Flood Vulnerability, Environmental Land Use Conflicts, and Conservation of Soil and Water: A Study in the Batatais SP Municipality, Brazil
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Raw Data and Software
2.3. Preparation of Workable Data
2.4. Flood Vulnerability
2.5. Environmental Land Use Conflicts
2.6. Combined Analysis of Flood Vulnerability, Land Use, and Land Use Conflicts
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alfieri, L.; Cohen, S.; Galantowicz, J.; Schumann, G.J.; Trigg, M.A.; Zsoter, E.; Rudari, R. A global network for operational flood risk reduction. Environ. Sci. Policy 2018, 84, 149–158. [Google Scholar] [CrossRef]
- Erdlenbruch, K.; Grelot, F. Economic Assessment of flood prevention projects. Floods 2017, 2-Risk Management, 321–335. [Google Scholar]
- DAEE—Departamento de Águas e Energia Elétrica. Caracterização dos Recursos Hídricos do Estado de São Paulo; Departamento de Águas e Energia Elétrica: Centro, São Paulo, 1984. [Google Scholar]
- Libardi, P.L. Dinâmica da água no Solo; Editora da Universidade de São Paulo: São Paulo, Brazil, 2005. [Google Scholar]
- Samu, R.; Kentel, A.S. An Analysis of the Flood Management and Mitigation Measures in Zimbabwe for a Sustainable Future. Int. J. Disaster Risk Reduct. 2018, 31, 691–697. [Google Scholar] [CrossRef]
- Solín, Ľ.M.; Sládeková, M.; Michaleje, L. Vulnerability assessment of households and its possible reflection in flood risk management: The case of the upper Myjava basin, Slovakia. Int. J. Disaster Risk Reduct. 2018, 28, 640–652. [Google Scholar]
- Shaw, S.B.; Marrs, J.; Bhattarai, N.; Quackenbusch, L. Longitudinal study of the impacts of land cover change on hydrologic response in four mesoscale watersheds in New York State, USA. J. Hydrol. 2014, 519, 12–22. [Google Scholar] [CrossRef]
- Ramos, M.C.; Martínez-Casasnovas, J.A. Nutrient losses from a vineyard soil in Northeastern Spain caused by an extraordinary rainfall event. Catena 2004, 55, 79–90. [Google Scholar] [CrossRef]
- Marques, M.J.; García-Muñoz, S.; Muñoz-Organero, G.; Bienes, R. Soil conservation beneath grass cover in hillside vineyards under mediterranean climatic conditions (Madrid, Spain). Land Degrad. Dev. 2010, 21, 122–131. [Google Scholar] [CrossRef]
- Bagagiolo, G.; Biddoccu, M.; Rabino, D.; Cavallo, E. Effects of rows arrangement, soil management, and rainfall characteristics on water and soil losses in Italian sloping vineyards. Environ. Res. 2008, 166, 690–704. [Google Scholar] [CrossRef] [PubMed]
- Novara, A.; Gristina, L.; Saladino, S.S.; Santoro, A.; Cerdà, A. Soil erosion assessment on tillage and alternative soil managements in a Sicilian Vineyard. Soil Tillage Res. 2011, 117, 140–147. [Google Scholar] [CrossRef] [Green Version]
- Blavet, D.; De Noni, G.; Le Bissonnais, Y.; Leonard, M.; Maillo, L.; Laurent, J.Y.; Asseline, J.; Leprun, J.C.; Arshad, M.A.; Roose, E. Effect of land use and management on the early stages of soil water erosion in French Mediterranean vineyards. Soil Tillage Res. 2009, 106, 124–136. [Google Scholar] [CrossRef]
- Brown, G.; Raymond, C.M. Methods for identifying land use conflict potential using participatory mapping. Landsc. Urban Plan. 2013, 122, 196–208. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Varandas, S.G.P.; Sanches Fernandes, L.F.; Valle Junior, R.F. Soil losses in rural watersheds with environmental land use conflicts. Sci. Total Environ. 2014, 485–486C, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Valle Junior, R.F.; Varandas, S.G.P.; Sanches Fernandes, L.F.; Pacheco, F.A.L. Environmental land use conflicts: A threat to soil conservation. Land Use Policy 2014, 41, 172–185. [Google Scholar] [CrossRef]
