Quantifying the Effect of Different Urban Planning Strategies on Heat Stress for Current and Future Climates in the Agglomeration of The Hague (The Netherlands)
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Diagnostic Equation to Compute Minimum Temperatures in Cities
2.3. Future Climate Scenarios
- hourly temperature current climate
- = minimum daily temperature, 8:00 a.m. to 8:00 a.m. the next day
- = maximum daily temperature, 8:00 a.m. to 8:00 a.m. the next day
- hourly temperature for future climate
- daily temperature increment to future climate
- change in average diurnal temperature range to future climate
- hourly temperature deviation
- 24-hour average bias of hourly temperature deviation
2.4. Urban Planning Strategies
3. Results
3.1. Model Validation for the Agglomeration of The Hague
3.2. Heat Stress for Current and Future Climate in 2050
3.3. Urban Planning Strategies for The Hague Southwest
3.4. Urban Planning Strategies for the CID
4. Discussion
4.1. Thresholds in Urban Planning Strategies
4.2. Applicability and Limitations of the UHI Diagnostic Equation
4.3. Climate-Change Projections on Heat Stress
4.4. Comparison of Urban Heat Island and Climate Scenario Contributions on Heat Stress
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Southwest | A. Current Situation | B. Building Green Corridors | C. Building Low–Mid-Rise | D. Preserve Existing Green Spaces | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Neighborhood | Res/km2 | fveg | SVF | Res/km2 | fveg | SVF | Res/km2 | fveg | SVF | Res/km2 | fveg | SVF |
1 | 5344 | 0.51 | 0.73 | 5344 | 0.51 | 0.73 | 5852 | 0.43 | 0.73 | 5852 | 0.51 | 0.69 |
2 | 5606 | 0.49 | 0.72 | 5606 | 0.49 | 0.72 | 8185 | 0.11 | 0.72 | 8185 | 0.39 | 0.58 |
3 | 5305 | 0.48 | 0.70 | 5305 | 0.48 | 0.70 | 6439 | 0.32 | 0.70 | 6439 | 0.48 | 0.61 |
4 | 6703 | 0.51 | 0.72 | 6703 | 0.51 | 0.72 | 7009 | 0.47 | 0.72 | 7009 | 0.51 | 0.69 |
5 | 0 | n/a | n/a | 5344 | 0.73 | 0.51 | 0 | n/a | n/a | 0 | n/a | n/a |
CID | A. Current Situation | B. Green Spaces Preserved | C. Increased Vegetation Fraction | |||||
---|---|---|---|---|---|---|---|---|
Neighborhood | fveg | SVF | Res/km | fveg | SVF | Res/km2 | fveg | SVF |
1 | 0.20 | 0.71 | 17010 | 0.05 | 0.23 | 17010 | 0.06 | 0.22 |
2 | 0.30 | 0.66 | 9811 | 0.13 | 0.55 | 9811 | 0.26 | 0.47 |
3 | 0.21 | 0.87 | 15643 | 0.06 | 0.29 | 15643 | 0.10 | 0.26 |
4 | 0.21 | 0.67 | 7706 | 0.17 | 0.64 | 7706 | 0.35 | 0.54 |
5 | 0.08 | 0.80 | 5805 | 0.08 | 0.77 | 5805 | 0.47 | 0.60 |
6 | 0.15 | 0.86 | 5907 | 0.15 | 0.74 | 5907 | 0.46 | 0.60 |
7 | 0.19 | 0.82 | 11919 | 0.09 | 0.46 | 11919 | 0.19 | 0.39 |
References
- Intergovernmental Panel on Climate Change (IPCC). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. In A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Field, C.B., Baros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; p. 582. ISBN 978-1-107-02506-6. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Annex I: Atlas of Global and Regional Climate Projections. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Clarke, J.F. Some effects of the urban structure on heat mortality. Environ. Res. 1971, 5, 93–104. [Google Scholar] [CrossRef]
- Basu, R. High ambient temperature and mortality: A review of epidemiologic studies from 2001 to 2008. Environ. Health 2009, 8, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Aida, M. Urban albedo as a function of the urban structure—A model experiment. Boundary-Layer Meteorol. 1982, 23, 405–413. [Google Scholar] [CrossRef]
- Holmer, B. A simple operative method for determination of sky view factors in complex urban canyons from fisheye photographs. Meteorol. Z. 1992, 1, 236–239. [Google Scholar] [CrossRef]
