Changes of Soil C Stock under Establishment and Abandonment of Arable Lands in Permafrost Area—Central Yakutia
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Site and Soil Sampling
2.2. Sample Analysis and Data Calculation
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Janzen, H.H. Carbon cycling in earth systems—A soil science perspective. Agric. Ecosyst. Environ. 2004, 104, 399–417. [Google Scholar] [CrossRef]
- Jobbagy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- The Intergovernmental Panel on Climate Change. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007.
- Jones, A.; Stolbovoy, V.; Tarnocai, C.; Broll, G.; Spaargaren, O.; Montanarella, L. Soil Atlas of the Northern Circumpolar Region; European Commission, Office for Official Publications of the European Communities: Luxembourg, 2009. [Google Scholar]
- Havas, P.; Kubin, E. Structure, growth and organic matter content in the vegetation cover of an old spruce forest in Northern Finland. Ann. Bot. Fennici 1983, 20, 115–149. [Google Scholar]
- Gower, S.T.; Vogel, J.G.; Norman, J.M.; Kucharik, C.J.; Steele, S.J.; Stow, T.K. Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada. J. Geophys. Res. 1997, 102, 29029–29041. [Google Scholar] [CrossRef] [Green Version]
- Schulze, E.D.; Lloyd, J.; Kelliher, F.M.; Wirth, C.; Rebmann, C.; Lühker, B.; Mund, M.; Knohl, A.; Milyukova, I.M.; Schulze, W.; et al. Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink—A synthesis. Glob. Chang. Biol. 1999, 5, 703–722. [Google Scholar] [CrossRef]
- Martin, J.L.; Gower, S.T.; Plaut, J.; Holmes, B. Carbon pools in a boreal mixed wood logging chronosequence. Glob. Chang. Biol. 2005, 11, 1883–1894. [Google Scholar]
- Malhi, Y.; Baldocchi, D.D.; Jarvis, P.G. The carbon balance of tropical, temperate, and boreal forests. Plant Cell Environ. 1999, 22, 715–740. [Google Scholar] [CrossRef]
- Wang, J.; Fu, B.J.; Qiu, Y.; Chen, L.D. Soil nutrients in relation to land use and landscape position in the semi-arid small catchment on the loess plateau in China. J. Arid Environ. 2001, 48, 537–550. [Google Scholar] [CrossRef]
- Kurganova, I.N.; Lopes de Gerenyu, V.O.; Shvidenko, A.Z.; Sapozhnikov, P.M. Changes in the organic carbon pool of abandoned soils in Russia (1990–2004). Eurasian Soil Sci. 2010, 43, 333–340. [Google Scholar] [CrossRef]
- Houghton, R.A.; Goodale, C.L. Effects of land-use change on the carbon balance of terrestrial ecosystems. Ecosyst. Land Use Chang. 2004, 153, 85–98. [Google Scholar]
- Don, A.; Schumacher, J.; Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks: A meta analysis. Glob. Chang. Biol. 2011, 17, 1658–1670. [Google Scholar] [CrossRef]