- Calzolari, C.; Ungaro, F. Predicting shallow water table depth at regional scale from rainfall and soil data. J. Hydrol. 2012, 414, 374–387. [Google Scholar] [CrossRef]
- Chan, F.K.S.; Chuah, C.J.; Ziegler, A.D.; Dąbrowski, M.; Varis, O. Towards resilient flood risk management for Asian coastal cities: Lessons learned from Hong Kong and Singapore. J. Clean. Prod. 2018, 187, 576–589. [Google Scholar] [CrossRef]
- Wadt, P.G.S.; Frade, E.F.; Marcolan, A.L. A relação pesquisa e extensão na Amazônia. Boletim da Sociedade Brasileira de Ciência do Solo Viçosa 2012, 37, 42–47. [Google Scholar]
- Erdlenbruch, K.; Bonté, B. Simulating the dynamics of individual adaptation to floods. Environ. Sci. Policy 2018, 84, 134–148. [Google Scholar] [CrossRef]
- Ehsanzadeh, E.; Spence, C.; van der Kamp, G.; Mcconkey, B. On the behaviour of dynamic contributing areas and flood frequency curves in North American Prairie watersheds. J. Hydrol. 2012, 414, 364–373. [Google Scholar] [CrossRef]
- Rudari, R.; Gabellani, S.; Delogu, F. A simple model to map areas prone to surface water flooding. Int. J. Disaster Risk Reduct. 2014, 10, 428–441. [Google Scholar] [CrossRef]
- Bodoque, J.M.; Díez-herrero, A.; Eguibar, M.A.; Benito, G.; Ruiz-Villanueva, V.; Ballesteros-Cánovas, J.A. Challenges in paleoflood hydrology applied to risk analysis in mountainous watersheds—A review. J. Hydrol. 2015, 529, 449–467. [Google Scholar] [CrossRef]
- Valle Junior, R.F. Diagnóstico de Áreas de Risco de erosão e Conflito de uso dos Solos na Bacia do rio Uberaba. Ph.D. Thesis, Agronomy, State University of São Paulo, Faculty of Agrarian and Veterinary Sciences, Jaboticabal, Brazil, 2008; 70p. [Google Scholar]
- IBGE—INstituto Brasileiro de Geografia E Estatística. Levantamento Sistemático da Produção Agrícola; INstituto Brasileiro de Geografia E Estatística: Rio de Janeiro, Brazil, 2012; Volume 25, pp. 1–88. [Google Scholar]
- Zanata, M.; Pissarra, T.C.T. (Coord.). In formações Básicas Para o Planejamento Ambiental; Município de Batatais. Jaboticabal: Funep, Brazil, 2012; 70p. [Google Scholar]
- Siqueira, H.E.; Pissarra, T.C.T.; Valle Junior, R.F.; Fernandes, L.F.S.; Pacheco, F.A.L. A multi criteria analog model for assessing the vulnerability of rural catchments to road spills of hazardous substances. Environ. Impact Assess. Rev. 2017, 64, 26–36. [Google Scholar] [CrossRef]
- Machado, E.R.; Valle Júnior, R.F.; Sanches Fernandes, L.F.; Pacheco, F.A.L. The vulnerability of the environment to spills of dangerous substances on highways: A diagnosis based on Multi Criteria Modeling. Transp. Res. Part D 2018, 62, 748–759. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; Food and Agriculture Organization: Rome, Italy, 2015. [Google Scholar]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef]
- Alonso, J.A.; Lamata, M.T. Consistency in the analytic hierarchy process: A new approach. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2006, 14, 445–459. [Google Scholar] [CrossRef]
