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Abstract: This paper presents a study on the verification and validation (V&V) of numerical solutions
for round buoyant jets in counterflow. The unsteady flow was simulated using an unsteady
Reynolds-averaged Navier–Stokes (URANS) solver with a two-phase mixture model. This work
aimed to quantitatively investigate the reliability and applicability of various uncertainty estimators
in the simulation of a buoyant jet in counterflow. Analysis of the discretization uncertainty estimation
results revealed that the factor of safety (FS) and the modified FS (FS1) methods were the appropriate
evaluation estimators in the simulation of a buoyant jet in counterflow. Validation by comparison
with the experimental data indicated that the area without achieving the validation at the validation
level was strongly related to the shear layer between the jet flow and the ambient fluid. Moreover,
the predicted concentration contours, coherent structures, and centerline concentration were strongly
affected by the grid resolution.
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1. Introduction

The effluent discharge in a receiving water body through outfalls and diffusers is generally in the
form of a turbulent jet or plume. The flow characteristics and mixing process of jets are affected by the
receiving environment (e.g., still water, density stratification, and crossflow). Numerous experimental
and numerical investigations have been conducted on the flow characteristics of jets, and some typical
phenomena have been identified [1–5]. The situation in which a jet is injected horizontally to the
ambient fluid in an opposite direction is called a jet in counterflow, which is found in wastewater
outfalls, particularly a rosette jet group [6]. Some experimental studies investigate the behavior of a
jet in counterflow using laser Doppler anemometry (LDA) [7,8], particle imaging velocimetry (PIV),
and laser induced fluorescence (LIF) [9]. Traditional studies of counterflowing jets involve velocity
and concentration fields [10,11]. From the literature, it can be seen that the studies of non-buoyant jets
in counterflow have been studied widely. In ocean outfalls, wastewater is lighter than the ambient
seawater, and the discharging wastewater is in the form of a buoyant jet. Therefore, analysis of the
mixing process becomes complex if both buoyancy and a jet in counterflow are considered, but a
limited number of works have done so [12,13].

The obtained reliable numerical results suggest that numerical solutions are more detailed than
experimental data in reflecting the performance of jet characteristics. At present, Reynolds-averaged
Navier-Stokes (RANS) and large eddy simulation (LES) are widely used for numerical simulations [14,15].
However, limited attention has been directed toward the verification and validation (V&V) of a buoyant
jet in counterflow through RANS or LES methods, although the mesh influence has been explored by a
few works [16,17]. V&V is the precondition for evaluating the reliability before numerical solutions are
accepted and flow characteristics are analyzed. In the context of CFD (computational fluid dynamics)
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verification is the process of determining that a model implementation accurately represents the
developer’s conceptual description of the model and the solution to the model [18]. Validation is
the process of determining the degree to which a model is an accurate representation of the real world
from the perspective of the intended uses of the model [19]. These steps are essential to guarantee that
the numerical simulation is a correct representation of the model and is a correct representation of the
real-world physics. Furthermore, due to the complex mixing process of a buoyant jet in counterflow,
turbulent models, model coefficients, boundary conditions, or grid resolution may cause significant
errors and uncertainties in numerical simulations. Thus, the V&V of a buoyant jet in counterflow is an
urgent issue in numerical simulations.

Uncertainty quantification is the old study method that deals with the assessment, estimation, and
minimization of uncertainties in the results of numerical models and simulations [20]. In the context
of Reynolds-averaged Navier–Stokes simulations, these uncertainties can arise from sources that are
epistemic or aleatoric. Epistemic uncertainties include sources that arise from irreducible causes.
In RANS simulations, these may arise because the coefficients in the RANS model are variable [21–23].
This can be caused because RANS models assume that the Reynolds stress completely describes
the turbulent velocity field [24]. The use of the eddy viscosity hypothesis and the gradient diffusion
hypothesis in the development of eddy viscosity models can lead to uncertainties in the predictions [25].
On the other hand, aleatoric uncertainties are statistical in nature and arise due to unknown outcomes
that can differ each time one runs an experiment under similar conditions [26]. Such uncertainty
includes natural variability in the realization of turbulent flows, etc. To date, seven quantitative
uncertainty estimators are widely used: grid convergence index (GCI) [27], grid convergence index
modified by Oberkampf and Roy (GCI−OR) [28], grid convergence index modified by Logan and Nitta
(GCI−LN) [29], grid convergence index modified by Roache (GCI−R) [30], correction factor method
(CF) [31,32], factor of safety method (FS) [33], and factor of safety method modified version (FS1) [34].
The GCI proposed by Roache [27] has been extensively applied and recommended by the American
Society of Mechanical Engineers and the American Institute of Aeronautics and Astronautics [35,36].
The CF was proposed by Stern et al. [31] and modified by Wilson et al. [32]. FS and FS1 were proposed
by Xing and Stern [33,34] to overcome two drawbacks of CF, GCI, and its modified versions. These two
drawbacks are the relatively small estimated uncertainty and the not well-explored confidence levels.
However, V&V is not incorporated in the study of buoyant jets in counterflow, and the applicability of
the seven uncertainty estimators for V&V has not been evaluated.