- Allen, L.; Lindberg, F.; Grimmond, C.S.B. Global to city scale urban anthropogenic heat flux: Model and variability. Int. J. Climatol. 2011, 31, 1990–2005. [Google Scholar] [CrossRef]
- Fischer, E.M.; Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 2010, 3, 398–403. [Google Scholar] [CrossRef]
- Fouillet, A.; Rey, G.; Laurent, F.; Pavillon, G.; Bellec, S.; Ghihenneuc-Jouyaux, C.; Hémon, D. Excess mortality related to the August 2003 heat wave in France. Int. Arch. Occup. Environ. 2006, 80, 16–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joe, L.; Hoshiko, S.; Dobraca, D.; Jackson, R.; Smorodinsky, S.; Smith, D.; Harnly, M. Mortality during a Large-Scale Heat Wave by Place, Demographic Group, Internal and External Causes of Death, and Building Climate Zone. Int. J. Environ. Res. Public Health 2016, 13, 299. [Google Scholar] [CrossRef] [PubMed]
- Garssen, J.; Harmsen, C.; de Beer, J. The effect of the summer 2003 heat wave on mortality in the Netherlands. Eurosurveillance 2005, 10, 165–167. [Google Scholar] [CrossRef] [PubMed]
- WMO. Guide to Meteorological Instruments and Methods of Observation. 2014 edition WMO-No. 8. Available online: https://library.wmo.int/opac/doc_num.php?explnum_id=4147 (accessed on 9 May 2018).
- Steeneveld, G.J.; Koopmans, S.; Heusinkveld, B.G.; van Hove, L.W.A.; Holtslag, A.A.M. Quantifying urban heat island effects and human comfort for cities of variable size and urban morphology in the Netherlands. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Brandsma, T.; Wolters, D. Measurement and Statistical Modelling of the Urban Heat Island of the City of Utrecht (The Netherlands). J. Appl. Meteorol. Climatol. 2012, 51, 1046–1060. [Google Scholar] [CrossRef]
- Chen, F.; Kusaka, H.; Bornstein, R.; Ching, J.; Grimmond, C.S.B.; Grossman-Clarke, S.; Loridan, T.; Manning, K.W.; Martilli, A.; Miao, S.; et al. The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol. 2011, 31, 273–288. [Google Scholar] [CrossRef]
- Salamanca, F.; Martilli, A.; Tewari, M.; Chen, F. A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF. J. Appl. Meteorol. Climatol. 2011, 50, 1107–1128. [Google Scholar] [CrossRef]
- Kusaka, H.; Kondo, H.; Kikega, Y.; Kimura, F. A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound. Layer Meteorol. 2001, 101, 329–358. [Google Scholar] [CrossRef]
- Ronda, R.J.; Steeneveld, G.J.; Heusinkveld, B.G.; Attema, J.J.; Holtslag, A.A.M. Urban finescale forecasting reveals weather conditions with unprecedented detail. Bull. Am. Meteorol. Soc. 2017, 98, 2675–2688. [Google Scholar] [CrossRef]
- Theeuwes, N.; Steeneveld, G.J.; Ronda, R.J.; Holtslag, A.A.M. A diagnostic equation for the daily maximum urban heat island effect for cities in Northwestern Europe. Int. J. Climatol. 2017, 37, 443–457. [Google Scholar] [CrossRef]
- Roth, M.; Oke, T.R.; Emery, W.J. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. Int. J. Remote Sens. 1989, 10, 1699–1720. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 107, 375–386. [Google Scholar] [CrossRef]
- Heusinkveld, B.G.; Steeneveld, G.J.; van Hove, L.W.A.; Jacobs, C.M.J.; Holtslag, A.A.M. Spatial variability of the Rotterdam urban heat island as influenced by urban land use. J. Geophys. Res. Atmos. 2014, 119, 677–692. [Google Scholar] [CrossRef] [Green Version]
- Molenaar, R.E.; Heusinkveld, B.G.; Steeneveld, G.J. Projection of rural and urban human thermal comfort in The Netherlands for 2050. Int. J. Climatol. 2016, 36, 1708–1723. [Google Scholar] [CrossRef]
- EIB, Investeren in Nederland. Available online: https://www.eib.nl/pdf/investeren_in_nederland.pdf (accessed on 12 June 2015). (In Dutch).
