Verification and Validation of URANS Simulations of the Round Buoyant Jet in Counterflow
Abstract
:1. Introduction
2. Numerical Methods and Uncertainty Estimators
2.1. Governing Equations
2.2. Turbulent Equations for the Mixture
2.3. Geometry and Computational Conditions
2.4. Numerical Setup
2.5. Uncertainty Estimators
3. Results and Discussion
3.1. Verification and Validation Procedures
3.2. Statistic Convergence Analysis
3.3. Discretization Uncertainty Estimation in Unsteady Counterflows
3.4. Relationship between the Buoyant Jet in Counterflow and the Uncertainty Estimation
3.5. Evaluation of Grid Resolution and Flow Analyses
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, J.H.W. Boundary effects on a submerged jet group. J. Hydraul. Res. 1984, 122, 19–29. [Google Scholar] [CrossRef]
- Quinn, W.R. Upstream nozzle shaping effects on near field flow in round turbulent free jets. Eur. J. Mech. B Fluid 2006, 25, 279–301. [Google Scholar] [CrossRef]
- Yu, D.; Ali, M.S.; Lee, J.H.W. Multiple tandem jets in cross-flow. J. Hydraul. Eng. 2006, 132, 971–982. [Google Scholar] [CrossRef]
- Li, Z.W.; Huai, W.X.; Qian, Z.D. Study on the flow field and concentration characteristics of the multiple tandem jets in crossflow. Sci. China Technol. Sci. 2012, 55, 2778–2788. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Guo, Y.K.; Zeng, J.; Zheng, J.H.; Wu, X.G. Numerical simulation of vertical buoyant wall jet discharged into a linearly stratified environment. J. Hydraul. Eng. 2018, 144, 06018009. [Google Scholar] [CrossRef]
- Lee, J.H.W.; Cheung, V.; Wang, W.P.; Cheung, S.K.B. Lagrangian modeling and visualization of rosette outfall plumes. In Proceedings of the 4th Conference on Hydroinformatics CD-ROM, Iowa, IA, USA, 23–27 July 2000; Iowa Institute of Hydraulic Research: Iowa City, IA, USA, 2000. [Google Scholar]
- Bernero, S.; Fiedler, H.E. Application of particle image velocimetry and proper orthogonal decomposition to the study of a jet in a counterflow. Exp. Fluids 2000, 29, S274–S281. [Google Scholar] [CrossRef]
- Lam, K.M.; Chan, H.C. Time-averaged mixing behavior of circular jet in counterflow: Velocity and concentration measurements. J. Hydraul. Eng. 2002, 128, 861–865. [Google Scholar] [CrossRef]
- Or, C.M.; Lam, K.M.; Liu, P. Potential core lengths of round jets in stagnant and moving environments. J. Hydro-Environ. Res. 2011, 5, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Yoda, M.; Fiedler, H.E. The round jet in a uniform counterflow: Flow visualization and mean concentration measurements. Exp. Fluids 1996, 21, 427–436. [Google Scholar] [CrossRef]
