Effects of Urban Greenspace Patterns on Particulate Matter Pollution in Metropolitan Zhengzhou in Henan, China
Abstract
:1. Introduction
2. Experiments
2.1. The Study Areas and Measurement Sites
2.2. Data
2.2.1. PM2.5/10 Measurements
2.2.2. Greenspace Spatial Patterns
2.3. Data Analysis
3. Results
3.1. Seasonal Differences in Particulate Matter (PM) Pollution
3.2. Redundancy Analysis (RDA)
3.3. Variation Partitioning Analysis
4. Discussion
4.1. Scale-Dependent Effects of Greenspace Pattern on PM Pollution
4.2. Scale-Dependent Variation Partitioning
4.3. Limitation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, W.K.; Wang, B.; Niu, X. Relationship between leaf surface characteristics and particle capturing capacities of different tree species in Beijing. Forests 2017, 8, 92. [Google Scholar] [CrossRef]
- Peng, Z.R.; Wang, D.S.; Wang, Z.Y.; Gao, Y.; Lu, S.J. A study of vertical distribution patterns of PM2.5 concentrations based on ambient monitoring with unmanned aerial vehicles: A case in Hangzhou, China. Atmos. Environ. 2015, 123, 357–369. [Google Scholar] [CrossRef]
- Jang, M.; Kamens, R.M.; Leach, K.B.; Strommen, M.R. A thermodynamic approach using group contribution methods to model the partitioning of semivolatile organic compounds on atmospheric particulate matter. Environ. Sci. Technol. 1997, 31, 2805–2811. [Google Scholar] [CrossRef]
- Gao, G.; Sun, F.; Thao, N.T.T.; Lun, X.; Yu, X. Different Concentrations of TSP, PM10, PM2.5, and PM1 of Several Urban Forest Types in Different Seasons. Pol. J. Environ. Stud. 2015, 24, 2387–2395. [Google Scholar] [CrossRef]
- Freer-Smith, P.; Beckett, K.; Taylor, G. Deposition velocities to Sorbus aria, Acer campestre, Populus deltoids × trichocarpa ‘Beaupré’, Pinus nigra and × Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment. Environ. Pollut. 2005, 133, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-term air pollution exposure and cardio-respiratory mortality: A review. Environ. Health Glob. 2013, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Bo, M.; Salizzoni, P.; Clerico, M.; Buccolieri, R. Assessment of indoor-outdoor particulate matter air pollution: A review. Atmosphere 2017, 8, 136. [Google Scholar] [CrossRef]
- Morelli, X.; Rieux, C.; Cyrys, J.; Forsberg, B.; Slama, R. Air pollution, health and social deprivation: A fine-scale risk assessment. Environ. Res. 2016, 147, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Peters, A. Ambient particulate matter and the risk for cardiovascular disease. Prog. Cardiovasc. Dis. 2011, 53, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Lavigne, E.; Yasseen, A.S.; Stieb, D.M.; Hystad, P.; van Donkelaar, A.; Martin, R.V.; Brook, J.R.; Crouse, D.L.; Burnett, R.T.; Chen, H. Ambient air pollution and adverse birth outcomes: Differences by maternal comorbidities. Environ. Res. 2016, 148, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Gehring, U.; Tamburic, L.; Sbihi, H.; Davies, H.W.; Brauer, M. Impact of noise and air pollution on pregnancy outcomes. Epidemiology 2014, 25, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.Q.; Du, P.J.; Samat, A.; Xia, J.S.; Che, M.Q.; Xue, Z.H. Spatiotemporal pattern of PM2.5 concentrations in mainland China and analysis of its influencing factors using geographically weighted regression. Sci. Rep. 2017, 7, 40607. [Google Scholar] [CrossRef] [PubMed]
- Krasnov, H.; Kloog, I.; Friger, M.; Katra, I. The spatio-temporal distribution of particulate matter during natural dust episodes at an urban scale. PLoS ONE 2016, 11, e0160800. [Google Scholar] [CrossRef] [PubMed]
- Hand, J.L.; Schichtel, B.A.; Malm, W.C.; Pitchford, M.; Frank, N.H. Spatial and seasonal patterns in urban influence on regional concentrations of speciated aerosols across the United States. J. Geophys. Res. Atmos. 2014, 119, 12832–12849. [Google Scholar] [CrossRef]