- CBS (Centraal Bureau voor de Statistiek) StatLine. Bevolking; Geslacht, Leeftijd, Regio. Available online: https://opendata.cbs.nl/statline/portal.html?_la=nl&_catalog=CBS&tableId=03759ned&_theme=299 (accessed on 7 August 2018). (In Dutch).
- CBS (Centraal Bureau voor de Statistiek) Kaart van 100 Meter bij 100 Meter Met Statistieken. Available online: https://www.cbs.nl/nl-nl/dossier/nederland-regionaal/geografische%20data/kaart-van-100-meter-bij-100-meter-met-statistieken (accessed on 8 May 2018). (In Dutch).
- OpenTopo Achtergrondkaart, Retrieved via PDOK-Services Plug-in in QGIS. (PDOK are the Dutch Public Geo Services). Available online: http://pdokviewer.pdok.nl (accessed on 8 May 2018).
- KNMI. Sky View Factor of the Netherlands. Available online: https://data.knmi.nl/datasets/sky_view_factor_netherlands/1.0?q=sky+view (accessed on 26 February 2018).
- AHN. Actueel hoogtebestand Nederland. Version 2. Available online: www.ahn.nl (accessed on 1 April 2012). (In Dutch).
- Attema, J.J.; Heusinkveld, B.G.; Ronda, R.J.; Steeneveld, G.J.; Holtslag, A.A.M. Summer in the city: Forecasting and mapping human thermal comfort in urban areas. In Proceedings of the IEEE 11th International Conference on e-Science, Munich, Germany, 31 August–4 September 2015. [Google Scholar]
- Climate Adaptation Services. Climate Impact Atlas. Available online: www.klimaateffectatlas.nl/en (accessed on 4 August 2018).
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available online: https://qgis.org/en/site/ (accessed on 31 August 2018).
- Klein Tank, A.; Beersma, J.; Bessembinder, B.; van den Hurk, B.; Lenderink, G. KNMI’14 Climate Scenarios for the Netherlands, KNMI Publication: Brochure KNMI’14 Climate Scenarios; KNMI: De Bilt, The Netherlands, 2015; p. 34. Available online: http://www.klimaatscenarios.nl/brochures/images/Brochure_KNMI14_EN_2015.pdf (accessed on 1 July 2015).
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33–57. [Google Scholar] [CrossRef] [Green Version]
- Cubasch, U.; Wuebbles, D.; Chen, D.; Facchini, M.C.; Frame, D.; Mahowald, N.; Winther, J.G. Introduction. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Van den Hurk, B.; Siegmund, P.; Klein Tank, A. KNMI’14: Climate Change Scenarios for the 21st Century—A Netherlands Perspective; Royal Netherlands Meteorological Institute (KNMI): De Bilt, The Netherlands, 2014. Available online: http://bibliotheek.knmi.nl/knmipubWR/WR2014-01.pdf (accessed on 26 May 2014).