- Harris, N.L.; Brown, S.; Hagen, S.C.; Saatchi, S.S.; Petrova, S.; Salas, W.; Hansen, M.C.; Potapov, P.V.; Lotsch, A. Baseline map of carbon emissions from deforestation in tropical regions. Sciences 2012, 336, 1573–1576. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Glob. Chang. Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Kalinina, O.; Barmin, A.N.; Chertov, O.; Dolgikh, A.V.; Goryachkin, S.V.; Lyuri, D.I.; Giani, L. Self-restoration of post-agrogenic soils of Calcisol–Solonetz complex: Soil development, carbon stock dynamics of carbon pools. Geoderma 2015, 237, 117–128. [Google Scholar] [CrossRef]
- Kurganova, I.N.; Lopes de Gerenyu, V.O. The stock of organic carbon in soils of the Russian Federation: Updated estimation in connection with land use changes. Doki. Biol. Sci. 2009, 426, 219–221. [Google Scholar] [CrossRef]
- Lyuri, D.I.; Goryachkin, S.V.; Karavaeva, N.A.; Denisenko, E.A.; Nefedova, T.G. Dynamics of Agricultural Lands of Russia in XX Century and Postagrogenic Restoration of Vegetation and Soils; GEOS: Moscow, Russia, 2010. [Google Scholar]
- Post, W.M.; Kwon, K.C. Soil carbon sequestration and land-use change: Processes and potential. Glob. Chang. Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef]
- Takakura, H. Arctic Pastoralist Sakha: Ethnography and Micro-Adaptation in Siberia; Trans Pacific Press: Melbourne, Australia, 2015. [Google Scholar]
- Ioffe, G.; Nefedova, T. Marginal farmland in European Russia. Eurasian Geogr. Econ. 2004, 45, 45–59. [Google Scholar] [CrossRef]
- Henebry, G.M. Carbon in idle croplands. Nature 2009, 457, 1089. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A. Carbon cycle: A return to Soviet soils. Nat. Geosci. 2008, 1, 810. [Google Scholar] [CrossRef]
- Ministry of Nature Protection of the Republic of Sakha. State Report on the State and Protection of the Environment of the Republic of Sakha (Yakutia) for 2000/Ministry of Nature Protection of the Republic of Sakha (Yakutia); Sahapoligrafizdat: Yakutsk, Russia, 2015; 164p. [Google Scholar]
- Elovskaya, L.G.; Konorovskiy, A.K.; Savvinov, D.D. Permafrost Saline Soils of Central Yakutia; Nauka: Moscow, Russia, 1966; p. 274. [Google Scholar]
- Davidson, E.A.; Ackerman, I.L. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 1993, 20, 161–193. [Google Scholar] [CrossRef]
- Egorov, E.G.; Nikiforov, M.M. About the state of land use and crop production in the Republic of Sakha (Yakutia). In Regional Economy: Theory and Practice; Yakutsk Science Center: Yakutsk, Russia, 2009. [Google Scholar]
- Ministry of Nature Protection of the Republic of Sakha. State Report on the State and Protection of the Environment of the Republic of Sakha (Yakutia) for 2014/Ministry of Nature Protection of the Republic of Sakha (Yakutia); Sahapoligrafizdat: Yakutsk, Russia, 2016. [Google Scholar]
- Gavrilova, M.K. Climate in Central Yakutia. Yakutsk Book Press: Yakutsk, Russia, 1973. [Google Scholar]
- Desyatkin, R.V. Content and Composition of Humus in Lena-Amga Interfluve’s Alas soils. In Vesti; Leningrad univ No. 6; LSU Press: Leningrad, Russia, 1981; pp. 75–82. [Google Scholar]