- Tsunoda, H.; Saruta, M. Planar laser-induced fluorescence study on the diffusion field of a round jet in a uniform counter-flow. J. Turbul. 2003, 4, 1–12. [Google Scholar] [CrossRef]
- Lam, K.M.; Lee, W.Y.; Chan, C.H.C.; Lee, J.H.W. Global behaviors of a round buoyant jet in a counterflow. J. Hydraul. Eng. 2006, 132, 589–604. [Google Scholar] [CrossRef]
- Lee, W.Y. Global Behavior of a Round Buoyant Jet in a Counterflow; The University of Hong Kong: Hong Kong, China, 2006. [Google Scholar]
- Gao, M.; Huai, W.X.; Li, Y.T.; Wang, W.J. Numerical study of the flow and dilution behaviors of round buoyant jet in counterflow. J. Hydrodyn. 2017, 29, 172–175. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, B.X.; Law, A.W.K.; Zhao, B. Large eddy simulations of 45°inclined dense jet. Environ. Fluids Mech. 2015, 16, 101–121. [Google Scholar] [CrossRef]
- Gao, M.; Huai, W.X.; Xiao, Y.Z.; Yang, Z.H.; Ji, B. Large eddy simulation of a vertical buoyant jet in a vegetated channel. Int. J. Heat Fluid Flow 2018, 70, 114–124. [Google Scholar] [CrossRef]
- Xiao, Y.Z.; Huai, W.X.; Gao, M.; Yang, Z.H.; Ji, B. Evaluating the hydrodynamics of a round jet in a vegetated crossflow through large eddy simulation. Environ. Fluids Mech. 2018. [Google Scholar] [CrossRef]
- Oberkampf, W.L.; Trucano, T.G. Verification and validation in computational fluid dynamics. Prog. Aerosp. Sci. 2002, 38, 209–272. [Google Scholar] [CrossRef] [Green Version]
- American Institute of Aeronautics and Astronautics. AIAA Guide for the Verificationand Validation of Computational Fluid Dynamics Simulations; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1998. [Google Scholar]
- Smith, R.C. Uncertainty Quantification: Theory, Implementation, and Applications; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2013. [Google Scholar]
- Cheung, S.H.; Oliver, T.A.; Prudencio, E.E.; Prudhomme, S.; Moser, R.D. Bayesian uncertainty analysis with applications to turbulence modeling. Reliab. Eng. Syst. Saf. 2011, 96, 1137–1149. [Google Scholar] [CrossRef]
- Oliver, T.A.; Moser, R.D. Bayesian uncertainty quantification applied to RANS turbulence models. J. Phys. Conf. Ser. 2011, 318, 042032. [Google Scholar] [CrossRef] [Green Version]
- Edeling, W.N.; Cinnella, P.; Dwight, R.P. Predictive RANS simulations via Bayesian model-scenario averaging. J. Comput. Phys. 2014, 275, 65–91. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.A.; Iaccarino, G.; Duraisamy, K. Sensitivity of on evolution on turbulence structure. Phys. Rev. Fluids 2016, 1, 052402. [Google Scholar] [CrossRef]
- Iaccarino, G.; Mishra, A.A.; Ghili, S. Eigenspace perturbations for uncertainty estimation of single-point turbulence closures. Phys. Rev. Fluids 2017, 2, 024605. [Google Scholar] [CrossRef]
