model using runoff, annual mass balance and winter mass balance. J. Hydrol. 2013, 478, 40–49. [Google Scholar] [CrossRef]
- Hock, R. A distributed temperature-index ice- and snowmelt model including potential direct solar radiation. J. Glaciol. 1999, 45, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Liu, S.; Ding, Y.; Deng, X.; Wang, Q.; Xie, C.; Wang, J.; Zhang, Y.; Li, J.; Shangguan, D.; et al. Near-surface meteorological characteristics on the Koxkar Baxi Glacier, Tianshan. J. Glaciol. Geocryol. 2008, 30, 967–975. [Google Scholar]
- Roehl, K. Characteristics and evolution of supraglacial ponds on debris-covered Tasman Glacier, New Zealand. J. Glaciol. 2008, 54, 867–880. [Google Scholar] [CrossRef] [Green Version]
- Ng, F.; Liu, S. Temporal dynamics of a jokulhlaup system. J. Glaciol. 2009, 55, 651–665. [Google Scholar] [CrossRef]
- Uppala, S.M.; Kallberg, P.W.; Simmons, A.J.; Andrae, U.; Bechtold, V.D.; Fiorino, M.; Gibson, J.K.; Haseler, J.; Hernandez, A.; Kelly, G.A.; et al. The ERA-40 re-analysis. Q. J. R. Meteor. Soc. 2005, 131, 2961–3012. [Google Scholar] [CrossRef] [Green Version]
- Jacob, D.; Podzun, R. Sensitivity studies with the regional climate model REMO. Meteorol. Atmos. Phys. 1997, 63, 119–129. [Google Scholar] [CrossRef]
- Katz, R.W. Precipitation as a Chain-Dependent Process. J. Appl. Meteorol. 1977, 16, 671–676. [Google Scholar] [CrossRef] [Green Version]
- Konz, M.; Jan Seibert, J. On the value of glacier mass balances for hydrological model calibration. J. Hydrol. 2010, 385, 238–246. [Google Scholar] [CrossRef] [Green Version]
- Schaefli, B.; Huss, M. Integrating point glacier mass balance observations into hydrologic model identification. Hydrol. Earth Syst. Sci. 2011, 15, 1227–1241. [Google Scholar] [CrossRef] [Green Version]
- Jungclaus, J.H.; Keenlyside, N.; Botzet, M.; Haak, H.; Luo, J.-J.; Latif, M.; Marotzke, J.; Mikolajewicz, U.; Roeckner, E. Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J. Clim. 2006, 19, 3952–3972. [Google Scholar] [CrossRef]
- Roeckner, E.; Brokopf, R.; Esch, M.; Giorgetta, M.; Hagemann, S.; Kornblueh, L. Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Clim. 2006, 19, 3771–3791. [Google Scholar] [CrossRef]
- Paeth, H.; Müller, M.; Mannig, B. Global versus local effects on climate change in Asia. Clim. Dyn. 2015, 45, 2151–2164. [Google Scholar] [CrossRef]
- Piani, C.; Haerter, J.O.; Coppola, E. Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol. 2010, 99, 187–192. [Google Scholar] [CrossRef]
- Piani, C.; Weedon, G.P.; Best, M.; Gomes, S.M.; Viterbo, P.; Hagemann, S.; Haerter, J.O. Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J. Hydrol. 2010, 395, 199–215. [Google Scholar] [CrossRef]
- Jones, P.D.; Hulme, M.; Briffa, K.R. A comparison of lamb circulation types with an objective classification scheme. Int. J. Climatol. 1993, 13, 655–663. [Google Scholar] [CrossRef]
- Peters, J.; Bolch, T.; Gafurov, A.; Prechtel, N. Snow cover distribution in the Aksu catchment (Central Tien Shan) 1986–2013 Based on AVHRR and MODIS Data. IEEE J. Sel. Top. Appl. 2015, 8, 5361–5375. [Google Scholar] [CrossRef]
- Voigt, S.; Koch, M.; Baumgartner, M.F. A multichannel threshold technique for NOAA AVHRR data to monitor the extent of snow cover in the Swiss Alps, Interactions Between the Cryosphere, Climate and Greenhouse Gases. IAHS Publ. 1999, 256, 35–43. [Google Scholar]
- Gafurov, A.; Bardossy, A. Cloud removal methodology from MODIS snow cover product. Hydrol. Earth Syst. Sci. 2009, 13, 1361–1373. [Google Scholar] [CrossRef] [Green Version]
