Outdoor Thermal Comfort during Anomalous Heat at the 2015 Pan American Games in Toronto, Canada
Abstract
:1. Introduction
1.1. Pan and Para Pan American Games (PA15 Games)
1.2. Urban Heat Variability and Thermal Comfort
1.3. Mass Gatherings and Thermal Comfort
2. Experiments
2.1. Study Site
2.2. Data Collection
2.3. Heat Metric Calculation
2.4. Thermal Comfort Case Study
2.4.1. Absorbed Radiation
2.4.2. Metabolic Intensity
2.4.3. Clothing
2.5. Informal and Formal Evidence of Heat Stress
3. Results
3.1. Urban Heat Variability across the PA15 Games Area
3.2. Stadium Thermal Comfort
3.3. Spectator and EMS Response
- “The sun is burning!”
- “The very long lineup for water at #URU vs #MEX. Many more water stations needed.”
- “Enjoying the hot day watching the gold medal men’s #soccer”
- “Half time. Holy cow, it’s hot out here. Can’t imagine what it’s like on the turf.”
- “Today the heat is unbearable in Hamilton. Already several players of both teams look exhausted!!!” (Translated from Spanish)
- “With this heat, the black color of the shirt does not help!!!” (Translated from Spanish)
- “It is very hot” (Translated from Spanish)
- “Embracing the heat with a stroll under the trees at Gage Park”
4. Discussion
4.1. Geospatial Station Summertime Averages
4.2. Heat Stress at Sports Events
4.3. Limitations and Future Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eichner, E.R. SSE #86: Heat Stroke in Sports: Causes, Prevention and Treatment. Sports Sci. Exchtr. 2002, 15, 86. [Google Scholar]
- Joe, P.; Belair, S.; Bernier, N.B.; Bouchet, V.; Brook, J.R.; Brunet, D.; Burrows, W.; Charland, J.P.; Dehghan, A.; Driedger, N. The Environment Canada Pan and ParaPan American Science Showcase Project. Bull. Am. Meteorol. Soc. 2017. [Google Scholar] [CrossRef]
- Rinner, C.; Hussain, M. Toronto’s urban heat island-exploring the relationship between land use and surface temperature. Remote Sens. 2011, 3, 1251–1265. [Google Scholar] [CrossRef]
- Wang, Y.; Berardi, U.; Akbari, H. Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy Build. 2016, 114, 2–19. [Google Scholar] [CrossRef]
- Mariani, Z.; Dehghan, A.; Joe, P.; Sills, D. Observations of Lake-Breeze Events During the Toronto 2015 Pan-American Games. Bound.-Lay. Meteorol. 2018, 166, 113–135. [Google Scholar] [CrossRef]
- Hartz, D.A.; Brazel, A.J.; Golden, J.S. A comparative climate analysis of heat-related emergency 911 dispatches: Chicago, Illinois and Phoenix, Arizona USA 2003 to 2006. Int. J. Biometeorol. 2013, 57, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, S.C.; Kalkstein, L.S. Progress in heat watch-warning system technology. Bull. Am. Meteorol. Soc. 2004, 85, 1931–1941. [Google Scholar] [CrossRef]
- Jenerette, G.D.; Harlan, S.L.; Buyantuev, A.; Stefanov, W.L.; Declet-Barreto, J.; Ruddell, B.L.; Myint, S.W.; Kaplan, S.; Li, X. Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ USA. Landsc. Ecol. 2016, 31, 745–760. [Google Scholar] [CrossRef]
- Harlan, S.L.; Declet-Barreto, J.H.; Stefanov, W.L.; Petitti, D.B. Neighborhood effects on heat deaths: Social and environmental predictors of vulnerability in Maricopa County, Arizona. Environ. Health Perspect. 2013, 121, 197. [Google Scholar] [PubMed]
- Giannakis, E.; Bruggeman, A.; Poulou, D.; Zoumides, C.; Eliades, M. Linear parks along urban rivers: Perceptions of thermal comfort and climate change adaptation in Cyprus. Sustainability 2016, 8, 1023. [Google Scholar] [CrossRef]