- Zhou, T.C.; Sun, J.; Yu, H. Temporal and spatial patterns of China’s main air pollutants: Years 2014 and 2015. Atmosphere 2017, 8, 137. [Google Scholar] [CrossRef]
- Liu, J.Z.; Li, J.; Li, W.F. Temporal patterns in fine particulate matter time series in Beijing: A calendar view. Sci. Rep. 2016, 6, 32221. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.H.; Liu, S.R.; Tong, F.C.; Kuang, Y.W.; Chen, B.F.; Guo, Y.D. Characteristics and sources of metals in TSP and PM2.5 in an urban forest park at Guangzhou. Atmosphere 2014, 5, 775–787. [Google Scholar] [CrossRef]
- Nayebare, S.R.; Aburizaiza, O.S.; Khwaja, H.A.; Siddique, A.; Hussain, M.M.; Zeb, J.; Khatib, F.; Carpenter, D.O.; Blake, D.R. Chemical characterization and source apportionment of PM2.5 in Rabigh, Saudi Arabia. Aerosol Air. Qual. Res. 2017, 16, 3114–3129. [Google Scholar] [CrossRef]
- Wu, X.H.; Chen, Y.F.; Guo, J.; Wang, G.Z.; Gong, Y.M. Spatial concentration, impact factors and prevention-control measures of PM2.5 pollution in China. Nat. Hazards 2017, 86, 393–410. [Google Scholar] [CrossRef]
- Sun, C.; Zheng, S.; Wang, R. Restricting driving for better traffic and clearer skies: Did it work in Beijing? Transp. Policy 2014, 32, 34–41. [Google Scholar] [CrossRef]
- Wang, S.; Yu, S.C.; Li, P.F.; Wang, L.Q.; Mehmood, K.; Liu, W.P.; Yan, R.C.; Zheng, X.J. A Study of characteristics and origins of haze pollution in Zhengzhou, China, based on observations and hybrid receptor models. Aerosol Air. Qual. Res. 2017, 17, 513–528. [Google Scholar] [CrossRef]
- Song, Y.S.; Maher, B.A.; Li, F.; Wang, X.K.; Sun, X.; Zhang, H.X. Particulate matter deposited on leaf of five evergreen species in Beijing, China: Source identification and size distribution. Atmos. Environ. 2015, 105, 53–60. [Google Scholar] [CrossRef]
- Liu, X.H.; Yu, X.X.; Zhang, Z.M. PM2.5 concentration differences between various forest types and its correlation with forest structure. Atmosphere 2015, 6, 1801–1815. [Google Scholar] [CrossRef]
- Ji, W.J.; Zhao, B. Numerical study of the effects of trees on outdoor particle concentration distributions. Build. Simul. China 2014, 7, 417–427. [Google Scholar] [CrossRef]
- Gallagher, J.; Baldauf, R.; Fuller, C.H.; Kumar, P.; Gill, L.W.; McNabola, A. Passive methods for improving air quality in the built environment: A review of porous and solid barriers. Atmos. Environ. 2015, 120, 61–70. [Google Scholar] [CrossRef]
- Abhijith, K.V.; Kumar, P.; Gallagher, J.; McNabola, A.; Baldauf, R.; Pilla, F.; Broderick, B.; di Sabatino, S.; Pulvirenti, B. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments—A review. Atmos. Environ. 2017, 162, 71–86. [Google Scholar] [CrossRef]
- Buccolieri, R.; Santiago, J.-L.; Rivas, E.; Sanchez, B. Review on urban tree modelling in CFD simulations: Aerodynamic, deposition and thermal effects. Urban For. Urban Green. 2018, 31, 212–220. [Google Scholar] [CrossRef]
- Salmond, J.A.; Tadaki, M.; Vardoulakis, S.; Arbuthnott, K.; Coutts, A.; Demuzere, M.; Dirks, K.N.; Heaviside, C.; Lim, S.; Macintyre, H.; et al. Health and climate related ecosystem services provided by street trees in the urban environment. Environ. Health Glob. 2016, 15, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowak, D.J.; Hirabayashi, S.; Doyle, M.; McGovern, M.; Pasher, J. Air pollution removal by urban forests in Canada and its effect on air quality and human health. Urban For. Urban Green. 2018, 29, 40–48. [Google Scholar] [CrossRef]
- Janhäll, S. Review on urban vegetation and particle air pollution—Deposition and dispersion. Atmos. Environ. 2015, 105, 130–137. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Ouyang, Z. Relationship between land surface temperature and spatial pattern of greenspace: What are the effects of spatial resolution? Landsc. Urban Plan. 2013, 114, 1–8. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, G.; Cadenasso, M.L. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc. Urban Plan. 2011, 102, 54–63. [Google Scholar] [CrossRef]