- Aizen, V.B.; Aizen, E.M.; Dozier, J.; Melack, J.M.; Sexton, D.D.; Nesterov, V.N. Glacial regime of the highest Tien Shan mountain, Pobeda-Khan Tengry massif. J. Glaciol. 1997, 43, 503–512. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, J.M. On the formation of supraglacial lakes on debris-covered glaciers. IAHS Publ. 2000, 264, 153–161. [Google Scholar]
- Bolch, T.; Buchroithner, M.; Peters, J.; Baessler, M.; Bajracharya, S. Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery. Nat. Hazard Earth. Syst. 2008, 8, 1329–1340. [Google Scholar] [CrossRef] [Green Version]
- Pu, R.L.; Gong, P.; Michishita, R.; Sasagawa, T. Assessment of multi-resolution and multi-sensor data for urban surface temperature retrieval. Remote Sens. Environ. 2006, 104, 211–225. [Google Scholar] [CrossRef]
- Mihalcea, C.; Brock, B.; Diolaiuti, G.; D’Agata, C.; Citterio, M.; Kirkbride, M.; Cutler, M.; Smiraglia, C. Using ASTER satellite and ground-based surface temperature measurements to derive supraglacial debris cover and thickness patterns on Miage Glacier (Mont Blanc Massif, Italy). Cold Reg. Sci. Technol. 2008, 52, 341–354. [Google Scholar] [CrossRef]
- Hahne, K.; Naumann, R.; Niedermann, S.; Wetzel, H.U.; Merchel, S.; Rugel, G. Geochemische Untersuchungen an Moränen des Inylchek-Gletschers im Tien Shan. Syst. Erde 2013, 3, 44–49. (In German) [Google Scholar]
- Aizen, V.B.; Kuzmichenok, V.A.; Surazakov, A.B.; Aizen, E.M. Glacier changes in the central and northern Tien Shan during the last 140 years based on surface and remote-sensing data. Ann. Glaciol. 2006, 43, 202–213. [Google Scholar] [CrossRef]
- Narama, C.; Kääb, A.; Duishonakunov, M.; Abdrakhmatov, K. Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (~1970), Landsat (~2000), and ALOS (~2007) satellite data. Glob. Planet. Chang. 2010, 71, 42–54. [Google Scholar] [CrossRef]
- Sorg, A.; Bolch, T.; Stoffel, M.; Solomina, O.; Beniston, M. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat. Clim. Chang. 2012, 2, 725–731. [Google Scholar] [CrossRef]
- Farinotti, D.; Longuevergne, L.; Moholdt, G.; Duethmann, D.; Mölg, T.; Bolch, T.; Vorogushyn, S.; Güntner, A. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nat. Geosci. 2015, 8, 716–722. [Google Scholar] [CrossRef]
- Anderson, R.S. A model of ablation-dominated medial moraines and the generation of debris-mantled glacier snouts. J. Glaciol. 2000, 46, 459–469. [Google Scholar] [CrossRef]
- Kirkbride, M.P.; Deline, P. The formation of supraglacial debris covers by primary dispersal from transverse englacial debris bands. Earth Surf. Proc. Landf. 2013, 38, 1779–1792. [Google Scholar] [CrossRef]
- Jouvet, G.; Huss, M.; Funk, M.; Blatter, H. Modelling the retreat of Grosser Aletschgletscher, Switzerland, in a changing climate. J. Glaciol. 2011, 57, 1033–1045. [Google Scholar] [CrossRef]
- Goerlich, F.; Bolch, T.; Mukherjee, K.; Pieczonka, T. Glacier mass loss during the 1960s and 1970s in the Ak-Shirak range (Kyrgyzstan) from multiple stereoscopic Corona and Hexagon imagery. Remote Sens. 2017, 9, 275. [Google Scholar] [CrossRef]
- Banerjee, A.; Shankar, R. On the response of Himalayan glaciers to climate change. J. Glaciol. 2013, 59, 480–490. [Google Scholar] [CrossRef]
- Paul, F.; Maisch, M.; Rothenbuhler, C.; Hoelzle, M.; Haeberli, W. Calculation and visualisation of future glacier extent in the Swiss Alps by means of hypsographic modelling. Glob. Planet. Chang. 2007, 55, 343–357. [Google Scholar] [CrossRef]