To fill this research gap, this work performed V&V is performed in the study of buoyant jets
in counterflow to quantitatively investigate the reliability and applicability of seven uncertainty
estimators, namely, CF, FS, FS1, GCI, GCI−OR, GCI−LN, and GCI−R, in the simulation of a buoyant
jet in counterflow. In view of the lack of a clear and practical guideline for V&V in the LES method
applied in engineering, the unsteady RANS (URANS) was employed in this study. The published
experimental data [16,17] were adopted to validate the numerical solutions. In addition, the grid
resolution and the flow characteristics were also analyzed and discussed.

2. Numerical Methods and Uncertainty Estimators

A two-phase mixture model [14,37,38] in the commercial code FLUNET (ANSYS, Canonsburg,
PA, USA,) was adopted in this paper. The wastewater jet flow was composed of fluid f and particle s
phases, which were separate, and these phases were allowed to interpenetrate where αf and αs are the
volume fractions of the fluid and particle phases, respectively. Following the concept of slip velocities,
the mixture model allowed the phases to move at different velocities. A Schiller–Naumann drag model
was adopted to describe the interaction between the fluid and particle phases.
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2.1. Governing Equations

The continuity equation for the mixture was:

∂ρm

∂t
+∇ · (ρmum) = 0 (1)

where ρm was the mixture density, as in:

ρm =
n

∑
i=1

αkρk, (2)

where αi was the volume fraction of phase i, n was the number of phases (n = 2). um was the
mass-averaged velocity, as in:

um =

n
∑

i=1
αiρiui

ρm
(3)

The momentum equation for the mixture was found by summing the individual momentum
equations for all phases as:

∂

∂t
(ρmum) +∇ · (ρmumum) = −∇p +∇ · [µm(∇um +∇uT

m)] +∇ · (
n

∑
i=1

αiρiudr,iudr,i) + ρmg + F, (4)

where n was the number of phases (n = 2), F was a body force, µm was the viscosity of the mixture

(µm =
n
∑

i=1
αiµi), and udr,i was the drift velocity for secondary phase i (umdr,i = ui − um). The drift

velocity for the secondary phase udr,i and the relative velocity usf were linked by the expression:

udr,s = (1− αs)us f (5)

where αs was the volume fraction of the secondary phase, and usf was the velocity of the secondary
phase (s) relative to the velocity of the primary phase (f ) as given by:

us f =
τs(ρs − ρm)

fdragρs

[
g− (um · ∇)um −

∂um

∂t

]
(6)

where τs was the particle relaxation time given as τs = ρsd2
s /(18µ f ), and ds was the diameter of the

particles of the secondary phase s. The default drag function fdrag was taken as:

fdrag =

{
1 + 0.15Re0.687 Re ≤ 1000,

0.0183Re Re > 1000.
(7)

where Re was the relative Reynolds number. The relative Reynolds number for phases f and s was
defined as [39]:

Re =
ρ f

∣∣∣us − u f

∣∣∣ds

µ f
(8)

For the continuity equation for the secondary phase s, the volume fraction equation could be
given by:

∂

∂t
(αsρs) +∇ · (αsρsum) = −∇ · (αsρsudr,s) (9)
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2.2. Turbulent Equations for the Mixture

The renormalization group k− ε (RNG k− ε) turbulence model was applied to close the governing
equations. The turbulent kinetic energy k and its rate of dissipation ε could be expressed as follows:

∂

∂t
(ρmk) +∇ · (ρmumk) = ∇ · (µt,m

σk
∇k) + Gk,m − ρmε (10)

∂

∂t
(ρmε) +∇ · (ρmumε) = ∇ · (µt,m

σε
∇ε) +

ε

k
(C∗1εGk,m − C2ερmε) (11)

where µt,m was the turbulent viscosity (µt,m = ρmCµk2/ε), Gk,m was the production term of the
turbulence kinetic energy (Gk,m = µt,m[∇um + (∇um)

T ] : ∇um), and C∗1ε was defined as C∗1ε =

C1ε − η(1 − η/η0)/(1 + βη3). In these equations, the model constants had the following values:
Cµ = 0.0845, C1ε = 1.44, C2ε = 1.68, σk = 1.0, σε = 1.3, η0 = 4.377 and β = 0.012.