- Valera, C.A.; Valle Junior, R.F.; Varandas, S.G.P.; Sanches Fernandes, L.F.; Pacheco, F.A.L. The role of environmental land use conflicts in soil fertility: A study on the Uberaba River basin, Brazil. Sci. Total Environ. 2016, 562, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Chau, V.N.; Holland, J.; Cassells, S.; Tuohy, M. Using GIS to map impacts upon agriculture from extreme floods in Vietnam. Appl. Geogr. 2013, 41, 65–74. [Google Scholar] [CrossRef]
- Raza Zaidi, S.M.; Saeed, A.; Shahid, S.M.; Ali, N. Impact of flood on sugarcane industry of Pakistan. Interdiscip. J. Contemp. Res. Bus. 2013, 4, 92–105. [Google Scholar]
- Zhang, Q.; Gu, X.; Singh, V.P.; Liu, L.; Kong, D. Flood-induced agricultural loss across China and impacts from climate indices. Glob. Planet. Chang. 2016, 139, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Nga, P.H.; Takara, K.; Van, N.C. Integrated approach to analyze the total flood risk for agriculture: The significance of intangible damages—A case study in Central Vietnam. Int. J. Disaster Risk Reduct. 2018, 31, 862–872. [Google Scholar] [CrossRef]
- Wu, F.; Sun, Y.; Sun, Z.; Wu, S.; Wu, Q.Z.F.; Sun, Y.; Sun, Z.; Wu, S.; Zhang, Q. Assessing agricultural system vulnerability to floods: A hybrid approach using emergy and a landscape fragmentation index. Ecol. Indic. 2017, in press. [Google Scholar] [CrossRef]
- Adger, W.N.; Quinn, T.; Lorenzoni, I.; Murphy, C.; Sweeney, J. Changing social contracts in climate-change adaptation. Nat. Clim. Chang. 2013, 3, 330–333. [Google Scholar] [CrossRef] [Green Version]
- Dankers, R.; Arnell, N.W.; Clark, D.B.; Falloon, P.D.; Fekete, B.M.; Gosling, S.N.; Heinke, J.; Kim, H.; Masaki, Y.; Satoh, Y.; et al. First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble. Proc. Natl. Acad. Sci. USA 2014, 111, 3257–3261. [Google Scholar] [CrossRef] [PubMed]
- O’connell, P.; Ewen, J.; O’donnell, G.; Quinn, P. Is there a link between agricultural land-use management and flooding? Hydrol. Earth Syst. Sci. 2007, 11, 96–107. [Google Scholar] [CrossRef]
- Pattison, I.; Lane, S.N. The link between land-use management and fluvial flood risk: A chaotic conception? Prog. Phys. Geogr. 2011, 30. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Brody, S.D. Examining the impact of land use on flood losses in Seoul, Korea. Land Use Policy 2018, 70, 500–509. [Google Scholar] [CrossRef]
- EEA (European Environment Agency). Flood Risks and Environmental Vulnerability—Exploring the Synergies Between Floodplain Restoration, Water Policies and Thematic Policies; EEA Rep. No. 1/2016; European Environment Agency: Copenhagen, Denmark; Publications Office of the European Union: Luxembourg, 2016; ISSN 1977-8449. [Google Scholar]
- Akter, T.; Quevauviller, P.; Eisenreich, S.J.; Vaes, G. Impacts of climate and land use changes on flood risk management for the Schijn River, Belgium. Environ. Sci. Policy 2018, 89, 163–175. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Sanches Fernandes, L.F. Environmental land use conflicts in catchments: A major cause of amplified nitrate in river water. Sci. Total Environ. 2016, 548–549, 173–188. [Google Scholar] [CrossRef] [PubMed]
- Valle Junior, R.F.; Varandas, S.G.P.; Sanches Fernandes, L.F.; Pacheco, F.A.L. Groundwater quality in rural watersheds with environmental land use conflicts. Sci. Total Environ. 2014, 493, 812–827. [Google Scholar] [PubMed]
- Valle Junior, R.F.; Varandas, S.G.P.; Pacheco, F.A.L.; Pereira, V.R.; Santos, C.F.; Cortes, R.M.V.; Fernandes, L.F.S. Impacts of land use conflicts on riverine ecosystems. Land Use Policy 2015, 43, 48–62. [Google Scholar] [Green Version]