- Madsen, H. Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives. Adv. Water Resour. 2003, 26, 205–216. [Google Scholar] [CrossRef]
- Vrugt, J.A.; Robinson, B.A. Improved evolutionary optimization from genetically adaptive multimethod search. Proc. Natl. Acad. Sci. USA 2007, 104, 708–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.S.; Srinivasan, R.; Van Liew, M. On the use of multi-algorithm, genetically adaptive multi-objective method for multi-site calibration of the SWAT model. Hydrol. Process. 2010, 24, 955–969. [Google Scholar] [CrossRef]
- Koboltschnig, G.R.; Schoner, W.; Zappa, M.; Kroisleitner, C.; Holzmann, H. Runoff modelling of the glacierized Alpine Upper Salzach basin (Austria): Multi-criteria result validation. Hydrol. Process. 2008, 22, 3950–3964. [Google Scholar] [CrossRef]
- Stahl, K.; Moore, R.D.; Shea, J.M.; Hutchinson, D.; Cannon, A.J. Coupled modelling of glacier and streamflow response to future climate scenarios. Water Resour. Res. 2008, 44, 1–13. [Google Scholar] [CrossRef]
- Udnæs, H.-C.; Alfnes, E.; Andreassen, L.M. Improving runoff modelling using satellite-derived snow covered area? Hydrol. Res. 2007, 38, 21–32. [Google Scholar] [CrossRef]
- Parajka, J.; Blöschl, G. Spatio-temporal combination of MODIS images–potential for snow cover mapping. Water Resour. Res. 2008, 44, W03406. [Google Scholar] [CrossRef]
- Duethmann, D.; Peters, J.; Blume, T.; Vorogushyn, S.; Güntner, A. The value of satellite-derived snow cover images for calibrating a hydrological model in snow- dominated catchments in Central Asia. Water Resour. Res. 2014, 50, 2002–2021. [Google Scholar] [CrossRef]
- Klemes, V. Operational testing of hydrological simulation-models. Hydrol. Sci. J. 1986, 31, 13–24. [Google Scholar] [CrossRef]
- Xu, C.Y. From GCMs to river flow: A review of downscaling methods and hydrologic modelling approaches. Prog. Phys. Geogr. 1999, 23, 229–249. [Google Scholar] [CrossRef]
- Madsen, H. Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. J. Hydrol. 2000, 235, 276–288. [Google Scholar] [CrossRef]
- Seibert, J.; McDonnell, J.J. On the dialog between experimentalist and modeler in catchment hydrology: Use of soft data for multicriteria model calibration. Water Resour. Res. 2002, 38, 23:1–23:14. [Google Scholar] [CrossRef]
- Huss, M.; Zemp, M.; Joerg, P.; Salzmann, N. High uncertainty in 21st century runoff projections from glacierized basins. J. Hydrol. 2014, 510, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Duethmann, D.; Menz, C.; Jiang, T.; Vorogushyn, S. Projections for headwater catchments of the Tarim River reveal glacier retreat and decreasing surface water availability but uncertainties are large. Environ. Res. Lett. 2016, 11, 054024. [Google Scholar] [CrossRef] [Green Version]
- Huss, H.; Hock, R. Global-scale hydrological respone to future glacier mass loss. Nat. Clim. Chang. 2018, 8, 135–140. [Google Scholar] [CrossRef]
- Aizen, V.B.; Aizen, E.M.; Kuzmichonok, V.A. Glaciers and hydrological changes in the Tien Shan: Simulation and prediction. Environ. Res. Lett. 2007, 2, 045019. [Google Scholar] [CrossRef]
- Akhtar, M.; Ahmad, N.; Booij, M.J. The impact of climate change on the water resources of Hindukush-Karakorum-Himalaya region under different glacier coverage scenarios. J. Hydrol. 2008, 355, 148–163. [Google Scholar] [CrossRef]