- Hoffman, F.O.; Hammonds, J.S. Propagation of uncertainty in risk assessments: The need to distinguish between uncertainty due to lack of knowledge and uncertainty due to variability. Risk Anal. 1994, 14, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Roache, P.J. Verification and Validation in Computational Science and Engineering; Hermosa: Albuquerque, NM, USA, 1998. [Google Scholar]
- Oberkampf, W.L.; Roy, C.J. Verification and Validation in Scientific Computing; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Logan, R.W.; Nitta, C.K. Comparing 10 methods for solution verification, and linking to model validation. J. Aerosp. Comput. Inf. Commun. 2006, 3, 354–373. [Google Scholar] [CrossRef]
- Roache, P.J. Discussion: “Factors of Safety for Richardson Extrapolation” (Xing, T., and Stern, F., 2010, ASME J. Fluids Eng., 132, p. 061403). J. Fluids Eng. 2010, 133, 115501. [Google Scholar] [CrossRef]
- Stern, F.; Wilson, R.V.; Coleman, H.W.; Paterson, E.G. Comprehensive approach to verification and validation of CFD Simulations—Part I: Methodology and procedures. J. Fluids Eng. 2010, 123, 792. [Google Scholar] [CrossRef]
- Wilson, R.; Shao, J.; Stern, F. Discussion: Criticisms of the “correction factor” verification method 1. J. Fluids Eng. 2004, 126, 704–706. [Google Scholar] [CrossRef]
- Xing, T.; Stern, F. Factors of safety for Richardson extrapolation. J. Fluids Eng. 2010, 132, 061403. [Google Scholar] [CrossRef]
- Xing, T.; Stern, F. Closure to “discussion of ‘factors of safety for Richardson Extrapolation’” (2011, ASME J. Fluids Eng., 133, p. 115501). J. Fluids Eng. 2011, 133, 115502. [Google Scholar] [CrossRef]
- Long, Y.; Long, X.P.; Ji, B.; Huai, W.X.; Qian, Z.D. Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil. J. Hydrodyn. 2017, 29, 610–620. [Google Scholar] [CrossRef]
- Cheng, H.Y.; Long, X.P.; Liang, Y.Z.; Long, Y.; Ji, B. URANS simulations of the tip-leakage cavitating flow with verification and validation procedures. J. Hydrodyn. 2018, 30, 531–534. [Google Scholar] [CrossRef]
- Liu, S.H.; Li, S.C.; Zhang, L.; Wu, Y.L. A mixture model with modified mass transfer expression for cavitating turbulent flow simulation. Eng. Comput. 2008, 25, 290–304. [Google Scholar] [CrossRef]
- Xue, W.Y.; Huai, W.X.; Qian, Z.D.; Yang, Z.H.; Zeng, Y.H. Numerical simulation of initial mixing of marine wasterwater discharge from multiport diffusers. Eng. Comput. 2014, 31, 1379–1400. [Google Scholar] [CrossRef]
- Schiller, L.; Naumann, Z. A drag coefficient correlation. Zeit. Ver. Deustch. Ing. 1933, 77, 318–320. [Google Scholar]