- Brown, R.D.; Vanos, J.K.; Kenny, N.A.; Lenzholzer, S. Designing Urban Parks That Ameliorate the Effects of Climate Change. Landcape Urban Plan. 2015, 138, 118–131. [Google Scholar] [CrossRef]
- Vanos, J.K.; Warland, J.S.; Gillespie, T.J.; Slater, G.A.; Brown, R.D.; Kenny, N.A. Human energy budget modeling in urban parks in toronto and applications to emergency heat stress preparedness. J. Appl. Meteorol. Climatol. 2012, 51. [Google Scholar] [CrossRef]
- Graham, D.A.; Vanos, J.K.; Kenny, N.A.; Brown, R.D. The relationship between neighbourhood tree canopy cover and heat-related ambulance calls during extreme heat events in Toronto, Canada. Urban For. Urban Green. 2016, 20. [Google Scholar] [CrossRef]
- Erell, E.; Pearlmutter, D.; Boneh, D. 236: Effect of high-albedo materials on pedestrian thermal comfort in urban canyons. Simulation 2012, 8–11. [Google Scholar]
- Middel, A.; Selover, N.; Hagen, B.; Chhetri, N. Impact of shade on outdoor thermal comfort—A seasonal field study in Tempe, Arizona. Int. J. Biometeorol. 2016, 60, 1849–1861. [Google Scholar] [CrossRef] [PubMed]
- Thorsson, S.; Lindberg, F.; Eliasson, I.; Holmer, B. Different methods for estimating the mean radiant temperature in an outdoor urban setting. Int. J. Clim. 2007, 27, 1983–1993. [Google Scholar] [CrossRef] [Green Version]
- Johansson, E.; Thorsson, S.; Emmanuel, R.; Krüger, E. Instruments and methods in outdoor thermal comfort studies—The need for standardization. Urban Clim. 2014, 10, 346–366. [Google Scholar] [CrossRef]
- Kántor, N.; Lin, T.-P.; Matzarakis, A. Daytime relapse of the mean radiant temperature based on the six-directional method under unobstructed solar radiation. Int. J. Biometeorol. 2014, 58, 1615–1625. [Google Scholar] [CrossRef] [PubMed]
- Taleghani, M.; Kleerekoper, L.; Tenpierik, M.; Van Den Dobbelsteen, A. Outdoor thermal comfort within five different urban forms in the Netherlands. Build. Environ. 2015, 83, 65–78. [Google Scholar] [CrossRef]
- Hodder, S.G.; Parsons, K.C. The effects of solar radiation on thermal comfort. Int. J. Biometeorol. 2007, 51, 233–250. [Google Scholar] [CrossRef] [PubMed]
- Lemke, B.; Kjellstrom, T. Calculating workplace WBGT from meteorological data: A tool for climate change assessment. Ind. Health 2012, 50, 267–278. [Google Scholar] [CrossRef] [PubMed]
- ISO. ISO 7243: Ergonomics of the Thermal Environment—Assessment of Heat Stress Using the WBGT (Wet Bulb Globe Temperature) Index; International Organization for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- Havenith, G.; Fiala, D. Thermal Indices and Thermophysiological Modeling for Heat Stress. Compr. Physiol. 2015, 6, 255–302. [Google Scholar] [PubMed]
- Epstein, Y.; Moran, D.S. Thermal comfort and the heat stress indices. Ind. Health 2006, 44, 388–398. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, C.R.; Grigorieva, E.A. A comparison and appraisal of a comprehensive range of human thermal climate indices. Int. J. Biometeorol. 2017, 61, 487–512. [Google Scholar] [CrossRef] [PubMed]
- Perron, A.D.; Brady, W.J.; Custalow, C.B.; Johnson, D.M. Association of heat index andpatient volume at a mass gathering event. Prehosp. Emerg. Care 2005, 9, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Helbing, D.; Johansson, A. Pedestrian, Crowd, and Evacuation Dynamics. Encycl. Complex. Syst. Sci. 2013, 16, 6476–6495. [Google Scholar]