- Racoviteanu, A.E.; Armstrong, R.; Williams, M.W. Evaluation of an ice ablation model to estimate the contribution of melting glacier ice to annual discharge in the Nepal Himalaya. Water Resour. Res. 2013, 49, 5117–5133. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Pieczonka, T.; Benn, D. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosphere 2011, 5, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Nuimura, T.; Fujita, K.; Fukui, K.; Asahi, K.; Aryal, R.; Ageta, Y. Temporal changes in elevation of the debris-covered ablation area of Khumbu Glacier in the Nepal Himalaya since 1978. Arct. Antarct. Alp. Res. 2011, 43, 246–255. [Google Scholar] [CrossRef]
- Brun, F.; Buri, P.; Miles, E.; Wagnon, P.; Steiner, J.; Berthier, E.; Pellicciotti, F. Quantifying volume loss from ice cliffs on debris-covered glaciers using high-resolution terrestrial and aerial photogrammetry. J. Glaciol. 2016, 234, 684–695. [Google Scholar] [CrossRef]
Parameter | Lower Limit | Upper Limit | Unit | Description |
---|---|---|---|---|
PGRAD | 0 | 10 | % (100 m)−1 | Precipitation lapse rate |
TGRAD | −1.5 | 0 | °C (100 m)−1 | Temperature lapse rate |
T0 | −2 | 2 | °C | Temperature divider (also general temperature correction) |
SCF | 0.1 | 2.5 | - | Snow correction factor |
RCF | 0.1 | 2.5 | - | Rain correction factor |
MF | 1 | 10 | mm (°C d)−1 | Melt factor |
RIce | 0 | 0.01 | - | Radiation index for ice |
RSnow | 0 | 0.01 | - | Radiation index for snow |
CURV | 0 | 5 | - | Threshold value for minimum or maximum accumulation related to curvature |
SPREAD | 0 | 1 | - | Maximum (+SPREAD) and minimum (−SPREAD) accumulation related to curvature |
SMIN | 0 | 100 | ° | Lower border of slope angle |
SMAX | 0 | 100 | ° | Upper border of slope angle |
ETMAX | 1 | 5 | mm d−1 | Maximum evaporation |
BETA | 1 | 5 | - | Coefficient to calculate outflow of soil moisture storage |
LUZ | 0 | 200 | mm | Threshold value for runoff from upper storage |
CPERC | 0 | 10 | mm d−1 | Percolation from upper to lower storage |
k0, k1, k2 | 0 | 1 | - | Storage discharge constants |
CRFR | 0.01 | 0.5 | - | Coefficient of refreezing |
CWH | 0.01 | 0.2 | - | Water holding capacity of snow |
FC | 1 | 500 | mm | Field capacity |
LP | 1 | 500 | mm | Limit for potential evaporation |
RCM | Realization | Past Period | Future Period | ||
---|---|---|---|---|---|
Annual T Mean [°C] | Annual P Sums [mm] | Δ T [°C] | Δ P [%] | ||
REMO | − | −1.74 | 292.44 | 4.30 | −5.41 |
RG A1B | 1 | −2.13 | 324.90 | 3.30 | −2.09 |
2 | −2.07 | 327.89 | 3.42 | −0.07 | |
3 | −2.14 | 318.16 | 3.43 | 0.67 | |
RG A2 | 1 | −2.13 | 323.20 | 3.42 | −0.03 |
2 | −2.09 | 325.66 | 3.42 | −3.20 | |
3 | −2.10 | 327.97 | 3.55 | −5.11 | |
RG B1 | 1 | −2.16 | 331.70 | 3.58 | −0.55 |
2 | −2.08 | 319.69 | 3.43 | −5.20 | |
3 | −2.28 | 329.49 | 3.52 | 0.70 |
First Calibration Step: Automatic Calibration (R2, SCA) | Third Calibration Step: Automatic Calibration (R2, VER) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Sm. | 1963/64 | 1964/65 | 1980/81 | 1986 | 1963/64 | 1964/65 | 1980/81 | 1986 | |
R2 | 1 | 0.95 | 0.92 | 0.60 | 0.90 | 0.92 | 0.74 | ||
2 | 0.90 | 0.80 | 0.88 | 0.90 | 0.83 | 0.88 | |||
3 | 0.85 | 0.84 | 0.90 | 0.86 | 0.88 | 0.86 | |||
SCA [%] | 1 | 85 | 83 | ||||||
2 | 85 | 82 | |||||||
3 | 84 | 82 | |||||||
VER [%] | 1 | 3 | 5 | 15 | 6 | 13 | 0.3 | ||
2 | 18 | 19 | 5 | 0 | 17 | 1 | |||
3 | 24 | 22 | 16 | 12 | 9 | 3 |
Measured Period | Simulation Period | Validation Values from Literature | First Calibration Step Objective Functions: R2 and SCA | Third Calibration Step Objective Functions: R2 and VER | |||||