- Longest, P.W.; Vinchurkar, S. Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data. Med. Eng. Phys. 2007, 29, 350–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.D.; Zhai, Z.Q. Analyzing grid independency and numerical viscosity of computational fluid dynamics for indoor environment applications. Build. Environ. 2012, 52, 107–118. [Google Scholar] [CrossRef]
- Stern, F.; Wilson, R.; Shao, J. Quantitative V&V of CFD simulations and certification of CFD code. Int. J. Numer. Meth. Fluids 2006, 50, 1335–1355. [Google Scholar] [CrossRef]
- Dubief, Y.; Delcayre, F. On coherent-vortex identification in turbulence. J. Turbul. 2000, 1, 1–22. [Google Scholar] [CrossRef]
- Ziefle, J.; Kleiser, L. Large-eddy simulation of a round jet in crossflow. AIAA J. 2009, 47, 1158–1172. [Google Scholar] [CrossRef]
- Eça, L.; Hoekstra, M. Code verification of unsteady flow solvers with method of manufactured solutions. In Proceedings of the Seventeenth International Offshore and Polar Engineering Conference, Lisbon, Portugal, 1–6 July 2008; Volume 18, pp. 120–126. [Google Scholar]
- Xing, T. A general framework for verification and validation of large eddy simulations. J. Hydrodyn. 2015, 27, 163–175. [Google Scholar] [CrossRef]
- Dutta, R.; Xing, T. Quantitative solution verification of large eddy simulation of channel flow. In Proceedings of the 2nd Thermal and Fluid Engineering Conference and 4th International Workshop on Heat Transfer, Las Vegas, NV, USA, 2–5 April 2017. [Google Scholar]
Run | Froude Number Fr | Velocity Ratio R | Jet Velocity Ujet (m/s) | Ambient Velocity Ua (m/s) | Jet Effluent Density (g/cm3) | Ambient Density (g/cm3) | Jet Reynolds Number Rejet |
---|---|---|---|---|---|---|---|
1 | 5 | 7.5 | 0.213 | 0.028 | 1.0355 | 0.9984 | 1067 |
Grid | Description | Total Grid Points | Refinement Ratio hi/h1 (i = 1, 2, 3, 4) |
---|---|---|---|
1 | Fine | 16,956,942 | 1.000 |
2 | Medium | 5,976,216 | 1.415 |
3 | Coarse | 2,097,640 | 2.006 |
4 | Coarser | 733,575 | 2.848 |
USN (%S) | Grid | A1 | A2 | A3 | B1 | B2 | B3 | C1 | C2 | C3 |
---|---|---|---|---|---|---|---|---|---|---|
P = pk/pf | 1, 2, 3 | 3.10 | 0.03 | 1.00 | 0.99 | 0.91 | 1.76 | 0.85 | 0.24 | 0.92 |
CF | 2.32 | 6.55 | 12.65 | 16.02 | 3.53 | 2.31 | 18.30 | 5.10 | 12.65 | |
FS | 2.03 | 5.37 | 18.37 | 25.62 | 4.77 | 8.65 | 22.52 | 6.92 | 17.34 | |
FS1 | 2.03 | 5.37 | 18.37 | 25.62 | 4.77 | 11.79 | 22.52 | 6.92 | 17.34 | |
GCI | 1.17 | 2.77 | 14.37 | 20.02 | 3.55 | 4.41 | 16.27 | 5.16 | 12.98 | |
GCI−OR | 2.81 | 0.74 | 14.43 | 20.02 | 3.12 | 4.41 | 12.96 | 4.55 | 11.54 | |
GCI−LN | 1.17 | 2.77 | 14.37 | 20.02 | 3.55 | 1.83 | 16.27 | 5.16 | 12.98 | |
GCI−R | 2.81 | 6.64 | 14.43 | 20.02 | 3.55 | 4.41 | 16.27 | 5.16 | 12.98 | |