- Pacheco, F.A.L.; Sanches Fernandes, L.F.; Valle Junior, R.F.; Pissarra, T.C.T.; Valera, C.A. Land degradation: Multiple environmental consequences and routes to neutrality. Curr. Opin. Environ. Sci. Health 2018, 5, 79–86. [Google Scholar] [CrossRef]
- Sutton, P.C.; Anderson, S.J.; Costanza, R.; Kubiszewski, I. The ecological economics of land degradation: Impacts on ecosystem service values. Ecol. Econ. 2016, 129, 182–192. [Google Scholar] [CrossRef]
- Valera, C.A.; Pissarra, T.C.T.; Martins Filho, M.V.; Valle Junior, R.F.; Sanches Fernandes, L.F.; Pacheco, F.A.L. A legal framework with scientific basis for applying the ‘polluter pays principle’ to soil conservation in rural watersheds in Brazil. Land Use Policy 2017, 66, 61–71. [Google Scholar] [CrossRef]
- González-Arqueros, M.L.; Mendoza, M.E.; Bocco, G.; Castillo, B.S. Flood susceptibility in rural settlements in remote zones: The case of a mountainous basin in the Sierra-Costa region of Michoacán, Mexico. J. Environ. Manag. 2018, 223, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, S.H.; Gan, T.Y. Multi-criteria approach to develop flood susceptibility maps in arid regions of Middle East. J. Clean. Prod. 2018, 196, 216–229. [Google Scholar] [CrossRef]
- Bellu, A.; Sanches Fernandes, L.F.; Cortes, R.M.V.; Pacheco, F.A.L. A framework model for the dimensioning and allocation of a detention basin system: The case of a flood-prone mountainous watershed. J. Hydrol. 2016, 533, 567–580. [Google Scholar] [CrossRef]
- Santos, R.M.B.; Sanches Fernandes, L.F.; Cortes, R.M.V.; Varandas, S.G.P.; Jesus, J.J.B.; Pacheco, F.A.L. Integrative assessment of river damming impacts on aquatic fauna in a Portuguese reservoir. Sci. Total Environ. 2017, 601–602, 1108–1118. [Google Scholar] [CrossRef] [PubMed]
- Terêncio, D.P.S.; Sanches Fernandes, L.F.; Cortes, R.M.V.; Pacheco, F.A.L. Improved framework model to allocate optimal rainwater harvesting sites in small watersheds for agro-forestry uses. J. Hydrol. 2017, 550, 318–330. [Google Scholar] [CrossRef]
- Terêncio, D.P.S.; Sanches Fernandes, L.F.; Cortes, R.M.V.; Moura, J.P.; Pacheco, F.A.L. Rainwater harvesting in catchments for agro-forestry uses: A study focused on the balance between sustainability values and storage capacity. Sci. Total Environ. 2018, 613–614, 1079–1092. [Google Scholar] [CrossRef] [PubMed]
- Sanches Fernandes, L.F.; Terêncio, D.P.S.; Pacheco, F.A.L. Rainwater harvesting systems for low demanding applications. Sci. Total Environ. 2015, 529, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Sanches Fernandes, L.F.; Pereira, M.G.; Morgado, S.G.; Macário, E.B. Influence of Climate Change on the Design of Retention Basins in Northeastern Portugal. Water 2018, 10, 743. [Google Scholar] [CrossRef]
- Damodar Reddy, D.; Subba Rao, A.; Rupa, T.R. Effects of continuous use of cattle manure and fertilizer phosphorus on crop yields and soil organic phosphorus in a vertisol. Bioresour. Technol. 2000, 75, 113–118. [Google Scholar] [CrossRef]
- Lenka, N.K.; Satapathy, K.K.; Lal, R.; Singh, R.K.; Singh, N.A.K.; Agrawal, P.K.; Choudhury, P.; Rathore, A. Weed strip management for minimizing soil erosion and enhancing productivity in the sloping lands of north-eastern India. Soil Tillage Res. 2017, 170, 104–113. [Google Scholar] [CrossRef]
- Bogunovic, I.; Pereira, P.; Kisic, I.; Sajko, K.; Sraka, M. Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena 2018, 160, 376–384. [Google Scholar] [CrossRef]