- KNMI, Toelichting Transformatie Tijdreeksen. Available online: http://www.klimaatscenarios.nl/toekomstig_weer/transformatie/Toelichting_TP.pdf (accessed on 6 October 2015). (In Dutch).
- Bakker, A. Time Series Transformation Tool Version 3.1: Description of the Program to Generate Time Series Consistent with the KNMI’14 Climate Scenarios; Technical Report; KNMI: De Bilt, The Netherlands; p. 40. Available online: http://bibliotheek.knmi.nl/knmipubTR/TR349.pdf (accessed on 17 November 2015).
- Bell, S.; Cornford, D.; Bastin, L. How good are citizen weather stations? Addressing a biased opinion. Weather 2015, 70, 75–84. [Google Scholar] [CrossRef]
- Meier, F.; Fenner, D.; Grassmann, T.; Otto, M.; Scherer, D. Crowdsourcing air temperature from citizen weather stations for urban climate research. Urban Clim. 2017, 19, 130–191. [Google Scholar] [CrossRef]
- Hopkinson, R.F.; McKenney, D.W.; Milewska, E.J.; Hutchinson, M.F.; Papadopol, P.; Vincent, L.A. Impact of Aligning Climatological Day on Gridding Daily Maximum–Minimum Temperature and Precipitation over Canada. J. Appl. Meteorol. Climatol. 2011, 50, 1654–1665. [Google Scholar] [CrossRef]
- CBS (Centraal Bureau voor de Statistiek) Statline. Aardgas; Aanbod en Verbruik. Available online: https://opendata.cbs.nl/statline/portal.html?_la=nl&_catalog=CBS&tableId=00372&_theme=200 (accessed on 7 August 2018). (In Dutch).
- Hamid, K. Investigation of the passage of a derecho in Belgium. Atmos. Res. 2012, 107, 86–105. [Google Scholar] [CrossRef]
- KNMI, Warme en Zonnige Zomer 2006. Available online: https://www.knmi.nl/over-het-knmi/nieuws/warme-en-zonnige-zomer-2006 (accessed on 31 August 2006). (In Dutch)
- Montavez, J.P.; Rodriguez, A.; Jiménez, J.I. A study of the urban heat island of Granada. Int. J. Climatol. 2000, 20, 899–911. [Google Scholar] [CrossRef]
- Eliasson, I. Urban nocturnal temperatures, street geometry and land use. Atmos. Environ. 1996, 30, 379–392. [Google Scholar] [CrossRef]
- Goh, K.C.; Chang, H.C. The relationship between height to width ratios and the heat island intensity at 22:00 h for Singapore. Int. J. Climatol. 1999, 19, 1011–1023. [Google Scholar] [CrossRef] [Green Version]
- Unger, J. Intra-urban relationship between surface geometry and urban heat island: Review and new approach. Clim. Res. 2004, 27, 253–264. [Google Scholar] [CrossRef]
- Theeuwes, N.; Solcerova, A.; Steeneveld, G.J. Modelling the influence of open water surfaces on the summertime temperature and thermal comfort in the city. J. Geophys. Res. Atmos. 2013, 118, 8881–8896. [Google Scholar] [CrossRef]
- Hamdi, R.; Schayes, B. Sensitivity study of the urban heat island intensity to urban characteristics. Int. J. Climatol. 2008, 28, 973–982. [Google Scholar] [CrossRef] [Green Version]
- Theeuwes, N.; Steeneveld, G.J.; Ronda, R.J.; Heusinkveld, B.G.; van Hove, L.W.A.; Holtslag, A.A.M. Seasonal dependence of the urban heat island on the street canyon aspect ratio. Q. J. R. Meteorol. 2014, 118, 8881–8896. [Google Scholar]
- Gasparrini, A.; Guo, Y.; Sera, F.; Vicedo-Cabrera, A.M.; Huber, V.; Tong, S.; Coelho, M.S.Z.; Saldiva, P.H.N.; Lavigne, E.; Correa, P.M.; et al. Projections of temperature-related excess mortality under climate change scenarios. Lancet. Planet. Health 2017, 1, e360–e367. [Google Scholar] [CrossRef]