2.3. Geometry and Computational Conditions

Lam et al. conducted an experiment on a round buoyant jet in counterflow [16,17]. Figure 1 shows
a computational domain with dimensions of 50 d × 20 d × 40 d in the abscissa (x), ordinate (y), and
vertical (z) directions, respectively, where d is the diameter of the jet nozzle. The computational domain
was based on the jet diameter, the area affected by the jet, and the computational resources. A round
buoyant jet with an initial jet velocity Ujet, jet density ρjet, and jet nozzle diameter d (d = 0.5 cm) was
injected into the ambient fluid at an ambient velocity Ua and ambient density ρa (Table 1). According
to the referenced experimental data, salt water (ρa = 1.0355 g/cm3) was used as the ambient fluid,
and water (ρjet = 0.9984 g/cm3) was used as the negatively buoyant jet effluent. The jet-to-current
velocity ratio was R = Ujet/Ua = 7.5, the densimetric Froude number was F = Ujet/

√
(∆ρ/ρa)gd = 5,

where ∆ρ was the density difference between the densities of the discharging jet ρjet and the ambient
fluid ρa [16]. The Reynolds number of the jet nozzle was Rejet = Ujetd/υ = 1067.
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Table 1. Simulation parameters.

Run Froude
Number Fr

Velocity
Ratio R

Jet Velocity
Ujet (m/s)

Ambient
Velocity Ua

(m/s)

Jet Effluent
Density
(g/cm3)

Ambient
Density
(g/cm3)

Jet Reynolds
Number Rejet

1 5 7.5 0.213 0.028 1.0355 0.9984 1067

2.4. Numerical Setup

In this paper, the simulations were performed using a finite volume method to discretize
the governing equations by using a coupled solver. The SIMPLEC scheme was used for the
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pressure–velocity coupling. The second-order upwind scheme was adopted to discretize the diffusion
and convection terms in the governing equations, and the QUICK scheme was utilized for the
convection terms in the volume fraction equations.

The velocity inlet boundary condition was set at the jet nozzle (x = 0) and the inlet of the
counterflow (x = 25 d). The pressure outlet boundary condition with a static (gauge) pressure (x = −25 d)
was set as the outlet of the counterflow. No slip boundary condition was adopted for the left, right,
and bottom walls, and the free surface was a frictionless rigid lid, at which a plane of symmetry
was applied.

Grid studies were conducted by four grids, which provide two separate grid studies (grids 1–3
and 2–4) for V&V analysis. The grids were created with a uniform grid refinement ratio rG = hi+1/hi =√

2, where hi+1 and hi were the grid spacing between two successively refined grids. The detailed
information of the grid series is shown in Table 2. An O-H (O-shaped and H-shaped) grid topology
was applied to the four grids. The grid details near the jet nozzle are presented in Figure 2. The
near-wall spacing y+ was less than 1 to guarantee that the first node was in the viscous sublayer.

Table 2. Dimensions of the grid series.

Grid Description Total Grid Points Refinement Ratio hi/h1 (i = 1, 2, 3, 4)

1 Fine 16,956,942 1.000
2 Medium 5,976,216 1.415
3 Coarse 2,097,640 2.006
4 Coarser 733,575 2.848
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In consideration of the computational time and the convergence, 20 iterations per time step with a
10−4 residual criterion were implemented to balance the accuracy and the efficiency. The solution was
iterated within a computational time step of the simulations for 0.0056 d/Ua time units. The simulations
were initially conducted under steady flow conditions. Then, the unsteady flow, with the steady flow
results as the initial conditions, was simulated over approximately 336 d/Ua time units.

2.5. Uncertainty Estimators

The current uncertainty estimators were based on the Richardson extrapolation method. This
study aims to realize discretization uncertainty estimation with truncated power series expansions.
The theoretical error δRE was given by:

δRE = Sh − S0 = α f hp f (12)

where Sh was the solution with the grid spacing h, S0 was the exact solution of the discrete equations,
αf was a constant, and pf was the formal order of accuracy. The constant grid refinement ratio r was
given by:

r =
∆x1

∆x2
=

∆x2

∆x3
(13)
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where ∆x1, ∆x2, and ∆x3 were the grid spacing with fine, medium, and coarse grids, respectively. If the
solutions for the fine, medium, and coarse grids were S1, S2, and S3, respectively, the solution change e,
the convergence ratio R, and the observed order of accuracy pk were defined as:

e21 = S2 − S1, e32 = S3 − S2 (14)

R = e21/e32 (15)

pk =
ln(e32/e21)

ln(r)
(16)

The basic estimated errors adopted in the seven estimators were defined as:

δp f =
e21

rp f − 1
(17)

δpk =
e21

rpk − 1
(18)

When the 0 < R < 1 monotonic convergence was achieved, and the Richardson extrapolation
method was used to estimate the numerical error, the reliability and applicability of the seven
uncertainty estimators, namely, CF, FS, FS1, GCI, GCI−OR, GCI−LN, and GCI−R, were investigated
quantitatively. Detailed descriptions for the seven uncertainty estimators are as follows.

