Is the Groundwater in the Hunshandake Desert (Northern China) of Fossil or Meteoric Water Origin? Isotopic and Hydrogeochemical Evidence
Abstract
:1. Introduction
2. Regional Settings
2.1. Location and Landscape
2.2. Structural and Geological Setting
2.3. Climate and Hydrogeology
3. Methods
4. Results
5. Discussion
5.1. Meteoric Water Recharge from Modern Precipitation
5.2. Meteoric Water Recharge from Winter Precipitation
5.3. Fossil Water Origin
5.4. Recharge Sources from Neighboring Catchment
5.4.1. Recharge Source from the Dali River Water
5.4.2. Recharge Source from the Dali Groundwater
5.5. Groundwater Recharge in Desert Regions and Its Environmental Significance
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alley, W.M.; Healy, R.W.; LaBaugh, J.W.; Reilly, T.E. Flow and storage in groundwater systems. Science 2002, 296, 1985–1990. [Google Scholar] [CrossRef] [PubMed]
- Weissmann, G.S.; Zhang, Y.; LaBolle, E.M.; Fogg, G.E. Dispersion of groundwater age in an alluvial aquifer system. Water Resour. Res. 2002, 38, 1198. [Google Scholar] [CrossRef]
- Sturchio, N.C.; Du, X.; Purtschert, R.; Lehmann, B.E.; Sultan, M.; Patterson, L.J.; Lu, Z.T.; Muller, P.; Bigler, T.; Bailey, K.; et al. One million year old groundwater in the Sahara revealed by krypton-81 and chlorine-36. Geophys. Res. Lett. 2004, 31, L05503. [Google Scholar] [CrossRef]
- Bethke, C.M.; Johnson, T.M. Groundwater age and groundwater age dating. Annu. Rev. Earth Planet. Sci. 2008, 36, 121–152. [Google Scholar] [CrossRef]
- McCallum, J.L.; Cook, P.G.; Simmons, C.T. Limitations of the use of environmental tracers to infer groundwater age. Groundwater 2014, 53, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, T.; Befus, K.M.; Jasechko, S.; Luijendijk, E.; Cardenas, M.B. The global volume and distribution of modern groundwater. Nat. Geosci. 2016, 9, 161–167. [Google Scholar] [CrossRef]
- Foster, S.S.D.; Chilton, P.J. Groundwater: The processes and global significance of aquifer degradation. Philos. Trans. R. Soc. Lond. B 2003, 358, 1957–1972. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.G.; Scanlon, B.; Doll, P.; Rodell, M.; Beek, R.V.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Moore, W.S. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature 1996, 380, 612–614. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, W.M.; Simmers, I. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol. Processes 2006, 20, 3335–3370. [Google Scholar] [CrossRef]
- Lerner, D.N.; Issar, A.S.; Simmers, I. Groundwater Recharge. A Guide to Understanding and Estimating Natural Recharge; Heinz Heise: Hanover, Germany, 1990; Volume 8, 345p. [Google Scholar]
- Sorman, A.U.; Abdulrazzak, M.J.; Morel-Seytoux, H.J. Groundwater recharge estimation from ephemeral streams. Case study: Wadi Tabalah, Saudi Arabia. Hydrol. Processes 1997, 11, 1607–1619. [Google Scholar] [CrossRef]
- De Vries, J.J.; Simmers, I. Groundwater recharge: An overview of processes and challenges. Hydrogeol. J. 2002, 10, 5–17. [Google Scholar] [CrossRef]
- Chen, F.; Chen, J.; Holmes, J.; Boomer, I.; Austin, P.; Gates, J.B.; Wang, N.; Brooks, S.J.; Zhang, J. Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region. Quat. Sci. Rev. 2010, 29, 1055–1068. [Google Scholar] [CrossRef]