- Stewart, I.D.; Kennedy, C.A. Metabolic heat production by human and animal populations in cities. Int. J. Biometeorol. 2017, 61, 1159–1171. [Google Scholar] [CrossRef] [PubMed]
- Steffen, R.; Bouchama, A.; Johansson, A.; Dvorak, J.; Isla, N.; Smallwood, C.; Memish, Z.A. Non-communicable health risks during mass gatherings. Lancet Infect. Dis. 2012, 12, 142–149. [Google Scholar] [CrossRef]
- Milsten, A.M.; Maguire, B.J.; Bissell, R.A.; Seaman, K.G. Mass-gathering medical care: A review of the literature. Prehosp. Disaster Med. 2002, 17, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Milsten, A.M.; Seaman, K.G.; Liu, P.; Bissell, R.A.; Maguire, B.J. Variables influencing medical usage rates, injury patterns, and levels of care for mass gatherings. Prehosp. Disaster Med. 2004, 18, 334–346. [Google Scholar] [CrossRef]
- Scott, D.; Lemieux, C. Weather and climate information for tourism. Procedia Environ. Sci. 2010, 1, 146–183. [Google Scholar] [CrossRef]
- Wetterhall, S.F.; Coulombier, D.M.; Herndon, J.M.; Zaza, S.; Cantwell, J.D. Medical care delivery at the 1996 Olympic Games. J. Am. Med. Assoc. 1998, 279, 1463–1468. [Google Scholar] [CrossRef]
- Matzarakis, A.; Fröhlich, D. Sport events and climate for visitors—The case of FIFA World Cup in Qatar 2022. Int. J. Biometeorol. 2015, 59, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Casa, D.J.; DeMartini, J.K.; Bergeron, M.F.; Csillan, D.; Eichner, E.R.; Lopez, R.M.; Ferrara, M.S.; Miller, K.C.; O’Connor, F.; Sawka, M.N. National Athletic Trainers’ Association position statement: Exertional heat illnesses. J. Athl. Train. 2015, 50, 986–1000. [Google Scholar] [CrossRef] [PubMed]
- Larsen, T.; Kumar, S.; Grimmer, K.; Potter, A.; Farquharson, T.; Sharpe, P. A systematic review of guidelines for the prevention of heat illness in community-based sports participants and officials. J. Sci. Med. Sport 2007, 10, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Parsons, K. Human Thermal Environments: The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort, and Performance; CRC Press: Boca Raton, FL, USA, 2014; ISBN 146659599X. [Google Scholar]
- Nikolopoulou, M.; Steemers, K. Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy Build. 2003, 35, 95–101. [Google Scholar] [CrossRef]
- Thorsson, S.; Lindqvist, M.; Lindqvist, S. Thermal bioclimatic conditions and patterns of behaviour in an urban park in Goteborg, Sweden. Int. J. Biometeorol. 2004, 48, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Vanos, J.K.; Warland, J.S.; Gillespie, T.J.; Kenny, N.A. Thermal comfort modelling of body temperature and psychological variations of a human exercising in an outdoor environment. Int. J. Biometeorol. 2012, 56. [Google Scholar] [CrossRef] [PubMed]
- Peel, B.L.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Koppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada. Climate Change Science and Research; Government of Canada: Gatineau, QC, Canada, 2016.
- Penney, J. Climate change adaptation in the city of Toronto: Lessons for Great Lakes Communities. Clean Air Partnersh. 2008. [Google Scholar]
- Stewart, I.; Oke, T.R. A New Classification System for Urban Climate Sites. Bull. Am. Meteorol. Soc. 2012, 90, 922–923. [Google Scholar]
- Government of Canada Open Government Portal, Open Data. Available online: https://open.canada.ca/en/open-data (accessed on 25 April 2018).