P = pk/pf | 2, 3, 4 | 1.47 | 0.03 | 1.18 | 0.96 | 0.85 | 2.24 | 0.91 | 1.13 | 1.01 |
CF | 5.58 | 7.47 | 27.88 | 37.77 | 8.19 | 8.59 | 25.84 | 8.30 | 18.98 | |
FS | 4.71 | 6.12 | 26.63 | 34.35 | 10.13 | 29.19 | 35.22 | 21.49 | 30.19 | |
FS1 | 4.71 | 6.12 | 26.63 | 41.62 | 10.13 | 28.46 | 35.22 | 18.52 | 29.30 | |
GCI | 2.58 | 3.16 | 22.95 | 42.07 | 7.32 | 14.88 | 26.32 | 20.53 | 21.54 | |
GCI−OR | 4.90 | 0.75 | 28.90 | 40.03 | 17.57 | 14.88 | 23.30 | 20.53 | 21.81 | |
GCI−LN | 2.58 | 3.16 | 22.95 | 42.07 | 7.32 | 6.19 | 26.32 | 8.56 | 21.54 | |
GCI−R | 6.21 | 7.56 | 28.90 | 42.07 | 17.57 | 14.88 | 26.32 | 20.53 | 21.81 |
USN (%S) | Grid | A1 | A2 | A3 | B1 | B2 | B3 | C1 | C2 | C3 |
---|---|---|---|---|---|---|---|---|---|---|
P = pk/pf | 1, 2, 3 | 0.50 | 0.32 | 0.25 | 2.02 | 0.42 | 0.97 | 1.00 | 1.70 | 0.91 |
CF | 6.93 | 3.41 | 6.01 | 3.01 | 9.73 | 9.34 | 9.15 | 5.07 | 8.88 | |
FS | 6.45 | 2.97 | 5.12 | 10.79 | 8.75 | 13.58 | 13.31 | 18.97 | 11.90 | |
FS1 | 6.45 | 2.97 | 5.12 | 18.48 | 8.75 | 13.58 | 13.31 | 24.65 | 11.90 | |
GCI | 3.98 | 1.71 | 2.86 | 5.40 | 5.22 | 10.42 | 10.39 | 9.78 | 8.85 | |
GCI−OR | 9.55 | 4.09 | 6.83 | 5.40 | 12.53 | 9.94 | 10.37 | 9.78 | 7.73 | |
GCI−LN | 3.98 | 1.71 | 2.86 | 2.25 | 5.22 | 10.42 | 10.39 | 4.08 | 8.85 | |
GCI−R | 9.55 | 4.09 | 6.87 | 5.40 | 12.53 | 10.42 | 10.39 | 9.78 | 8.85 | |
P = pk/pf | 2, 3, 4 | 0.47 | 0.26 | 0.19 | 0.91 | 0.46 | 2.77 | 1.00 | 0.92 | 0.99 |
CF | 10.60 | 5.62 | 9.64 | 10.35 | 11.37 | 17.39 | 18.28 | 14.56 | 12.97 | |
FS | 9.76 | 4.81 | 8.12 | 13.95 | 10.39 | 25.39 | 26.61 | 19.94 | 18.94 | |
FS1 | 9.76 | 4.81 | 8.12 | 13.95 | 10.39 | 25.39 | 26.61 | 19.94 | 18.94 | |
GCI | 5.96 | 2.69 | 4.44 | 10.39 | 6.30 | 19.72 | 20.77 | 14.92 | 14.71 | |
GCI−OR | 14.30 | 6.47 | 8.12 | 9.12 | 15.11 | 19.41 | 20.72 | 13.25 | 14.49 | |
GCI−LN | 5.96 | 2.69 | 4.44 | 10.39 | 6.30 | 19.72 | 20.77 | 14.92 | 14.71 | |
GCI−R | 14.30 | 6.47 | 10.67 | 10.39 | 15.11 | 19.72 | 20.77 | 14.92 | 14.71 |
Method | A1 | A2 | A3 | B1 | B2 | B3 | C1 | C2 | C3 | |
---|---|---|---|---|---|---|---|---|---|---|
USN (%D) | CF | 2.64 | 6.87 | 14.78 | 13.36 | 3.30 | 1.97 | 13.22 | 4.61 | 10.5 |
FS | 2.31 | 5.63 | 21.46 | 21.37 | 4.46 | 7.36 | 16.27 | 6.25 | 14.39 | |
FS1 | 2.31 | 5.63 | 21.46 | 21.37 | 4.46 | 10.03 | 16.27 | 6.25 | 14.39 | |
GCI | 1.33 | 2.9 | 16.79 | 16.7 | 3.32 | 3.75 | 11.75 | 4.66 | 10.77 | |
GCI−OR | 3.19 | 0.78 | 16.85 | 16.7 | 2.92 | 3.75 | 9.36 | 4.11 | 9.58 | |
GCI−LN | 1.33 | 2.90 | 16.79 | 16.7 | 3.32 | 1.56 | 11.75 | 4.66 | 10.77 | |
GCI−R | 3.19 | 6.96 | 16.85 | 16.7 | 3.32 | 3.75 | 11.75 | 4.66 | 10.77 | |
UV (%D) | CF | 5.65 | 8.50 | 15.60 | 14.26 | 5.99 | 5.37 | 14.13 | 6.80 | 11.63 |