- Yang, X.; Scuderi, L.A.; Wang, X.; Scuderi, L.J.; Zhang, D.; Li, H.; Forman, S.; Xu, Q.; Wang, R.; Huang, W.; et al. Groundwater sapping as the cause of irreversible desertification of Hunshandake Sandy Lands, Inner Mongolia, Northern China. Proc. Natl. Acad. Sci. USA 2015, 112, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Eizenhöfer, P.R.; Zhao, G.; Zhang, J.; Sun, M. Final closure of the Paleo-Asian Ocean along the Solonker Suture Zone: Constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks. Tectonics 2014, 33, 441–463. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.Y.; Miao, X.D.; Zhou, Y.L.; Mason, J.; Swinehart, J.; Zhang, J.F.; Zhou, L.P.; Yi, S.W. Late Quaternary aeolian activity in the Mu Us and Otindag dune fields (north China) and lagged response to insolation forcing. Geophys. Res. Lett. 2005, 32, 2465–2475. [Google Scholar] [CrossRef]
- Gong, Z.J.; Li, S.H.; Sun, J.M.; Xue, L. Environmental changes in Hunshandake (Otindag) sandy land revealed by optical dating and multi-proxy study of dune sands. J. Asian Earth Sci. 2013, 76, 30–36. [Google Scholar] [CrossRef]
- Ge, X.; Li, Y.; Luloff, A.E.; Dong, K.; Xiao, J. Effect of agricultural economic growth on sandy desertification in Horqin Sandy Land. Ecol. Econ. 2015, 119, 53–63. [Google Scholar] [CrossRef]
- Zhu, Z.; Wu, Z.; Liu, S.; Di, X. An Outline of Chinese Deserts; Science Press: Beijing, China, 1980. (In Chinese) [Google Scholar]
- Yang, X.; Zhu, B.; Wang, X.; Li, C.; Zhou, Z.; Chen, J.; Yin, J.; Lu, Y. Late Quaternary environmental changes and organic carbon density in the Hunshandake Sandy Land, eastern Inner Mongolia, China. Glob. Planet. Chang. 2008, 61, 70–78. [Google Scholar] [CrossRef]
- Jian, P.; Liu, D.; Kröner, A.; Windley, B.F.; Shi, Y.; Zhang, W.; Zhang, F.; Miao, L.; Zhang, L.; Tomurhuu, D. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos 2010, 118, 169–190. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, K.; Li, J.; Tang, W.; Chen, Y.; Luo, Z. Geochronology and geochemistry of the Eastern Erenhot ophiolitic complex: Implications for the tectonic evolution of the Inner Mongolia–Daxinganling Orogenic Belt. J. Asian Earth Sci. 2015, 97, 279–293. [Google Scholar] [CrossRef]
- Jahn, B.M. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. Geol. Soc. Lond. Spec. Publ. 2004, 226, 73–100. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, X.Y. Paleoplate tectonics between Cathaysia and Angaraland in Inner Mongolia of China. Tectonics 1986, 5, 1073–1088. [Google Scholar] [CrossRef]
- Li, J.Y. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. J. Asian Earth Sci. 2006, 26, 207–224. [Google Scholar] [CrossRef]
- Li, S.; Sun, W.; Li, X.; Zhang, B. Sedimentary characteristics and environmental evolution of Otindag sandy land in Holocene. J. Desert Res. 1995, 15, 323–331. (In Chinese) [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; Mcmahon, T.A. Updated world map of the Koppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Tian, F.; Wang, Y.; Liu, J.; Tang, W.K.; Jiang, N. Late Holocene climate change inferred from a lacustrine sedimentary sequence in southern Inner Mongolia, China. Quat. Int. 2017, 452, 22–32. [Google Scholar] [CrossRef]
- Li, J.Y.; Xu, B.; Yang, X.C.; Jin, Y.X.; Li, Y.Y.; Zhang, J.; Zhao, L.N.; Li, R.L. Dynamic changes and driving force of grassland sandy desertification in Xilin Gol: A case study of Zhenglan Banner. Geogr. Res. 2011, 9, 1669–1682. [Google Scholar]