(1) Correction factor method (CF)

The correction factor method developed by Stern et al. [31] and modified by Wilson et al. [32] is
given by:

UCF =

{
[9.6(1− CF)2 + 1.1]

∣∣δpk

∣∣, |1− CF| < 0.125
(2|1− CF|+ 1)

∣∣δpk

∣∣, |1− CF| ≥ 0.125
(19)

where CF is the correction factor, which is an indicator of the distance from the asymptotic range, as in:

CF =
rpk − 1
rp f − 1

(20)

(2) Factor of safety method (FS) and its modified version (FS1)

The factor of safety method developed by Xing and Stern [33] is given by:

UFS =

{
(2.45− 0.85P)

∣∣δpk

∣∣, 0 < P ≤ 1
(16.4P− 14.8)

∣∣δpk

∣∣, P > 1
(21)

where P is an indicator similar to the correction factor that shows the distance from the asymptotic range:

P =
pk
p f

(22)

FS1 is the modified version of FS proposed by Xing and Stern [34] and is given by:

UFS1 =

{
(2.45− 0.85P)

∣∣δpk

∣∣, 0 < P ≤ 1

(8.5P− 6.9)
∣∣∣δp f

∣∣∣, P > 1
(23)

(3) GCI and its modified versions (GCI−OR, GCI−LN, and GCI−R)

The GCI developed by Roache [27] is given by:
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UGCI =

{
1.25

∣∣δpk

∣∣, pk ≤ p f

3
∣∣∣δp f

∣∣∣, pk > p f
(24)

The modified version GCI−OR proposed by Oberkampf and Roy [28] is given by:

UGCI−OR =

{
1.25

∣∣∣δp f

∣∣∣, 1.8 ≤ pk ≤ 2.2

3
∣∣δpOR

∣∣, all other pk
(25)

The modified version GCI−LN proposed by Logan and Nitta [29] is given by:

UGCI−LN =

{
1.25

∣∣δpk

∣∣, pk ≤ p f

1.25
∣∣∣δp f

∣∣∣, pk > p f
(26)

The modified version GCI−R proposed by Roache [30] is given by:

UGCI−R =

{
1.25

∣∣δpGCI−R

∣∣, 1.8 ≤ pk ≤ 2.2
3
∣∣δpGCI−R

∣∣, 0 < pk < 1.8, pk > 2.2
(27)

where PGCI−R = min(pk, p f ).
Among these seven uncertainty estimators, CF and GCI have been widely used in various fields

in the literature [40,41]. Xing and Stern [33,34] pointed out the drawbacks of CF and GCI and proposed
FS and FS1 to overcome them. However, the applicability and reliability of these seven uncertainty
estimators for the round buoyant jet in counterflow have yet to be investigated. The analyses and
results of the analysis are as follows.

3. Results and Discussion

3.1. Verification and Validation Procedures

Uncertainty assessment was performed using the V&V method following the quantitative
procedures proposed by Stern et al. [42] with an improved factor of safety [33]. It is worth noting
that uncertainties were defined as deficiencies in the stages or results of the modeling process that
were due to the lack of knowledge. On the other hand, errors are recognizable deficiencies in any
phase of modeling and simulation that are not due to lack of knowledge [31]. In this paper, simulation
numerical uncertainty USN was expressed in terms of graphical methods for the iterative uncertainty
UI and a generalized Richardson extrapolation for the grid uncertainty UG as follows:

U2
SN = U2

I + U2
G (28)

The validation uncertainty UV considers the simulation numerical uncertainty USN and the
experimental uncertainty UD, as in:

U2
V = U2

SN + U2
D (29)

The comparison error |E| is defined by the absolute value of the difference between the
experimental data D and the simulation values S as |E| = |D− S|. If the comparison error |E|
is within ±UV, the solutions are validated at the level of UV, and vice versa.

3.2. Statistic Convergence Analysis

Two quantities, namely, stream-wise velocity and concentration, were extracted from the time
history to study the statistical convergence. The monitoring points near the jet flow are shown in
Figure 3. Points A1, B1, and C1 were adopted to investigate the statistical convergence. Figure 4
shows a portion of the iteration history on grid 1 for the normalized stream-wise velocity u/Ua and the
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normalized concentration c/cmax at points A1, B1, and C1. This portion reflected a calculation run from
a previous solution and not the total iterative history. In Figure 4a,c, the variations of the stream-wise
velocity and concentration were relatively small. In Figure 4b,c, the magnified views of the stream-wise
velocity and concentration at point C1 showed that the variation in flow quantities was less than
0.01%S, where S was the simulation result of the quantities. The level of iterative uncertainty for grid 1
was at least two orders of magnitude lower than the corresponding grid uncertainty, suggesting that
the iteration uncertainties on grid 1 could be ignored. In addition, the iterative uncertainties calculated
for grids 2–4 from their histories were less than 0.01%S, implying that for all four grids, the iteration
uncertainties were negligible, and the variation of the quantities exerted an insignificant effect on the
estimated uncertainty.
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3.3. Discretization Uncertainty Estimation in Unsteady Counterflows