- Budd, G.M. Wet-bulb globe temperature (WBGT)—Its history and its limitations. J. Sci. Med. Sport 2008, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, L.; Casa, D.; Millard-Stafford, M.; Moran, D.; Pyne, S.; Roberts, W. American College of Sports Medicine position stand: Exertional heat illness during training and competition. Med. Sci. Sport. Exerc. 2007, 39, 556–572. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.D.; Gillespie, T.J. Estimating outdoor thermal comfort using a cylindrical radiation thermometer and an energy budget model. Int. J. Biometeorol. 1986, 30, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Kenny, N.A.; Warland, J.S.; Brown, R.D.; Gillespie, T.G. Part A: Assessing the performance of the COMFA outdoor thermal comfort model on subjects performing physical activity. Int. J. Biometeorol. 2009, 53, 415–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenny, N.A.; Warland, J.S.; Brown, R.D.; Gillespie, T.J. Part B: Revisions to the COMFA outdoor thermal comfort model for application to subjects performing physical activity. Int. J. Biometeorol. 2009, 53, 429–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundstein, A.; Knox, J.; Vanos, J.K.; Cooper, E.; Casa, D.J. American Football and Fatal Exertional Heat Stroke: A Case Study of Korey Stringer. Int. J. Biometeorol. 2017, 61, 1471–1480. [Google Scholar] [CrossRef] [PubMed]
- Montieth, J.; Unsworth, M. Principles of Environmental Biophysics, 3rd ed.; Elsevier: New York, NY, USA, 2008. [Google Scholar]
- Kenny, N.A.; Warland, J.S.; Brown, R.D.; Gillespie, T.J. Estimating the radiation absorbed by a human. Int. J. Biometeorol. 2008, 52, 491–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harlan, S.L.; Brazel, A.J.; Prashad, L.; Stefanov, W.L.; Larsen, L. Neighborhood microclimates and vulnerability to heat stress. Soc. Sci. Med. 2006, 63, 2847–2863. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [PubMed]
- Vanos, J.; Herdt, A.; Lochbaum, M. Effects of Physical Activity and Shade on the Heat Balance and Thermal Perceptions of Children in a Playground Microclimate. Build. Environ. 2017, 126, 119–131. [Google Scholar] [CrossRef]
- Strath, S.J.; Swartz, A.M.; Basset, D.R.; O’Brien, W.L.; King, G.A.; Ainsworth, B.E. Evaluation of heart rate as a method for assessing moderate intensity physical activity. Med. Sci. Sport Exerc. 2000, 32, S465–S470. [Google Scholar] [CrossRef]
- ISO. ISO 9920: Ergonomics of the Thermal Environment: Estimation of Thermal Insulation and Water Vapour Resistance of a Clothing Ensemble; ISO: Geneva, Switherland, 2007. [Google Scholar]
- Luo, F.; Cao, G.; Mulligan, K.; Li, X. Explore spatiotemporal and demographic characteristics of human mobility via Twitter: A case study of Chicago. Appl. Geogr. 2016, 70, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Jurdak, R.; Zhao, K.; Liu, J.; AbouJaoude, M.; Cameron, M.; Newth, D. Understanding human mobility from Twitter. PLoS ONE 2015, 10, e0131469. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, X.; Gao, S.; Gong, L.; Kang, C.; Zhi, Y.; Chi, G.; Shi, L. Social sensing: A new approach to understanding our socioeconomic environments. Ann. Assoc. Am. Geogr. 2015, 105, 512–530. [Google Scholar] [CrossRef]
- Leetaru, K.; Wang, S.; Cao, G.; Padmanabhan, A.; Shook, E. Mapping the global Twitter heartbeat: The geography of Twitter. First Monday 2013, 18, 5. [Google Scholar] [CrossRef]
- Demuth, J.L.; Morss, R.E.; Palen, L.; Anderson, K.M.; Anderson, J.; Kogan, M.; Stowe, K.; Bica, M.; Lazrus, H.; Wilhelmi, O. “sometimes da# beachlife ain’t always da wave”: Understanding People’s Evolving Hurricane Risk Communication, Risk Assessments, and Responses Using Twitter Narratives. Weather Clim. Soc. 2018. [Google Scholar] [CrossRef]
- Cao, G.; Wang, S.; Hwang, M.; Padmanabhan, A.; Zhang, Z.; Soltani, K. A scalable framework for spatiotemporal analysis of location-based social media data. Comput. Environ. Urban Syst. 2015, 51, 70–82. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Huang, Q.; Wu, K. Understanding social media data for disaster management. Nat. Hazards 2015, 79, 1663–1679. [Google Scholar] [CrossRef]
- Yin, J.; Lampert, A.; Cameron, M.; Robinson, B.; Power, R. Using social media to enhance emergency situation awareness. IEEE Intell. Syst. 2012, 27, 52–59. [Google Scholar] [CrossRef]
- Jung, J.; Uejio, C.K. Social media responses to heat waves. Int. J. Biometeorol. 2017, 61, 1247–1260. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, L.M. Assessing the Effect of Weather on Human Outdoor Perception Using Twitter 2017. Ph.D. Thesis, Universidade Nova de Lisboa, Lisbon, Portugal, 2017. [Google Scholar]
- Twiiter Inc. Twitter Streaming Application Program Interface. Available online: https://developer.twitter.com/en/docs (accessed on 20 June 2018).