- Wu, J.; An, N.; Ji, Y.; Wei, X. Analysis on Characteristics of Precipitation and Runoff in Silas MuLun River Basin. Meteorol. J. Inner Mong. 2014, 4, 23–25. (In Chinese) [Google Scholar]
- Yao, S.; Zhu, Z.; Zhang, S.; Zhang, S.; Li, Y. Using SWAT model to simulate the discharge of the river Shandianhe in Inner Mongolia. J. Arid Land Resour. Environ. 2013, 27, 175–180. (In Chinese) [Google Scholar]
- Gran, G. Determination of the equivalence point in potentiometric titrations. Part II. Analyst 1952, 77, 661–671. [Google Scholar] [CrossRef]
- Meybeck, M. Global occurrence of major elements in rivers. In Surface and Ground Water, Weathering, and Soils; Drever, J.I., Holland, H.D., Turekian, K.K., Eds.; Treatise on Geochemistry; Elsevier-Pergamon: Oxford, UK, 2004; Volume 5, pp. 207–223. [Google Scholar]
- Schoeller, H. Géochemie Des Eaux Souterraines: Application Aux Eaux Des Gisements De Pétrole; Société des éditions Technip: Paris, France, 1955. [Google Scholar]
- Zhu, B.Q.; Yang, X.P.; Rioual, P.; Qin, X.G.; Liu, Z.T.; Xiong, H.G.; Yu, J.J. Hydrogeochemistry of three watersheds (the Erlqis, Zhungarer and Yili) in northern Xinjiang, NW China. Appl. Geochem. 2011, 26, 1535–1548. [Google Scholar] [CrossRef]
- Zhu, B.Q.; Yu, J.J.; Qin, X.G.; Rioual, P.; Xiong, H.G. Climatic and geological factors contributing to the natural water chemistry in an arid environment from watersheds in northern Xinjiang, China. Geomorphology 2012, 153–154, 102–114. [Google Scholar] [CrossRef]
- Clark, I.D. Groundwater Geochemistry and Isotopes; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water-analyses. Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar] [CrossRef]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Stolp, B.J.; Solomon, D.K.; Suckow, A.; Vitvar, T.; Rank, D.; Aggarwal, P.K.; Han, L.F. Age dating base flow at springs and gaining streams using helium-3 and tritium: Fischa-Dagnitz system, southern Vienna Basin, Austria. Water Resour. Res. 2010, 46, W07503. [Google Scholar] [CrossRef]
- Chen, J.; Sun, X.; Gu, W.; Tan, H.; Rao, W.; Dong, H.; Liu, X.; Su, Z. Isotopic and hydrochemical data to restrict the origin of the groundwater in the Badain Jaran Desert, Northern China. Geochem. Int. 2012, 50, 455–465. [Google Scholar] [CrossRef]
- Yang, X.; Wang, X.; Liu, Z.; Li, H.; Ren, X.; Zhang, D.; Ma, Z.; Rioual, P.; Jin, X.; Scuderi, L. Initiation and variation of the dune fields in semi-arid China—With a special reference to the Hunshandake Sandy Land, Inner Mongolia. Quat. Sci. Rev. 2013, 78, 369–380. [Google Scholar] [CrossRef]
- Gat, J.R.; Issar, A. Desert isotope hydrology: Water sources of the Sinai Desert. Geochim. Cosmochim. Acta 1974, 38, 1117–1131. [Google Scholar] [CrossRef]
- Gat, J.R. Precipitation, groundwater and surface waters: Control of climate parameters on their isotopic composition and their utilization as palaeoclimatological tools. In Palaeoclimates and Palaeowaters: A Collection of Environmental Isotope Studies, Proceedings of the Advisory Group Meeting, Vienna, Austria, 25–28 November 1980; IAEA: Vienna, Austria, 1983; pp. 3–12. [Google Scholar]
- Love, A.J.; Herczeg, A.L.; Leaney, F.W.; Stadter, M.H.; Dighton, J.C.; Armstrong, D. Groundwater residence time and palaeohydrology in the Otway Basin, South Australia. J. Hydrol. 1994, 153, 157–187. [Google Scholar] [CrossRef]
- Love, A.J.; Herczeg, A.L.; Sampson, L.; Cresswell, R.G.; Fifield, L.K. Sources of chloride and implications for 36Cl dating of old groundwater, south-western Great Artesian basin, Australia. Water Resour. Res. 2000, 36, 1561–1574. [Google Scholar] [CrossRef]