- Chen, A.L.; Yao, L.; Sun, R.H.; Chen, L.D. How many metrics are required to identify the effects of the landscape pattern on land surface temperature? Ecol. Indic. 2014, 45, 424–433. [Google Scholar] [CrossRef]
- Connors, J.P.; Galletti, C.S.; Chow, W.T. Landscape configuration and urban heat island effects: Assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landsc. Ecol. 2013, 28, 271–283. [Google Scholar] [CrossRef]
- Song, J.; Du, S.; Feng, X.; Guo, L. The relationships between landscape compositions and land surface temperature: Quantifying their resolution sensitivity with spatial regression models. Landsc. Urban Plan. 2014, 123, 145–157. [Google Scholar] [CrossRef]
- Zhou, W.Q.; Wang, J.; Cadenasso, M.L. Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sens. Environ. 2017, 195, 1–12. [Google Scholar] [CrossRef]
- MacFaden, S.W.; O’Neil-Dunne, J.P.; Royar, A.R.; Lu, J.W.; Rundle, A.G. High-resolution tree canopy mapping for New York City using LIDAR and object-based image analysis. J. Appl. Remote Sens. 2012, 6, 063567. [Google Scholar] [CrossRef]
- McCarthy, H.R.; Pataki, D.E.; Jenerette, G.D. Plant water-use efficiency as a metric of urban ecosystem services. Ecol. Appl. 2011, 21, 3115–3127. [Google Scholar] [CrossRef]
- Wu, J.S.; Xie, W.D.; Li, W.F.; Li, J.C. Effects of urban landscape pattern on PM2.5 Pollution—A Beijing case study. PLoS ONE 2015, 10, e0142449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.X.; Song, C.H.; Cao, L.; Zhu, F.G.; Meng, X.L.; Wu, J.G. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Peng, J.; Wang, Y.; Zhang, Y.; Wu, J.; Li, W.; Li, Y. Evaluating the effectiveness of landscape metrics in quantifying spatial patterns. Ecol. Indic. 2010, 10, 217–223. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows, version 22.0; IBM Corp.: Armonk, NY, USA, 2013. [Google Scholar]
- Vieira, L.T.A.; Polisel, R.T.; Ivanauskas, N.M.; Shepherd, G.J.; Waechter, J.L.; Yamamoto, K.; Martins, F.R. Geographical patterns of terrestrial herbs: A new component in planning the conservation of the Brazilian Atlantic Forest. Biodivers. Conserv. 2015, 24, 2181–2198. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Ban, Y.H.; Xu, Z.Y.; Cheng, J.; Li, M. Comparative evaluation of influencing factors on aquaculture wastewater treatment by various constructed wetlands. Ecol. Eng. 2016, 93, 221–225. [Google Scholar] [CrossRef]
- Yang, H.J.; Wu, M.Y.; Liu, W.X.; Zhang, Z.; Zhang, N.L.; Wan, S.Q. Community structure and composition in response to climate change in a temperate steppe. Glob. Chang. Biol. 2011, 17, 452–465. [Google Scholar] [CrossRef]
- Ou, Y.; Rousseau, A.N.; Wang, L.X.; Yan, B.X. Spatio-temporal patterns of soil organic carbon and pH in relation to environmental factors—A case study of the black soil region of northeastern China. Agric. Ecosyst. Environ. 2017, 245, 22–31. [Google Scholar] [CrossRef]
- Andrew, S.M.; Moe, S.R.; Totland, O.; Munishi, P.K.T. Species composition and functional structure of herbaceous vegetation in a tropical wetland system. Biodivers. Conserv. 2012, 21, 2865–2885. [Google Scholar] [CrossRef]
- Vegan: Community Ecology Package. R Package Version 2.4-4. 2017. Available online: https://CRAN.R-project.org/package=vegan (accessed on 13 May 2018).
- Bivand, R.S.; Hauke, J.; Kossowski, T. Computing the Jacobian in Gaussian spatial autoregressive models: An illustrated comparison of available methods. Geogr. Anal. 2013, 45, 150–179. [Google Scholar] [CrossRef]
- Liu, Z.R.; Hu, B.; Wang, L.L.; Wu, F.K.; Gao, W.K.; Wang, Y.S. Seasonal and diurnal variation in particulate matter (PM10 and PM2.5) at an urban site of Beijing: Analyses from a 9-year study. Environ. Sci. Pollut. Res. 2015, 22, 627–642. [Google Scholar] [CrossRef] [PubMed]