- Wei, X.; Shao, M.; Gale, W.; Li, L. Global Pattern of Soil Carbon Losses Due to the Conversion of Forests to Agricultural Land. Scientific Rep. 2014, 4, 4062. [Google Scholar] [CrossRef] [PubMed]
- Kurganova, I.; Lopes de Gerenyu, V.; Six, J.; Kuzyakov, Y. Сarbon cost of collective farming collapse in Russia. Glob. Chang. Biol. 2014, 20, 938–947. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, S.; Bernier, P.; Kuuluvainen, T.; Shvidenko, A.Z.; Schepaschenko, D.Z. Boreal forest health and global change. Science 2015, 349, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Desyatkin, R.V. Soil Formation in Thermokarst Depression—Alases of Cryolithozone; Nauka: Novosibirsk, Russia, 2008; p. 324. [Google Scholar]
- Pranagal, J.; Podstawka-Chmielewska, E. Physical properties of a RendzicPhaeozem during a ten-year period of fallowing under the conditions of south-eastern Poland. Geoderma 2012, 189, 262–267. [Google Scholar] [CrossRef]
- Drewry, J.J.; Cameron, K.C.; Buchan, G.D. Pasture yield and soil physical property responses to soil compaction from treading and grazing—A review. Soil Res. 2008, 46, 237–256. [Google Scholar] [CrossRef]
- Olness, A.; Clapp, C.E.; Liu, R.; Palazzo, A.J. Biosoil and their effect on soil properties. In Handbook of Soil Conditioners; Wallace, A., Terry, R.E., Eds.; Marcel Dekker: New York, NY, USA, 1998; pp. 141–165. [Google Scholar]
- Reiners, W.A.; Bouwman, A.F.; Parsons, W.F.J.; Keller, M. Tropical rain forest conversion to pasture: Changes in vegetation and soil properties. Ecol. Appl. 1994, 4, 363–377. [Google Scholar] [CrossRef]
- Celik, I. Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey. Soil Tillage Res. 2005, 83, 270–277. [Google Scholar] [CrossRef]
- Vopravil, J.; Podrázský, V.; Khel, T.; Holubík, O. Effect of afforestation of agricultural soils and tree species composition on soil physical characteristics changes. Ekológia 2014, 33, 67–80. [Google Scholar] [CrossRef]
- Litvinovich, A.V.; Drichko, V.F.; Pavlova, O.Y.; Chernov, D.V.; Shabanov, M.V. Changes in the Acid-Base Properties of Cultivated Light-Textured Soddy-Podzolic Soils in the Course of Postagrogenic Transformation. Eurasian Soil Sci. 2009, 42, 629–635. [Google Scholar] [CrossRef]
- Van Donk, S.J.; Norman, L.K. Tillage and crop residue removal effects on evaporation, irrigation requirements, and yield. In Proceedings of the 24th 151 Annual Central Plains Irrigation Conference, Colby, CA, USA, 21–22 February 2012. [Google Scholar]
- Moody, J.W.; Jones, J.N.; Lillard, J.H. Influence of straw mulch on soil moisture, soil temperature and the growth of corn. Soil Sci. Soc. Am. J. 1963, 27, 700–703. [Google Scholar] [CrossRef]
- Dose, H.L.; DeSutter, T.M.; Casey, F.X.M.; Brueggeman, R.; Clay, D.E. Naturally occurring soil salinity does not reduce N-transforming enzymes or organisms. Can. J. Soil Sci. 2017, 97, 339. [Google Scholar] [CrossRef]
- Smith, J.L.; Doran, J.W. Measurement and use of pH and electrical conductivity for soil quality analysis. In Methods for Assessing Soil Quality; Doran, J.W., Jones, A.J., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 169–185. [Google Scholar]