- Zhao, L.; Xiao, H.; Dong, Z.; Xiao, S.; Zhou, M.; Cheng, G.; Yin, L.; Yin, Z. Origins of groundwater inferred from isotopic patterns of the Badain Jaran Desert, Northwestern China. Groundwater 2012, 50, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Pan, F.; Chen, L.; Edmunds, W.M.; Ding, Z.; He, J.; Zhou, K.; Huang, T. Isotopic and geochemical evidence of recharge sources and water quality in the Quaternary aquifer beneath Jinchang city, NW China. Appl. Geochem. 2010, 25, 996–1007. [Google Scholar] [CrossRef]
- Herreta, C.; Gamboa, C.; Custodio, E.; Jordan, T.; Godfrey, L.; Jodar, J.; Luque, J.A.; Vargas, J.; Saez, A. Groundwater origin and recharge in the hyperarid Cordillera de la Costa, Atacama Desert, northern Chile. Sci. Total Environ. 2018, 624, 114–132. [Google Scholar] [CrossRef] [PubMed]
- Subyani, A.M. Use of chloride-mass balance and environmental isotopes for evaluation of groundwater recharge in the alluvial aquifer, Wadi Tharad, western Saudi Arabia. Environ. Geol. 2004, 46, 741–749. [Google Scholar] [CrossRef]
- Guendouz, A.; Moulla, A.S.; Edmunds, W.M.; Zouari, K.; Shand, P.; Mamou, A. Hydrogeochemical and isotopic evolution of water in the Complexe Terminal aquifer in the Algerian Sahara. Hydrogeol. J. 2003, 11, 483–495. [Google Scholar] [CrossRef]
- Herczeg, A.L.; Leaney, F. Review: Environmental tracers in arid-zone hydrology. Hydrogeol. J. 2011, 19, 17–29. [Google Scholar] [CrossRef]
- Chen, J.; Yang, Q.; Hao, G. Using hydrochemical and environmental isotopical data to analyse groundwater recharge in the Hunshandake Sandy Land. Inner Mong. Sci. Technol. Econ. 2008, 17, 9–12. (In Chinese) [Google Scholar]
- Zhen, Z.; Li, C.; Li, W.; Hu, Q.; Liu, X.; Liu, Z.; Yu, R. Characteristics of environmental isotopes of surface water and groundwater and their recharge relationships in Lake Dali basin. J. Lake Sci. 2014, 26, 916–922. (In Chinese) [Google Scholar] [Green Version]
- Fitts, C.R. Groundwater Science; Academic Press: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Boronina, A.; Renard, P.; Balderer, W.; Stichler, W. Application of tritium in precipitation and in groundwater of the Kouris catchment (Cyprus) for description of the regional groundwater flow. Appl. Geochem. 2005, 20, 1292–1308. [Google Scholar] [CrossRef] [Green Version]
- Kazemi, G.A.; Lehr, J.H.; Perrochet, P. Groundwater Age; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Simmers, I. Estimation of Natural Groundwater Recharge; D. Reidel Publishing Co.: Boston, MA, USA, 1988; 510p. [Google Scholar]
- Gee, G.W.; Hillel, D. Groundwater recharge in arid regions: Review and critique of estimation methods. Hydrol. Processes 1988, 2, 255–266. [Google Scholar] [CrossRef]
- Sharma, M.L. Groundwater Recharge; Balkema, A.A., Ed.; A.A. Balkema Publishers: Rotterdam, The Netherlands, 1989; 323p. [Google Scholar]
- Allison, G.B.; Gee, G.W.; Tyler, S.W. Vadose-Zone techniques for estimating groundwater recharge in arid and semiarid regions. Soil Sci. Soc. Am. J. 1994, 58, 6–14. [Google Scholar] [CrossRef]
- IAEA. Isotope Based Assessment of Groundwater Renewal in Water Scarce Regions; IAEA-TECDOC-1246; IAEA: Vienna, Austria, 2001; 273p. [Google Scholar]
- Scanlon, B.R.; Cook, P.G. Preface: Theme issue on groundwater recharge. Hydrogeol. J. 2002, 10, 3–4. [Google Scholar] [CrossRef]