- Alemu, T.; Bahrndorff, S.; Alemayehu, E.; Ambelu, A. Agricultural sediment reduction using natural herbaceous buffer strips: A case study of the east African highland. Water Environ. J. 2017, 31, 522–527. [Google Scholar] [CrossRef]
- Valera, C.A. Avaliação do Novo Código Florestal: As Áreas de Preservação Permanente—APPS, e a Conservação da Qualidade do solo e da água Superficial. Ph.D. Thesis, Universidade Estadual Paulista “Júlio De Mesquita Filho” (UNESP), Faculdade De Ciências Agrárias E Veterinárias Câmpus De Jaboticabal, Jaboticabal, Brazil, 2017; 135p. (In Portuguese). [Google Scholar]
- Stańczuk-Gałwiaczek, M.; Sobolewska-Mikulska, K.; Henk Ritzema, H.; Van Loon-Steensma, J.M. Integration of water management and land consolidation in rural areas to adapt to climate change: Experiences from Poland and the Netherlands. Land Use Policy 2018, 77, 498–511. [Google Scholar] [CrossRef]
- Sanches Fernandes, L.F.; Marques, M.J.; Oliveira, P.C.; Moura, J.P. Decision support systems in water resources in the demarcated region of Douro—Case study in Pinhão River Basin, Portugal. Water Environ. J. 2014, 28, 350–357. [Google Scholar]
- Sanches Fernandes, L.F.; Santos, C.; Pereira, A.; Moura, J. Model of management and decision support systems in the distribution of water for consumption: Case study in North Portugal. Eur. J. Environ. Civ. Eng. 2011, 15, 411–426. [Google Scholar]
- Monde Patrina Mabuku, M.P.; Senzanje, A.; Mudhara, M.; Jewitt, G.; Mulwafu, W. Rural households’ flood preparedness and social determinants in Mwandi district of Zambia and Eastern Zambezi Region of Namibia. Int. J. Disaster Risk Reduct. 2018, 28, 284–297. [Google Scholar] [CrossRef]
Altitude Attribute | ||
---|---|---|
Classes (m) | Rating | Rank |
565–676 | 10 | 7 |
676–734 | 7 | |
734–784 | 6 | |
784–832 | 4 | |
832–877 | 3 | |
877–972 | 1 | |
Land Use Attribute | ||
Classes | Rating | Rank |
Urban | 10 | 5 |
Pasture | 9 | |
Agriculture | 8 | |
Native Forest | 1 | |
Slope Attribute | ||
Classes (%) | Rating | Rank |
0–3 | 9 | 3 |
3–8 | 8 | |
8–20 | 7 | |
20–45 | 5 | |
45–75 | 1 | |
> 75 | 1 | |
Soil Class Attribute | ||
Classes | Rating | Rank |
Red latosols | 4 | 1 |
Yellow-red latosols | 3 |
Importance | Definition | Explanation |
---|---|---|
1 | Equal importance | Two activities contribute equally to the objective |
2 | Weak or slight | |
3 | Moderate importance | Experience and judgment slightly favor one activity over another |
4 | Moderate plus | |
5 | Strong importance | Experience and judgment strongly favor one activity over another |
6 | Strong plus | |
7 | Very strong or demonstrated importance | An activity is favored very strongly over another; its dominance demonstrated in practice |
8 | Very, very strong | |
9 | Extreme importance | The evidence favoring one activity over another is of the highest order of affirmation |
Reciprocals of above | If the activity i has one of the above non-zero numbers assigned to it when compared with activity j, then j has the reciprocal value when compared with i | |
1.1–1.9 | If the activities are very close | May be difficult to assign the best value but when compared with other contrasting activities the size of the small numbers would not be too noticeable, yet they can still indicate the relative importance of the activities. |
Attributes | Soil | Slope | Land Use | Altitude |
---|---|---|---|---|