Figure 5 presents the sensitivity of the normalized stream-wise velocity and the normalized
concentration results to the variation of the refinement ratios at points A1, B1, and C1. A fitted curve
by least squares approach to the simulated results at the monitoring points and a curve fitted with the
theoretical order of accuracy p = 2 are also plotted in Figure 5. As shown, the quantities with different
refinement ratios were scattered around the smooth curves. As the refinement ratio approached 1, i.e.,
a finer grid, the quantities became more closely distributed. This phenomenon qualitatively illustrated
that grid refinement played a role in obtaining more accurate solutions. The fitted curves at monitoring
points B1 and C1 were closer to the theoretical curves with the theoretical order of accuracy p = 2,
implying that the numerical solution converged as expected. By contrast, the fitted curve at monitoring
point A1 did not fit the theoretical curve well. For instance, the fitted order of accuracy of concentration
p = 3.37 was slightly larger than the theoretical order of accuracy. The large fitted order of accuracy of
concentration indicated that the numerical calculation converged faster than expected but necessarily
with a higher accuracy. The poor convergence at point A1 could be due to the flow pattern at point A1.
Point A1 is located at the shear layer between the jet flow and the entrained counterflow. If the flow
pattern corresponding to the entrainment and shear-layer vortices are complex, the accuracy of the
numerical simulation results may be diminished.

Table 3 lists the uncertainty estimation of the seven estimators for the concentrations at the
monitoring points shown in Figure 3. The uncertainties between the two sets of grid analysis for grids
1–3 and 2–4 were first compared. The uncertainties of grids 2–4 at the monitoring points were mostly
larger than those of grids 1–3. In particular, the uncertainties at points A3, B1, B3, C1, and C3 on
grids 2–4 were relatively large due to the coarse grids. This finding indicated that as the grids became
refined, the numerical solutions converged more. The hydraulic and turbulent performances varied
depending on the location of the monitoring points. The uncertainties at the jet boundary, such as
points A3, B1, B3, C1, and C3, were larger than that along the jet centerline (i.e., points A2, B2, and C2).
This was due to strong shearing and entrainment existing in the jet boundary, which increased the
difficulty of obtaining the variables at this location. Additionally, the appropriate uncertainty estimator
among the seven uncertainty estimators, namely, CF, FS, FS1, GCI, GCI−OR, GCI−LN, and GCI−R,
was selected. In general, the P (P = pk/pf) values varied considerably, which is common in practical
applications [33]. As the P values approached zero, the uncertainties measured by GCI−OR were
approximately 86% smaller than that by FS and FS1. When the P values were between 0.5 and 0.9,
the uncertainties using GCI and its three modified versions were either relatively large or relatively
small. When the P values were close to 1, i.e., P = 1.00 at point A3 on grids 1–3, the uncertainties using
all other methods were balanced except for the small uncertainties using the CF method. When the
P values were much larger than 1, i.e., P = 1.76 at point B3 on grids 1–3, the uncertainties using the
CF method are were small, followed by GCI, GCI−OR, GCI−LN, and GCI−R. Thus, comparison of
the uncertainties under seven estimators at the monitoring points revealed that the CF method, along
with GCI and its modified versions, were not hindered by the drawback of a relatively small estimated
uncertainty pointed out by Xing and Stern [33,34]. Therefore, the uncertainties using FS and FS1 were
more reliable, followed by CF and GCI−R.
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Table 4 presents the uncertainty estimation of seven estimators for the stream-wise velocity at
monitoring points. The trend of the uncertainty comparison for the stream-wise velocity between the
two sets of grid analysis was similar to the trend of the concentration above. Although the P varied
considerably, they did not approach zero, as shown in Table 4. When 0 < P < 0.5, the uncertainties
using GCI and GCI−LN were 38% smaller than those using FS and FS1, which was slightly different
from the regularity in Table 3. Although slight differences were noted in the uncertainty comparison of
the seven estimators, FS and FS1 were still identified to be more suitable for evaluating the uncertainty
for a buoyant jet in counterflow.
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Table 3. Uncertainty estimation of seven estimators for concentrations.