---|---|---|---|---|---|---|---|---|---|
Realisation | 1 | 2 | 3 | 1 | 2 | 3 | |||
ELA (m a.s.l.) | 1969–1989 | 1970–1989 | 4476 [75] | 4420 | 4253 | 4163 | 4507 | 4460 | 4420 |
Mass balance at 6147 m a.s.l. (mm w.e. a−1) | 1969–1989 | 1970–1989 | 900 [75] | 139 | 157 | 688 | 910 | 921 | 923 |
Mass balance at 3400–3700 m a.s.l. (mm w.e. a−1) | 1974–2000 | 1974–2000 | −1660 [54] | −4864 | −5344 | −6371 | −1646 −3909 | −1653 −3922 | −1654 −3926 |
Mass balance at 3000–3400 m a.s.l. (mm w.e. a−1) | 1974–2000 | 1974–2000 | −1980 [54] | −5367 | −5758 | −6698 | −1972 −2815 | −1980 −2824 | −1971 −2813 |
Sample | Past Period + Past Area | Future Period + Past Area | Future Period + Best Guess | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
REMO | RG A1B | RG A2 | RG B1 | REMO | RG A1B | RG A2 | RG B1 | REMO | RG A1B | RG A2 | RG B1 | ||
1 | Runoff sum [km3/a] | 12.1 | 12.2 | 12.0 | 12.1 | 23.1 | 23.8 | 23.5 | 23.5 | 17.6 | 18.4 | 18.1 | 17.7 |
Change [%] | 91.3 | 95.6 | 96.7 | 94.1 | 46.0 | 51.2 | 51.4 | 46.4 | |||||
2 | Runoff sum [km3/a] | 12.5 | 12.5 | 12.3 | 12.5 | 24.2 | 24.6 | 24.4 | 24.3 | 18.4 | 18.9 | 18.7 | 18.4 |
Change [%] | 93.0 | 96.0 | 97.7 | 94.9 | 47.3 | 51.2 | 52.0 | 47.50 | |||||
3 | Runoff sum [km3/a] | 12.6 | 12.9 | 12.7 | 12.8 | 24.9 | 25.4 | 25.2 | 25.1 | 19.2 | 19.8 | 19.5 | 19.1 |
Change [%] | 97.1 | 96.8 | 98.4 | 96.6 | 51.7 | 53.7 | 53.9 | 49.6 |
Sample | Mean Future Equilibrium Line Altitude [m a.s.l.] | |||
---|---|---|---|---|
REMO | RG A1B | RG A2 | RG B1 | |
1 | 5270 | 5297 | 5280 | 5282 |
2 | 5283 | 5292 | 5273 | 5276 |
3 | 5247 | 5250 | 5210 | 5228 |
This Study | Sakai et al. [45] | Han et al. [42] | Juen et al. [33] | Reid and Brock [44] | |
---|---|---|---|---|---|
Total glacier area [km2] | 570 | 13.8 | 83.6 | - | - |
Bare ice area [%] | 77.3 | 83.3 | 81.3 | 68.0 | - |
Debris-covered area [%] | 22.7 | 16.7 | 18.7 | 32.0 | - |
- Thereof ice cliffs [%] | 3.22 | 1.0 | 1.13 | 1.7 | 1.3 |
Bare ice ablation | 51.9 | - | - | 76.0 | - |
Sub debris ice ablation [%] | 48.1 | - | - | 24.0 | - |
- Thereof ice cliffs [%] | 9.7 | 20.0 | 7.3 | 6.6 | 7.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hagg, W.; Mayr, E.; Mannig, B.; Reyers, M.; Schubert, D.; Pinto, J.G.; Peters, J.; Pieczonka, T.; Juen, M.; Bolch, T.; et al. Future Climate Change and Its Impact on Runoff Generation from the Debris-Covered Inylchek Glaciers, Central Tian Shan, Kyrgyzstan. Water 2018, 10, 1513. https://doi.org/10.3390/w10111513
Hagg W, Mayr E, Mannig B, Reyers M, Schubert D, Pinto JG, Peters J, Pieczonka T, Juen M, Bolch T, et al. Future Climate Change and Its Impact on Runoff Generation from the Debris-Covered Inylchek Glaciers, Central Tian Shan, Kyrgyzstan. Water. 2018; 10(11):1513. https://doi.org/10.3390/w10111513
Chicago/Turabian StyleHagg, Wilfried, Elisabeth Mayr, Birgit Mannig, Mark Reyers, David Schubert, Joaquim G. Pinto, Juliane Peters, Tino Pieczonka, Martin Juen, Tobias Bolch, and et al. 2018. "Future Climate Change and Its Impact on Runoff Generation from the Debris-Covered Inylchek Glaciers, Central Tian Shan, Kyrgyzstan" Water 10, no. 11: 1513. https://doi.org/10.3390/w10111513
APA StyleHagg, W., Mayr, E., Mannig, B., Reyers, M., Schubert, D., Pinto, J. G., Peters, J., Pieczonka, T., Juen, M., Bolch, T., Paeth, H., & Mayer, C. (2018). Future Climate Change and Its Impact on Runoff Generation from the Debris-Covered Inylchek Glaciers, Central Tian Shan, Kyrgyzstan. Water, 10(11), 1513. https://doi.org/10.3390/w10111513