Soil | 1 | 1/3 | 1/5 | 1/7 |
Slope | 3 | 1 | 1/3 | 1/5 |
Land Use | 5 | 3 | 1 | 1/3 |
Altitude | 7 | 5 | 3 | 1 |
Attributes | Soil | Slope | Land Use | Altitude | Weight (w) |
---|---|---|---|---|---|
Soil | 1/16 = 0.0625 | 0.33/9.33 = 0.0357 | 0.20/4.53 = 0.0441 | 0.14/1.68 = 0.0852 | 0.0553 |
Slope | 3/16 = 0.1875 | 1/9.33 = 0.1075 | 0.33/4.53 = 0.0735 | 0.20/1.68 = 0.1193 | 0.1175 |
Land Use | 5/16 = 0.3125 | 3/9.33 = 0.3214 | 1/4.53 = 0.2206 | 0.33/1.68 = 0.1988 | 0.2622 |
Altitude | 7/16 = 0.4375 | 5/9.33 = 0.5357 | 3/4.53 = 0.6618 | 1/1.68 = 0.5966 | 0.5650 |
Vulnerability Class | Area of Incidence (km2) | Percentage of Municipal Area (%) |
---|---|---|
Very low | 20.31 | 2.39 |
Low | 152.77 | 17.95 |
Medium | 388.92 | 45.70 |
High | 249.57 | 29.33 |
Very High | 39.45 | 4.64 |
Total | 851 | 100 |
Land Use Conflict | Flood vulnerability | Total | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Very low | Low | Medium | High | Very High | ||||||||
km2 | % | km2 | % | km2 | % | km2 | % | km2 | % | km2 | % | |
Class 1 | 2.56 | 0.57 | 33.66 | 7.44 | 114.07 | 25.21 | 67.97 | 15.02 | 5.78 | 1.28 | 273.56 | 32.2 |
Class 2 | 2.79 | 0.62 | 31.27 | 6.91 | 60.23 | 13.31 | 14.92 | 3.3 | 4.93 | 1.09 | 139.37 | 16.4 |
Class 3 | 1.73 | 0.38 | 13.34 | 2.95 | 61.02 | 13.49 | 23.87 | 5.28 | 14.33 | 3.17 | 139.56 | 16.4 |
Land Use | Flood Vulnerability | Total | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Very Low | Low | Medium | High | Very High | ||||||||
km2 | % | km2 | % | km2 | % | km2 | % | km2 | % | km2 | % | |
Agriculture | 3.4 | 0.4 | 112.47 | 13.22 | 315.6 | 37.09 | 201.2 | 23.64 | 26.97 | 3.17 | 659.64 | 77.5 |
Forest | 13.63 | 1.6 | 31.39 | 3.69 | 44.09 | 5.18 | 25.93 | 3.05 | 4.29 | 0.5 | 119.33 | 14.0 |
Pasture | 1.36 | 0.16 | 5.17 | 0.61 | 16.04 | 1.88 | 23.63 | 2.78 | 8.14 | 0.96 | 54.34 | 6.4 |
Urban | 0 | 0 | 1.39 | 0.16 | 15.13 | 1.78 | 1.16 | 0.14 | 0 | 0 | 17.68 | 2.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caldas, A.M.; Pissarra, T.C.T.; Costa, R.C.A.; Neto, F.C.R.; Zanata, M.; Parahyba, R.D.B.V.; Sanches Fernandes, L.F.; Pacheco, F.A.L. Flood Vulnerability, Environmental Land Use Conflicts, and Conservation of Soil and Water: A Study in the Batatais SP Municipality, Brazil. Water 2018, 10, 1357. https://doi.org/10.3390/w10101357
Caldas AM, Pissarra TCT, Costa RCA, Neto FCR, Zanata M, Parahyba RDBV, Sanches Fernandes LF, Pacheco FAL. Flood Vulnerability, Environmental Land Use Conflicts, and Conservation of Soil and Water: A Study in the Batatais SP Municipality, Brazil. Water. 2018; 10(10):1357. https://doi.org/10.3390/w10101357
Chicago/Turabian StyleCaldas, Anildo Monteiro, Teresa Cristina Tarlé Pissarra, Renata Cristina Araújo Costa, Fernando Cartaxo Rolim Neto, Marcelo Zanata, Roberto Da Boa Viagem Parahyba, Luis Filipe Sanches Fernandes, and Fernando António Leal Pacheco. 2018. "Flood Vulnerability, Environmental Land Use Conflicts, and Conservation of Soil and Water: A Study in the Batatais SP Municipality, Brazil" Water 10, no. 10: 1357. https://doi.org/10.3390/w10101357
APA StyleCaldas, A. M., Pissarra, T. C. T., Costa, R. C. A., Neto, F. C. R., Zanata, M., Parahyba, R. D. B. V., Sanches Fernandes, L. F., & Pacheco, F. A. L. (2018). Flood Vulnerability, Environmental Land Use Conflicts, and Conservation of Soil and Water: A Study in the Batatais SP Municipality, Brazil. Water, 10(10), 1357. https://doi.org/10.3390/w10101357