USN (%S) Grid A1 A2 A3 B1 B2 B3 C1 C2 C3

P = pk/pf 1, 2, 3 3.10 0.03 1.00 0.99 0.91 1.76 0.85 0.24 0.92
CF 2.32 6.55 12.65 16.02 3.53 2.31 18.30 5.10 12.65
FS 2.03 5.37 18.37 25.62 4.77 8.65 22.52 6.92 17.34
FS1 2.03 5.37 18.37 25.62 4.77 11.79 22.52 6.92 17.34
GCI 1.17 2.77 14.37 20.02 3.55 4.41 16.27 5.16 12.98

GCI−OR 2.81 0.74 14.43 20.02 3.12 4.41 12.96 4.55 11.54
GCI−LN 1.17 2.77 14.37 20.02 3.55 1.83 16.27 5.16 12.98
GCI−R 2.81 6.64 14.43 20.02 3.55 4.41 16.27 5.16 12.98

P = pk/pf 2, 3, 4 1.47 0.03 1.18 0.96 0.85 2.24 0.91 1.13 1.01
CF 5.58 7.47 27.88 37.77 8.19 8.59 25.84 8.30 18.98
FS 4.71 6.12 26.63 34.35 10.13 29.19 35.22 21.49 30.19
FS1 4.71 6.12 26.63 41.62 10.13 28.46 35.22 18.52 29.30
GCI 2.58 3.16 22.95 42.07 7.32 14.88 26.32 20.53 21.54

GCI−OR 4.90 0.75 28.90 40.03 17.57 14.88 23.30 20.53 21.81
GCI−LN 2.58 3.16 22.95 42.07 7.32 6.19 26.32 8.56 21.54
GCI−R 6.21 7.56 28.90 42.07 17.57 14.88 26.32 20.53 21.81

Table 4. Uncertainty estimation of seven estimators for stream-wise velocity.

USN (%S) Grid A1 A2 A3 B1 B2 B3 C1 C2 C3

P = pk/pf 1, 2, 3 0.50 0.32 0.25 2.02 0.42 0.97 1.00 1.70 0.91
CF 6.93 3.41 6.01 3.01 9.73 9.34 9.15 5.07 8.88
FS 6.45 2.97 5.12 10.79 8.75 13.58 13.31 18.97 11.90
FS1 6.45 2.97 5.12 18.48 8.75 13.58 13.31 24.65 11.90
GCI 3.98 1.71 2.86 5.40 5.22 10.42 10.39 9.78 8.85

GCI−OR 9.55 4.09 6.83 5.40 12.53 9.94 10.37 9.78 7.73
GCI−LN 3.98 1.71 2.86 2.25 5.22 10.42 10.39 4.08 8.85
GCI−R 9.55 4.09 6.87 5.40 12.53 10.42 10.39 9.78 8.85

P = pk/pf 2, 3, 4 0.47 0.26 0.19 0.91 0.46 2.77 1.00 0.92 0.99
CF 10.60 5.62 9.64 10.35 11.37 17.39 18.28 14.56 12.97
FS 9.76 4.81 8.12 13.95 10.39 25.39 26.61 19.94 18.94
FS1 9.76 4.81 8.12 13.95 10.39 25.39 26.61 19.94 18.94
GCI 5.96 2.69 4.44 10.39 6.30 19.72 20.77 14.92 14.71

GCI−OR 14.30 6.47 8.12 9.12 15.11 19.41 20.72 13.25 14.49
GCI−LN 5.96 2.69 4.44 10.39 6.30 19.72 20.77 14.92 14.71
GCI−R 14.30 6.47 10.67 10.39 15.11 19.72 20.77 14.92 14.71

Nonetheless, comparing the magnitude of uncertainties could not determine the optimal solution
but only measure the influence of grid refinement. Therefore, the numerical solution should be
validated, as will be discussed in the subsequent section.

3.4. Relationship between the Buoyant Jet in Counterflow and the Uncertainty Estimation

The validation results for the concentration at the monitoring points on grids 1–3 and 2–4 are
given in Tables 5 and 6. In these validation procedures, UD is computed for 5% of the experimental
data as the error analysis in accordance with the literature [16,17].

Table 5 lists the simulation uncertainty USN, the validation uncertainty UV and the comparison
error |E| at the monitoring points. Points A1, B3, C2, and C3 evaluated using all uncertainty estimators
denoted the areas without achieving the validation at the UV level, indicating that modelling errors
existed in the simulations and that the model must be improved by incorporating |E|. Point A2 using
all uncertainty estimators was the area with validation at the UV level. Points A3, B1, B2, and C1 by CF,
GCI, GCI−OR, GCI−LN and GCI−R were the areas without validation, whereas these points using
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FS and FS1 were the areas with validation. Therefore, the reliability of FS and FS1 for evaluating the
uncertainty of the buoyant jet in counterflow can be proved further in the validation section.

In Table 6, points A2, A3, and B1 on grids 2–4 were located at the area with validation at the UV
level using all uncertainty estimators, and validation was achieved at points C1 and C2 using FS and
FS1. Compared with the validation results in Table 5, the area with validation became smaller for a
lower grid resolution, indicating that grid refinement improved the accuracy of the numerical solutions.

Table 5. Validation results for concentration at monitoring points on grids 1–3.