- Huynen, M.T.E.; Martens, P. Climate change effects on heat- and cold-related mortality in the Netherlands: A scenario-based integrated environmental health impact assessment. Int. J. Environ. Res. Public Health 2015, 12, 13295–13320. [Google Scholar] [CrossRef] [PubMed]
- Analitis, A.; Michelozzi, P.; D’Ippoliti, D.; de’Donato, F.; Menne, B.; Matthies, F.; Atkinson, R.W.; Iñiguez, C.; Basagaña, X.; Schneider, A.; et al. Effects of heat waves on mortality: Effect modification and confounding by air pollutants. Epidemiology 2014, 25, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Athanassiadou, M.; Baker, J.; Carruthers, D.; Collins, W.; Girnary, S.; Hassel, D.; Hort, M.; Johnson, C.; Johnson, K.; Jones, R.; et al. An assessment of the impact of climate change on air quality at two UK sites. Atmos. Environ. 2010, 44, 1877–1886. [Google Scholar] [CrossRef]
- Lemonsu, A.; Kounkou-Arnoud, R.; Desplat, J.; Salagnac, J.-L.; Masson, V. Evolution of the Parisian urban climate under a global changing climate. Clim. Chang. 2013, 116, 679–692. [Google Scholar] [CrossRef]
- McCarthy, M.P.; Best, M.J.; Betts, R.A. Climate change in cities due to global warming and urban effects. J. Geophys. Res. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Hamdi, R.; van de Vyver, H.; de Troch, R.; Termonia, P. Assessment of three dynamical urban climate downscaling methods: Brussels’s future urban heat island under an A1B emission scenario. Int. J. Climatol. 2014, 34, 978–999. [Google Scholar] [CrossRef]
- Grossman-Clarke, A.; Schubert, S.; Fenner, D. Urban effects on summertime air temperature in Germany under climate change. Int. J. Climatol. 2017, 37, 905–917. [Google Scholar] [CrossRef]
The Hague Southwest | CID (Central Innovation District) |
---|---|
|
|
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koopmans, S.; Ronda, R.; Steeneveld, G.-J.; Holtslag, A.A.M.; Klein Tank, A.M.G. Quantifying the Effect of Different Urban Planning Strategies on Heat Stress for Current and Future Climates in the Agglomeration of The Hague (The Netherlands). Atmosphere 2018, 9, 353. https://doi.org/10.3390/atmos9090353
Koopmans S, Ronda R, Steeneveld G-J, Holtslag AAM, Klein Tank AMG. Quantifying the Effect of Different Urban Planning Strategies on Heat Stress for Current and Future Climates in the Agglomeration of The Hague (The Netherlands). Atmosphere. 2018; 9(9):353. https://doi.org/10.3390/atmos9090353
Chicago/Turabian StyleKoopmans, Sytse, Reinder Ronda, Gert-Jan Steeneveld, Albert A.M. Holtslag, and Albert M.G. Klein Tank. 2018. "Quantifying the Effect of Different Urban Planning Strategies on Heat Stress for Current and Future Climates in the Agglomeration of The Hague (The Netherlands)" Atmosphere 9, no. 9: 353. https://doi.org/10.3390/atmos9090353
APA StyleKoopmans, S., Ronda, R., Steeneveld, G.-J., Holtslag, A. A. M., & Klein Tank, A. M. G. (2018). Quantifying the Effect of Different Urban Planning Strategies on Heat Stress for Current and Future Climates in the Agglomeration of The Hague (The Netherlands). Atmosphere, 9(9), 353. https://doi.org/10.3390/atmos9090353