- Oke, T.R.; Hannell, F.G. The form of the urban heat island in Hamilton, Canada. WMO Tech. Note 1970, 108, 113–126. [Google Scholar]
- Blair, R. Meteorological Variations and Their Impact on NO2 Concentrations in the Toronto-Hamilton Urban Air-Shed. Ph.D. Thesis, McMaster University, Hamilton, ON, Canada, 2006. [Google Scholar]
- Graham, D.A.; Vanos, J.K.; Kenny, N.A.; Brown, R.D. Modeling the effects of urban design on emergency medical response calls during extreme heat events in Toronto, Canada. Int. J. Environ. Res. Public Health 2017, 14, 778. [Google Scholar] [CrossRef] [PubMed]
- Muller, C.L.; Chapman, L.; Grimmond, C.S.B.; Young, D.T.; Cai, X. Sensors and the city: A review of urban meteorological networks. Int. J. Climatol. 2013, 33, 1585–1600. [Google Scholar] [CrossRef]
- Resch, B.; Mittleboeck, M.; Lipson, S.; Welsh, M.; Bers, J.; Britter, R.; Ratti, C.; Blaschke, T. Integrated Urban Sensing: A Geo-sensor Network for Public Health Monitoring and Beyond. Int. J. Geogr. Inf. Sci. 2011. Available online: https://dspace.mit.edu/handle/1721.1/64636 (accessed on 20 June 2018).
- Luber, G.; McGeehin, M. Climate Change and Extreme Heat Events. Am. J. Prev. Med. 2008, 35, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Karner, A.; Hondula, D.M.; Vanos, J.K. Heat exposure during non-motorized travel: Implications for transportation policy under climate change. J. Transp. Health 2015, 2. [Google Scholar] [CrossRef]
- Basara, J.B.; Illston, B.G.; Fiebrich, C.A.; Browder, P.D.; Morgan, C.R.; McCombs, A.; Bostic, J.P.; McPherson, R.A.; Schroeder, A.J.; Crawford, K.C. The Oklahoma city micronet. Meteorol. Appl. 2011, 18, 252–261. [Google Scholar] [CrossRef]
- Hardin, A.W.; Liu, Y.; Cao, G.; Vanos, J.K. Urban heat island intensity and spatial variability by synoptic weather type in the northeast US. Urban Clim. 2017. [Google Scholar] [CrossRef]
- Anderson, J.E.; Usher, J. Mesonet Programs Needs and Best Practices. In Proceedings of the 10th EMS Annual Meeting, 10th European Conference on Applications of Meteorology (ECAM) Abstracts, Zürich, Switzerland, 13–17 September 2010. [Google Scholar]
- Kosaka, E.; Iida, A.; Vanos, J.; Middel, A.; Yokohari, M.; Brown, R. Microclimate variation and estimated heat stress of runners in the 2020 Tokyo Olympic Marathon. Atmosphere (Basel) 2018, 9, 192. [Google Scholar] [CrossRef]
- Kinney, P.L.; O’Neill, M.S.; Bell, M.L.; Schwartz, J. Approaches for estimating effects of climate change on heat-related deaths: Challenges and opportunities. Environ. Sci. Policy 2008, 11, 87–96. [Google Scholar] [CrossRef]
- Spagnolo, J.; De Dear, R. A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Build. Environ. 2003, 38, 721–738. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.D. Ameliorating the effects of climate change: Modifying microclimates through design. Landsc. Urban Plan. 2011, 100, 372–374. [Google Scholar] [CrossRef]
- Perini, K.; Magliocco, A. Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort. Urban For. Urban Green. 2014, 13, 495–506. [Google Scholar] [CrossRef]
- Hardin, A.W.; Vanos, J.K. The influence of surface type on the absorbed radiation by a human under hot, dry conditions. Int. J. Biometeorol. 2018, 62, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Papachristou, C.; Foteinaki, K.; Kazanci, O.B.; Olesen, B.W. Structures that Include a Semi-Outdoor Space: Part 2: Thermal Environment. In Proceedings of the 12th REHVA World Congress, Aalborg, Denmark, 22–25 May 2016. [Google Scholar]
- Bouyer, J.; Vinet, J.; Delpech, P.; Carre, S. Thermal comfort assessment in semi-outdoor environments: Application to comfort study in Stadia. J. Wind Eng. Ind. Aerodyn. 2007, 95, 963–976. [Google Scholar] [CrossRef]