Method A1 A2 A3 B1 B2 B3 C1 C2 C3

USN (%D) CF 2.64 6.87 14.78 13.36 3.30 1.97 13.22 4.61 10.5
FS 2.31 5.63 21.46 21.37 4.46 7.36 16.27 6.25 14.39

FS1 2.31 5.63 21.46 21.37 4.46 10.03 16.27 6.25 14.39
GCI 1.33 2.9 16.79 16.7 3.32 3.75 11.75 4.66 10.77

GCI−OR 3.19 0.78 16.85 16.7 2.92 3.75 9.36 4.11 9.58
GCI−LN 1.33 2.90 16.79 16.7 3.32 1.56 11.75 4.66 10.77
GCI−R 3.19 6.96 16.85 16.7 3.32 3.75 11.75 4.66 10.77

UV (%D) CF 5.65 8.50 15.60 14.26 5.99 5.37 14.13 6.80 11.63
FS 5.51 7.53 22.03 21.95 6.70 8.90 17.02 8.00 15.23

FS1 5.51 7.53 22.03 21.95 6.70 11.21 17.02 8.00 15.23
GCI 5.17 5.78 17.52 17.43 6.00 6.25 12.77 6.83 11.87

GCI−OR 5.93 5.06 17.58 17.43 5.79 6.25 10.61 6.47 10.81
GCI−LN 5.17 5.78 17.52 17.43 6.00 5.24 12.77 6.83 11.87
GCI−R 5.93 8.57 17.58 17.43 6.00 6.25 12.77 6.83 11.87

|E| (%D) 13.58 4.43 17.12 16.30 6.21 13.26 13.84 9.65 16.92

Table 6. Validation results for concentration at monitoring points on grids 2–4.

Method A1 A2 A3 B1 B2 B3 C1 C2 C3

USN (%D) CF 6.34 7.83 32.57 31.51 7.66 7.31 18.67 7.5 15.75
FS 5.35 6.42 31.11 28.65 9.47 24.84 25.44 19.42 25.05

FS1 5.35 6.42 31.11 34.72 9.47 24.22 25.44 16.73 24.31
GCI 2.93 3.31 26.81 35.09 6.85 12.66 19.01 18.55 17.87

GCI−OR 5.56 0.79 33.76 33.39 16.43 12.66 16.83 18.55 18.1
GCI−LN 2.93 3.31 26.81 35.09 6.85 5.27 19.01 7.73 17.87
GCI−R 7.05 7.93 33.76 35.09 16.43 12.66 19.01 18.55 18.1

UV (%D) CF 8.07 9.29 32.95 31.90 9.15 8.86 19.33 9.01 16.52
FS 7.32 8.14 31.51 29.08 10.71 25.34 25.93 20.05 25.54

FS1 7.32 8.14 31.51 35.08 10.71 24.73 25.93 17.46 24.82
GCI 5.80 5.80 6.00 27.27 35.44 8.48 13.61 19.66 19.21

GCI−OR 7.48 5.06 34.13 33.76 17.17 13.61 17.56 19.21 18.78
GCI−LN 5.80 6.00 27.27 35.44 8.48 7.26 19.66 9.21 18.56
GCI−R 8.64 9.37 34.13 35.44 17.17 13.61 19.66 19.21 18.78

|E| (%D) 14.60 4.33 18.61 16.32 11.38 24.75 25.84 17.62 26.69

After the reliability of the seven uncertainty estimators was analyzed, the relationship between
the area without validation and the buoyant jet in counterflow was examined. The results showed
that the areas without validation at the UV level were mostly distributed in the shear layer between
the jet flow and the entrained counterflow (Figure 6), such as for points A1, B3, and C3. The areas
near the jet centerline were the regions with validation, such as points A2 and B2. This phenomenon
may be related to the complex entrainment of the jet shear layer. Complex entrainment refers to
the scenario when the jet in the near-field begins to bend, roll up, and shed, and the vortices that
developed along the jet boundary (external and internal shear-layer vortices) are strongly sheared as
they propagate along the jet flow. A possible reason for the large error at the shear layer was that the
strong shearing prevented a relatively stable and accurate value from being obtained due to some
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experimental measurement error and modelling errors caused by mesh skewness, the shortcoming of
the turbulent model, the simplified boundary condition, and so on.Water 2018, 10, 1509 14 of 20 
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3.5. Evaluation of Grid Resolution and Flow Analyses