- Hogan, J.F.; Phillips, F.M.; Scanlon, B.R. Groundwater Recharge in a Desert Environment: The Southwestern United States: Water Science Applications Series, Volume 9; American Geophysical Union: Washington, DC, USA, 2004; 294p. [Google Scholar]
Sample ID | Water Type | δ2H (‰) | σ‰ | δ18O (‰) | σ‰ | Deuterium Excess (d) | Tritium (3H) (TU) |
---|---|---|---|---|---|---|---|
g1 | groundwater | −66.764 | 0.199 | −8.895 | 0.026 | 4.496 | / |
g2 | groundwater | −64.758 | 0.291 | −9.336 | 0.039 | 9.930 | / |
g3 | groundwater | −63.424 | 0.269 | −8.635 | 0.008 | 5.656 | / |
g4 | groundwater | −66.055 | 0.149 | −9.621 | 0.062 | 10.913 | 7.25 |
g5 | groundwater | −65.462 | 0.111 | −9.802 | 0.027 | 12.954 | 9.98 |
g6 | groundwater | −68.913 | 0.287 | −10.514 | 0.039 | 15.199 | 22.9 |
g7 | groundwater | −73.105 | 0.298 | −10.662 | 0.041 | 12.191 | / |
g8 | groundwater | −73.676 | 0.220 | −11.023 | 0.037 | 14.508 | 19.6 |
g9 | groundwater | −72.530 | 0.181 | −11.041 | 0.015 | 15.798 | 24.3 |
g10 | groundwater | −74.362 | 0.201 | −11.127 | 0.026 | 14.654 | 18.7 |
g11 | groundwater | −75.924 | 0.340 | −11.260 | 0.015 | 14.156 | 1.86 |
l1 | lake water | −53.128 | 0.229 | −6.553 | 0.002 | −0.704 | / |
l2 | lake water | −50.721 | 0.304 | −6.320 | 0.026 | −0.161 | / |
l3 | lake water | −42.877 | 0.239 | −4.292 | 0.034 | −8.545 | / |
l4 | lake water | −34.155 | 0.243 | 0.381 | 0.040 | −37.203 | / |
l5 | lake water | −45.057 | 0.206 | −4.987 | 0.009 | −5.161 | / |
l6 | lake water | −52.866 | 0.187 | −6.150 | 0.049 | −3.666 | / |
r1 | river water | −66.157 | 0.118 | −10.069 | 0.015 | 14.395 | / |
r2 | river water | −64.996 | 0.148 | −9.549 | 0.012 | 11.396 | / |
r3 | river water | −73.790 | 0.315 | −11.083 | 0.021 | 14.874 | / |
r4 | river water | −85.155 | 0.244 | −11.781 | 0.005 | 9.093 | / |
r5 | river water | −74.978 | 0.195 | −10.084 | 0.003 | 5.694 | / |
s1 | spring water | −70.832 | 0.074 | −10.340 | 0.007 | 11.888 | / |
s2 | spring water | −72.601 | 0.281 | −10.468 | 0.046 | 11.143 | / |
p1 | rain water | −47.435 | 0.374 | −7.141 | 0.017 | 9.693 | / |
Sample-ID | Tritium Content (TU) | Possible Ages (Years) |
---|---|---|
g1 | NM | NE |
g2 | NM | NE |
g3 | NM | NE |
g4 | 7.25 | 20–40 |
g5 | 9.97 | 13–33 |
g6 | 22.91 | 0–20 |
g7 | NM | NE |
g8 | 19.61 | 0–20 |
g9 | 24.34 | 0–17 |
g10 | 18.68 | 0–22 |
g11 | 1.86 | 40–65 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, B.-Q.; Ren, X.-Z.; Rioual, P. Is the Groundwater in the Hunshandake Desert (Northern China) of Fossil or Meteoric Water Origin? Isotopic and Hydrogeochemical Evidence. Water 2018, 10, 1515. https://doi.org/10.3390/w10111515
Zhu B-Q, Ren X-Z, Rioual P. Is the Groundwater in the Hunshandake Desert (Northern China) of Fossil or Meteoric Water Origin? Isotopic and Hydrogeochemical Evidence. Water. 2018; 10(11):1515. https://doi.org/10.3390/w10111515
Chicago/Turabian StyleZhu, Bing-Qi, Xiao-Zong Ren, and Patrick Rioual. 2018. "Is the Groundwater in the Hunshandake Desert (Northern China) of Fossil or Meteoric Water Origin? Isotopic and Hydrogeochemical Evidence" Water 10, no. 11: 1515. https://doi.org/10.3390/w10111515
APA StyleZhu, B.-Q., Ren, X.-Z., & Rioual, P. (2018). Is the Groundwater in the Hunshandake Desert (Northern China) of Fossil or Meteoric Water Origin? Isotopic and Hydrogeochemical Evidence. Water, 10(11), 1515. https://doi.org/10.3390/w10111515