- Anderson-Cook, C.M.; Alley, M.M.; Roygard, J.K.F.; Khosla, R.; Noble, R.B.; Doolittle, J.A. Differentiating soil types using electromagnetic conductivity and crop yield maps. Soil Sci. Soc. Am. J. 2002, 66, 1562–1570. [Google Scholar] [CrossRef]
- Ezzati, R.; Karimi, M. Effect of various soil salinity level on the antioxidant and physiological properties of corn plant (Zea mays). J. Exp. Biol. Agric. Sci. 2015, 3, 448–452. [Google Scholar] [CrossRef]
- Sinegani, M.S.; Sinegani, A.A.S.; Hadipour, M. Spatial distribution of total phosphorus and organic carbon in the salt-affected soils in the Meyghan Playa, Iran. Spanish J. Soil Sci. 2017, 7, 149–163. [Google Scholar]
- Ghadimi, F.; Ghomi, M. Assessment of the effects of municipal wastewater on the heavy metal pollution of water and sediment in Arak Mighan lake, Iran. J. Tethys 2013, 1, 205–214. [Google Scholar]
- Ghadimi, F. Assessment of the sources of chemical elements in sediment from Arak Mighan lake. Int. J. Sediment Res. 2014, 29, 159–170. [Google Scholar] [CrossRef]
- Sorokina, O.A. Transformation of Gray Soils Under Forest and Agrogenic Effects in Siberia. Ph.D. Thesis, Federal Agency of Agriculture, Krasnoyarsk State Agrary University, Krasnoyarsk, Russia, October 2006. [Google Scholar]
- Pesterev, А.P. Change of agrophysical properties pale-yellow soils. In Proceedings of the III International Forest Soil Science Conference Productivity and Resistance of Forest Soils, Petrozavodsk, Russia, 7–11 September 2009; pp. 287–288. [Google Scholar]
- Ryzhova, I.M.; Erokhova, A.A.; Podvezennaya, M.A. Dynamics and Structure of Carbon Storage in the Postagrogenic Ecosystems of the Southern Taiga. Eurasian Soil Sci. 2014, 47, 1207–1215. [Google Scholar] [CrossRef]
- Boecker, D.; Centeri, C.; Welp, G.; Möseler, B.D. Parallels of secondary grassland succession and soil regeneration in a chronosequence of central-Hungarian old fields. Folia Geobotanica 2015, 50, 91–106. [Google Scholar] [CrossRef]
- Deng, L.; Liu, G.B.; Shangguan, Z.P. Land-use conversion and changing soil carbon stocks in China’s “Grain-for-Green” Program: A synthesis. Glob. Chang. Biol. 2014, 20, 3544–3556. [Google Scholar] [CrossRef] [PubMed]
- Laganiere, J.; Angers, D.A.; Pare, D. Carbon accumulation in agricultural soils after afforestation: A meta-analysis. Glob. Chang. Biol. 2010, 16, 439–453. [Google Scholar] [CrossRef]
- Vesterdal, L.; Ritter, E.; Gundersen, P. Change in soil organic carbon following afforestation of former arable land. For. Ecol. Manag. 2002, 169, 137–147. [Google Scholar] [CrossRef]
- Don, A.; Rebmann, C.; Kolle, O.; Schere-Lorenzen, M.; Schulze, E.D. Impact of afforestation-associated management changes on the carbon balance of grassland. Glob. Chang. Biol. 2009, 15, 1990–2002. [Google Scholar] [CrossRef]