After the quantitative analyses of the grid independence, the intuitive results are presented as
follows. Figure 7 shows the comparison of the experimental and predicted normalized concentration
c/cmax in the plane of y = 0 on grids 1–4. As shown in Figure 7, the predicted concentration contours
agreed well with the experimental LIF image when the grid resolution was improved. It matched well
in the near-field of the jet flow, and a considerable deviation existed in the boundary and far-field of
the jet flow even at a fine grid resolution.
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In general, typical vortices were present in the jet flow, such as shear layer vortices,
counter-rotating vortex pair, horseshoe vortices, and wake vortices. Figure 8 presents the coherent
structures of the buoyant jet in counterflow for the four grids based on the Q-criterion [43]. The coherent
structures became more complex as the grid resolution improved from coarse to fine. The results for
grid 1 captured the shear-layer vortices to show the entrainment between the jet flow and the ambient
fluid, whereas the results for grids 2–4 obtained the counter-rotating vortex pair. The counter-rotating
vortex pair is a distinct vortex structure in the mean flow field but not in the instantaneous flow
field [17,44], implying that grids 2–4 were too coarse to reflect the flow characteristics. This confirmed
the point that the predicted coherent structures could reflect the strong shearing between the jet flow
and the ambient fluid only at a high level of grid resolution.
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Figure 8. Comparison of the coherent structures of the buoyant jet in a counterflow (isosurfaces of
vortex-identification criterion Q = 0.11 s−2 based on instantaneous velocity field colored by height z/d):
(a–d) simulated results for grids 1, 2, 3, and 4, respectively.

The centerline concentration based on the longitudinal setting of the axial coordinate system is
depicted in Figure 9. As shown, radial lines perpendicular to the jet centerline were cut along the jet
flow. ζ and η represent the axial and radial directions in the jet-trajectory-based coordinate system.
η was assumed positive inside the jet flow, and xp, zp, and ζp were the abscissa, vertical, and axial
coordinates of the penetration point, respectively. In Figure 9b, the concentration dropped after the
jet was injected from the jet nozzle, decayed at a rapid rate, and then slowed down. The predicted
centerline concentrations along the jet trajectory agreed well when the grid resolution became finer.
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Figure 9. (a) Longitudinal setting of the axial coordinate system of from the mean concentration contour
with F = 5 and R = 7.5. (b) The normalized centerline concentration along the jet trajectory.

On the basis of the uncertainty analyses, concentration contours, coherent structures, and
centerline concentration, as well as the relationship between the numerical accuracy and computational
resources, the buoyant jet in counterflow was appropriate on grid 1 for F = 5 and R = 7.5. The radial
concentration profile on grid 1 is explored in Figure 10 to explore the decay of the jet concentration in
detail. In the near-field of the jet, such as ζ/d = 1.1 and 3.1, the radial concentration decayed rapidly,
both inside and outside the jet flow. Along the jet trajectory, the radial concentration inside the jet
decayed slower than that outside. The probable reason is that the jet flow outside was facing the
counterflow and strongly sheared, whereas the jet flow inside was forced to roll up and shed. Therefore,
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the area of the jet flow outside boundary was more difficult to validate, which was consistent with the
results of the uncertainty analyses.Water 2018, 10, 1509 17 of 20 
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Figure 10. Radial concentration profile for the case on grid 1.

4. Conclusions

V&V procedures were performed using uncertainty estimate methods in the study of the buoyant
jet in counterflow. The main conclusions are as follows.

(1) The series of verifications of the numerical solutions for four grids and the validation with the
experimental data revealed that FS and FS1 showed better reliability and applicability in the round
buoyant jet in counterflow among the seven uncertainty estimators.

(2) The area without validation at the UV level showed a strong relationship with the shear layer
between the jet flow and the ambient fluid. The strongly sheared boundary of the jet led to a higher
difficulty in reaching the validation level.

(3) The predicted concentration contours, coherent structures, and centerline concentration agreed
well with the experimental data when the grid resolution was improved. In particular, the predicted
coherent structures reflected the strong shearing between the jet flow and the ambient fluid only at a
high level of grid resolution.

Experimental, analytical, or numerical benchmark data for the buoyant jet in counterflow were
difficult to obtain due to the limitations of the experimental measurement, the improvement in
theory and the direct numerical simulation (DNS). In view of these difficulties, the validation was
difficult to process, and the corrected numerical solutions were difficult to derive. Nonetheless, the
conclusions drawn based on the V&V procedure are still applicable to the study of the buoyant jet
in counterflow. As noted in the literature [33,45], the influence of the grid and time-step should
be studied. However, in the current work, the influence of the grid resolution at a fixed time-step
was investigated to overcome the difficulties of interpreting the uncertainty results by the grid and
time-step simultaneously. Moreover, whether the parallel computing affected the calculation accuracy
compared with single-core computing must be explored in future works.

The tendency to employ the LES method for V&V has recently emerged. Compared with RANS,
LES can deliver more accurate numerical solutions. However, LES has been rarely reported in the
literature, probably due to various factors such as turbulent model, boundary condition, subgrid-scale
model, grid resolution, or computational resources. Xing [46] recently proposed a general framework
for the V&V of LES. Dutta and Xing [47] adopted this framework in the application of channel flows.
In the study of buoyant jets in counterflow, the V&V in LES will be applied with the guidelines
proposed by Xing [46] and Dutta and Xing [47] in our future work.
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