FS | 5.51 | 7.53 | 22.03 | 21.95 | 6.70 | 8.90 | 17.02 | 8.00 | 15.23 | |
FS1 | 5.51 | 7.53 | 22.03 | 21.95 | 6.70 | 11.21 | 17.02 | 8.00 | 15.23 | |
GCI | 5.17 | 5.78 | 17.52 | 17.43 | 6.00 | 6.25 | 12.77 | 6.83 | 11.87 | |
GCI−OR | 5.93 | 5.06 | 17.58 | 17.43 | 5.79 | 6.25 | 10.61 | 6.47 | 10.81 | |
GCI−LN | 5.17 | 5.78 | 17.52 | 17.43 | 6.00 | 5.24 | 12.77 | 6.83 | 11.87 | |
GCI−R | 5.93 | 8.57 | 17.58 | 17.43 | 6.00 | 6.25 | 12.77 | 6.83 | 11.87 | |
|E| (%D) | 13.58 | 4.43 | 17.12 | 16.30 | 6.21 | 13.26 | 13.84 | 9.65 | 16.92 |
Method | A1 | A2 | A3 | B1 | B2 | B3 | C1 | C2 | C3 | |
---|---|---|---|---|---|---|---|---|---|---|
USN (%D) | CF | 6.34 | 7.83 | 32.57 | 31.51 | 7.66 | 7.31 | 18.67 | 7.5 | 15.75 |
FS | 5.35 | 6.42 | 31.11 | 28.65 | 9.47 | 24.84 | 25.44 | 19.42 | 25.05 | |
FS1 | 5.35 | 6.42 | 31.11 | 34.72 | 9.47 | 24.22 | 25.44 | 16.73 | 24.31 | |
GCI | 2.93 | 3.31 | 26.81 | 35.09 | 6.85 | 12.66 | 19.01 | 18.55 | 17.87 | |
GCI−OR | 5.56 | 0.79 | 33.76 | 33.39 | 16.43 | 12.66 | 16.83 | 18.55 | 18.1 | |
GCI−LN | 2.93 | 3.31 | 26.81 | 35.09 | 6.85 | 5.27 | 19.01 | 7.73 | 17.87 | |
GCI−R | 7.05 | 7.93 | 33.76 | 35.09 | 16.43 | 12.66 | 19.01 | 18.55 | 18.1 | |
UV (%D) | CF | 8.07 | 9.29 | 32.95 | 31.90 | 9.15 | 8.86 | 19.33 | 9.01 | 16.52 |
FS | 7.32 | 8.14 | 31.51 | 29.08 | 10.71 | 25.34 | 25.93 | 20.05 | 25.54 | |
FS1 | 7.32 | 8.14 | 31.51 | 35.08 | 10.71 | 24.73 | 25.93 | 17.46 | 24.82 | |
GCI | 5.80 | 5.80 | 6.00 | 27.27 | 35.44 | 8.48 | 13.61 | 19.66 | 19.21 | |
GCI−OR | 7.48 | 5.06 | 34.13 | 33.76 | 17.17 | 13.61 | 17.56 | 19.21 | 18.78 | |
GCI−LN | 5.80 | 6.00 | 27.27 | 35.44 | 8.48 | 7.26 | 19.66 | 9.21 | 18.56 | |
GCI−R | 8.64 | 9.37 | 34.13 | 35.44 | 17.17 | 13.61 | 19.66 | 19.21 | 18.78 | |
|E| (%D) | 14.60 | 4.33 | 18.61 | 16.32 | 11.38 | 24.75 | 25.84 | 17.62 | 26.69 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Huai, W.; Ji, B.; Yang, Z. Verification and Validation of URANS Simulations of the Round Buoyant Jet in Counterflow. Water 2018, 10, 1509. https://doi.org/10.3390/w10111509
Xiao Y, Huai W, Ji B, Yang Z. Verification and Validation of URANS Simulations of the Round Buoyant Jet in Counterflow. Water. 2018; 10(11):1509. https://doi.org/10.3390/w10111509
Chicago/Turabian StyleXiao, Yizhou, Wenxin Huai, Bin Ji, and Zhonghua Yang. 2018. "Verification and Validation of URANS Simulations of the Round Buoyant Jet in Counterflow" Water 10, no. 11: 1509. https://doi.org/10.3390/w10111509
APA StyleXiao, Y., Huai, W., Ji, B., & Yang, Z. (2018). Verification and Validation of URANS Simulations of the Round Buoyant Jet in Counterflow. Water, 10(11), 1509. https://doi.org/10.3390/w10111509