- Zhang, K.; Dang, H.; Tan, S.; Cheng, X.; Zhang, Q. Change in soil organic carbon following the ‘Grain-for-Green’ programme in China. Land Degrad. Dev. 2010, 21, 13–23. [Google Scholar] [CrossRef]
- Li, D.; Niu, S.; Luo, Y. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: A meta-analysis. N. Phytol. 2012, 195, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Compton, J.E.; Boone, R.D. Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 2000, 81, 2314–2330. [Google Scholar] [CrossRef]
- Paul, K.I.; Polglase, P.J.; Nyakuengama, J.G.; Khanna, P.K. Change in soil carbon following afforestation. For. Ecol. Manag. 2002, 168, 241–257. [Google Scholar] [CrossRef]
- Chang, R.Y.; Fu, B.J.; Liu, G.H.; Liu, S.G. Soil carbon sequestration potential for “Grain for Green” Project in Loess Plateau. China. Environ. Manag. 2011, 48, 1158–1172. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.; Bohm, S.; Haile-Mariam, S.; Paul, E. Evaluation of carbon accrual in afforested agricultural soils. Glob. Chang. Biol. 2007, 13, 1145–1156. [Google Scholar] [CrossRef] [Green Version]
- Mao, R.; Zeng, D.H.; Hu, Y.L.; Li, L.J.; Yang, D. Soil organic carbon and nitrogen stocks in an age-sequence of poplar stands planted on marginal agricultural land in Northeast China. Plant Soil 2010, 332, 277–287. [Google Scholar] [CrossRef]
- Deng, L.; Wang, K.B.; Chen, M.L.; Shangguan, Z.P.; Sweeney, S. Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau, China. Catena 2013, 110, 1–7. [Google Scholar] [CrossRef]
Land Use | Site | Start Year | Finish Year | Cultivation Years | Abandon Age Years |
---|---|---|---|---|---|
Cultivated AL | NEM-3-W | 1985 | 2014 | 29 | 0 |
UNA-W | 1985 | 2014 | 29 | 0 | |
TG-W | 1985 | 2014 | 29 | 0 | |
Abandoned AL | NEM-1-A | 1965 | 1978 | 13 | 36 |
NEM-2-A | 1965 | 1978 | 13 | 36 | |
NEM-3-A | 1965 | 1994 | 29 | 20 | |
UNA-A | 1985 | 1994 | 9 | 20 | |
TG-A | 1985 | 2009 | 24 | 5 | |
Recovered AL | NEM-1-N | 1965 | 1978 | 13 | 36 |
NEM-2-N | 1965 | 1978 | 13 | 36 | |
UNA-N | 1985 | 1994 | 9 | 20 |
Land use | Site | No of Samples | Age of Abandon, Years | % | % | % | BD, Mg m−3 | pH | EC m S m−1 | Soil moisture % kg kg−1 | SOC | SCC | STC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | Mg C ha−1·30 cm−1 | ||||||||||
Larch forest | NEM-1 | 3 | - | - | - | - | 1.10 | 7.26 ± 1.19 | 5.90 ± 4.50 | 11.8 ± 2.5 | 31.6 ± 15.2 | 2.5 ± 1.1 | 34.1 ± 15.5 |
NEM-3 | 3 | - | 41.39 | 34.19 | 24.42 | 0.99 | 6.33 ± 0.44 | 9.27 ± 5.35 | 14.3 ± 4.8 | 45.1 ± 14.7 | 7.2 ± 3.4 | 52.3 ± 17.3 | |
TG | 3 | - | 42.19 | 27.19 | 30.61 | 1.26 | 6.34 ± 0.13 | 5.80 ± 0.75 | 7.2 ± 0.6 | 45.1 ± 5.1 | 3.6 ± 2.6 | 48.7 ± 7.5 | |
UNA | 3 | - | 35.39 | 39.06 | 25.56 | 1.27 | 6.78 ± 0.59 | 10.23 ± 2.80 | 12.6 ± 3.2 | 56.2 ± 11.6 | 2.2 ± 2.2 | 58.4 ± 11.0 | |
US | 3 | - | 49.3 | 29.95 | 20.75 | 1.25 | 6.49 ± 0.28 | 4.23 ± 0.87 | 13.5 ± 1.2 | 58.2 ± 8.4 | 7.6 ± 9.2 | 65.8 ± 17.2 | |