- Middel, A.; Lukasczyk, J.; Maciejewski, R. Sky View Factors from synthetic fisheye photos for thermal comfort routing—A case study in phoenix, Arizona. Urban Plan. 2017, 2, 19–31. [Google Scholar] [CrossRef]
- Dolney, T.J.; Sheridan, S.C. The relationship between extreme heat and ambulance response calls for the city of Toronto, Ontario, Canada. Environ. Res. 2006, 101, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, Y.; Grundstein, A.J.; Vanos, J.K.; Cooper, E.R. Environmental Condition and Monitoring. In Sport and Physical Activity in the Heat; Springer: Berlin, Germany, 2018; pp. 147–162. [Google Scholar]
- Sofotasiou, P.; Hughes, B.R.; Calautit, J.K. Qatar 2022: Facing the FIFA World Cup climatic and legacy challenges. Sustain. Cities Soc. 2015, 14, 16–30. [Google Scholar] [CrossRef] [Green Version]
- Tsunematsu, N.; Yokoyama, H.; Honjo, T.; Ichihashi, A.; Ando, H.; Shigyo, N. Relationship between land use variations and spatiotemporal changes in amounts of thermal infrared energy emitted from urban surfaces in downtown Tokyo on hot summer days. Urban Clim. 2016, 17, 67–79. [Google Scholar] [CrossRef]
- Schuster, C.; Honold, J.; Lauf, S.; Lakes, T. Urban heat stress: Novel survey suggests health and fitness as future avenue for research and adaptation strategies. Environ. Res. Lett. 2017, 12, 44021. [Google Scholar] [CrossRef]
- Périard, J.D.; Racinais, S.; Sawka, M.N. Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports. Scand. J. Med. Sci. Sports 2015, 25, 20–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havenith, G.; van Middendorp, H. The relative influence of physical fitness, acclimatization state, anthropometric measures and gender on individual reactions to heat stress. Eur. J. Appl. Physiol. Occup. Physiol. 1990, 61, 419–427. [Google Scholar] [CrossRef] [PubMed]
Subjective Interpretation Non-Active | Model Output (Wm−2) | Subjective Interpretation Active | Model Output (Wm−2) |
---|---|---|---|
‘Cold’ (−2) | −200 to −121 | ||
‘Slightly Cool’ (–1) | –120 to –51 | ‘Cool’ (–1) | –120 to –20 |
‘Neutral’ (0) | –50 to +50 | ‘Neutral’ (0) | –20 to +150 |
‘Slightly Warm’ (+1) | +51 to +120 | ||
‘Warm’ (+2) | +121 to +200 | ‘Warm’ (+1) | +151 to +250 |
‘Hot’ (+3) | ≥ +201 | ‘Hot’ (+2) | ≥ +251 |
Variable | Value | |
---|---|---|
Spectator | Mact | 166 Wm−2 |
Va | 0.2 ms−1 | |
clo | 0.33 | |
Aeff | 0.78 | |
α | 0.37 | |
Athlete | Mact | varying |
Va | varying | |
clo | 0.37 | |
Aeff | 0.78 | |
α | 0.37 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herdt, A.J.; Brown, R.D.; Scott-Fleming, I.; Cao, G.; MacDonald, M.; Henderson, D.; Vanos, J.K. Outdoor Thermal Comfort during Anomalous Heat at the 2015 Pan American Games in Toronto, Canada. Atmosphere 2018, 9, 321. https://doi.org/10.3390/atmos9080321
Herdt AJ, Brown RD, Scott-Fleming I, Cao G, MacDonald M, Henderson D, Vanos JK. Outdoor Thermal Comfort during Anomalous Heat at the 2015 Pan American Games in Toronto, Canada. Atmosphere. 2018; 9(8):321. https://doi.org/10.3390/atmos9080321
Chicago/Turabian StyleHerdt, Alexandria J., Robert D. Brown, Ian Scott-Fleming, Guofeng Cao, Melissa MacDonald, Dave Henderson, and Jennifer K. Vanos. 2018. "Outdoor Thermal Comfort during Anomalous Heat at the 2015 Pan American Games in Toronto, Canada" Atmosphere 9, no. 8: 321. https://doi.org/10.3390/atmos9080321
APA StyleHerdt, A. J., Brown, R. D., Scott-Fleming, I., Cao, G., MacDonald, M., Henderson, D., & Vanos, J. K. (2018). Outdoor Thermal Comfort during Anomalous Heat at the 2015 Pan American Games in Toronto, Canada. Atmosphere, 9(8), 321. https://doi.org/10.3390/atmos9080321