Average | 15 | - | 42.07 | 32.6 | 25.34 | 1.17 | 6.64 ± 0.65 | 7.09 ± 3.72 | 11.9 ± 3.5 | 47.2 ± 13.9 | 4.6 ± 4.6 | 51.9 ± 16.3 | |
Cultivated AL | NEM-3-W | 3 | 0 | 39.07 | 39.07 | 21.86 | 1.36 | 8.70 ± 0.06 | 16.90 ± 11.40 | 7.1 ± 0.4 | 39.0 ± 1.9 | 4.5 ± 1.4 | 43.5 ± 3.1 |
TG-W | 3 | 0 | - | - | - | 1.42 | 7.81 ± 0.32 | 5.80 ± 2.71 | 9.7 ± 0.7 | 22.1 ± 0.9 | 0.7 ± 0.4 | 22.8 ± 1.2 | |
UNA-W | 3 | 0 | 36.51 | 38.73 | 24.76 | 1.28 | 8.46 ± 0.23 | 8.97 ± 1.12 | 11.5 ± 0.6 | 22.3 ± 3.8 | 2.5 ± 2.2 | 24.8 ± 5.7 | |
Average | 9 | 39.07 | 39.07 | 21.86 | 1.35 | 8.32 ± 0.44 | 10.56 ± 7.69 | 9.4 ± 2.0 | 27.8 ± 8.7 | 2.6 ± 2.1 | 30.4 ± 10.4 | ||
Abandoned AL | NEM-1-A | 3 | 36 | 31.43 | 43.43 | 25.13 | 1.39 | 8.24 ± 0.32 | 11.53 ± 7.66 | 10.7 ± 0.9 | 37.3 ± 5.4 | 9.2 ± 8.0 | 46.5 ± 2.7 |
NEM-2-A | 3 | 36 | 28.03 | 45.08 | 26.9 | 1.24 | 8.45 ± 0.13 | 12.83 ± 1.25 | 9.2 ± 1.7 | 31.7 ± 1.6 | 28.5 ± 13.0 | 60.2 ± 11.2 | |
NEM-3-A | 3 | 20 | 25.2 | 46.16 | 28.64 | 1.38 | 7.88 ± 0.97 | 9.13 ± 3.35 | 10.2 ± 2.0 | 41.5 ± 13.2 | 8.9 ± 4.5 | 50.4 ± 11.1 | |
TG-A | 3 | 5 | 41.98 | 37.05 | 20.97 | 1.35 | 8.32 ± 0.18 | 8.27 ± 1.07 | 8.8 ± 0.3 | 35.3 ± 9.1 | 6.6 ± 5.9 | 41.8 ± 7.9 | |
UNA-A | 3 | 20 | 39.9 | 37.2 | 22.9 | 1.25 | 6.70 ± 0.13 | 5.00 ± 0.40 | 7.3 ± 0.3 | 48.3 ± 1.8 | 2.4 ± 1.7 | 50.7 ± 1.3 | |
Average | 15 | 33.31 | 41.78 | 24.91 | 1.32 | 7.92 ± 0.77 | 9.35 ± 4.28 | 9.2 ± 1.6 | 38.8 ± 8.7 | 11.1 ± 11.2 | 49.9 ± 9.2 | ||
New growth AL | NEM-1-N | 3 | 36 | 32.2 | 43.2 | 24.6 | 1.38 | 7.88 ± 0.67 | 5.80 ± 1.15 | 10.2 ± 3.2 | 33.3 ± 4.3 | 5.7 ± 7.2 | 38.7 ± 3.6 |
NEM-2-N | 3 | 36 | 30.9 | 47.4 | 21.7 | 1.38 | 7.85 ± 0.61 | 5.83 ± 2.44 | 6.7 ± 0.4 | 30.3 ± 1.7 | 4.3 ± 7.0 | 34.6 ± 7.0 | |
UNA-N | 3 | 20 | 37.23 | 35.63 | 27.14 | 1.31 | 8.27 ± 0.55 | 13.60 ± 0.78 | 6.8 ± 0.3 | 29.9 ± 7.5 | 9.0 ± 3.1 | 38.9 ± 5.1 | |
Average | 9 | 33.44 | 42.08 | 24.48 | 1.36 | 8.00 ± 049 | 8.41 ± 4.14 | 7.9 ± 2.4 | 31.1 ± 4.6 | 6.3 ± 5.7 | 37.4 ± 5.2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desyatkin, A.R.; Iwasaki, S.; Desyatkin, R.V.; Hatano, R. Changes of Soil C Stock under Establishment and Abandonment of Arable Lands in Permafrost Area—Central Yakutia. Atmosphere 2018, 9, 308. https://doi.org/10.3390/atmos9080308
Desyatkin AR, Iwasaki S, Desyatkin RV, Hatano R. Changes of Soil C Stock under Establishment and Abandonment of Arable Lands in Permafrost Area—Central Yakutia. Atmosphere. 2018; 9(8):308. https://doi.org/10.3390/atmos9080308
Chicago/Turabian StyleDesyatkin, Alexey R., Shinya Iwasaki, Roman V. Desyatkin, and Ryusuke Hatano. 2018. "Changes of Soil C Stock under Establishment and Abandonment of Arable Lands in Permafrost Area—Central Yakutia" Atmosphere 9, no. 8: 308. https://doi.org/10.3390/atmos9080308
APA StyleDesyatkin, A. R., Iwasaki, S., Desyatkin, R. V., & Hatano, R. (2018). Changes of Soil C Stock under Establishment and Abandonment of Arable Lands in Permafrost Area—Central Yakutia. Atmosphere, 9(8), 308. https://doi.org/10.3390/atmos9080308