- Li, R.K.; Li, Z.P.; Gao, W.J.; Ding, W.J.; Xu, Q.; Song, X.F. Diurnal, seasonal, and spatial variation of PM2.5 in Beijing. Sci. Bull. 2015, 60, 387–395. [Google Scholar] [CrossRef]
- Liang, D.; Ma, C.; Wang, Y.Q.; Wang, Y.J.; Zhao, C.X. Quantifying PM2.5 capture capability of greening trees based on leaf factors analyzing. Environ. Sci. Pollut. Res. 2016, 23, 21176–21186. [Google Scholar] [CrossRef] [PubMed]
- Lou, C.R.; Liu, H.Y.; Li, Y.F.; Peng, Y.; Wang, J.; Dai, L.J. Relationships of relative humidity with PM2.5 and PM10 in the Yangtze River Delta, China. Environ. Monit. Assess. 2017, 189, 582. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; He, K.B.; Du, Z.Y.; Zheng, M.; Duan, F.K.; Ma, Y.L. Humidity plays an important role in the PM2.5 pollution in Beijing. Environ. Pollut. 2015, 197, 68–75. [Google Scholar] [CrossRef] [PubMed]
Categories | Landscape Metrics (Abbreviation) | Description | Equation (Unit) |
---|---|---|---|
Composition | Percentage of landscape (PLAND) | Proportional abundance of green space in the landscape. | (%) |
Configuration | Mean patch size (AREA_MN) | The average area of tree canopy patches within an analysis unit. | () |
Mean patch shape index (SHAPE_MN) | The average shape index of tree canopy patches within an analysis unit. | ||
Edge density (ED) | The total perimeter of tree canopy patches per km² within an analysis unit. | (m/ha) | |
Largest patch index (LPI) | The proportion of largest tree canopy patch within an analysis unit. | ||
Mean Euclidian nearest neighbor distance (ENN_MN) | d = the average distance between any two nearest neighboring urban patches. | ENN_MN = d (km) |
Scale | Parameter | RDA1 PM2.5 | RDA2 PM2.5 | RDA1 PM10 | RDA2 PM10 |
---|---|---|---|---|---|
Scale 1 | Eigenvalue | 1.3266 | 1.0407 | 2.8496 | 0.3882 |
(1 km) | Proportion explained of variance | 0.3316 | 0.2602 | 0.7124 | 0.0971 |
Cumulative proportion of variance | 0.3316 | 0.5918 | 0.7124 | 0.8095 | |
Scale 2 | Eigenvalue | 1.2084 | 1.0021 | 2.1066 | 0.4313 |
(2 km) | Proportion explained of variance | 0.3021 | 0.2505 | 0.5266 | 0.1078 |
Cumulative proportion of variance | 0.3021 | 0.5526 | 0.5266 | 0.6345 | |
Scale 3 | Eigenvalue | 1.3638 | 1.1425 | 2.7593 | 0.5066 |
(3 km) | Proportion explained of variance | 0.3409 | 0.2856 | 0.6898 | 0.1267 |
Cumulative proportion of variance | 0.3409 | 0.6266 | 0.6898 | 0.8165 | |
Scale 4 | Eigenvalue | 1.1943 | 1.0115 | 3.039 | 0.5059 |
(4 km) | Proportion explained of variance | 0.2986 | 0.2529 | 0.7598 | 0.1265 |
Cumulative proportion of variance | 0.2986 | 0.5514 | 0.7598 | 0.8862 | |
Scale 5 | Eigenvalue | 1.1924 | 1.1098 | 2.8727 | 0.4947 |
(5 km) | Proportion explained of variance | 0.2981 | 0.2774 | 0.7182 | 0.1237 |
Cumulative proportion of variance | 0.2981 | 0.5756 | 0.7182 | 0.8418 | |
Scale 6 | Eigenvalue | 1.1805 | 1.1567 | 2.5138 | 0.4886 |
(6 km) | Proportion explained of variance | 0.2951 | 0.2892 | 0.6284 | 0.1222 |
Cumulative proportion of variance | 0.2951 | 0.5843 | 0.6284 | 0.7506 |
Test of Significance of all Canonical Axes | F-Ratio | p-Value | R2 | R2adj |
---|---|---|---|---|
PM2.5 (1 km) | 1.6773 | 0.199 | 0.8342 | 0.3369 |
PM2.5 (2 km) | 0.9524 | 0.562 | 0.7407 | −0.037 |
PM2.5 (3 km) | 2.559 | 0.048 * | 0.8848 | 0.539 |
PM2.5 (4 km) | 1.1026 | 0.429 | 0.7679 | 0.0714 |
PM2.5 (5 km) | 1.4587 | 0.263 | 0.814 | 0.256 |
PM2.5 (6 km) | 1.6559 | 0.188 | 0.8324 | 0.3297 |
PM10 (1 km) | 2.6968 | 0.177 | 0.89 | 0.56 |
PM10 (2 km) | 0.8382 | 0.664 | 0.7155 | −0.138 |
PM10 (3 km) | 2.7584 | 0.15 | 0.8922 | 0.5687 |
PM10 (4 km) | 6.984 | 0.003 ** | 0.95445 | 0.8178 |
PM10 (5 km) | 3.4514 | 0.051 | 0.91193 | 0.6477 |
PM10 (6 km) | 1.5381 | 0.402 | 0.8219 | 0.2875 |
Axes | PLAND | LPI | ED | AREA_MN | SHAPE_MN | ENN_MN |
---|---|---|---|---|---|---|
RDA1-PM2.5-1 | 0.551 | 0.702 | −0.592 | −0.870 | 0.175 | −0.321 |
RDA2-PM2.5-1 | −0.882 | 0.618 | 0.602 | 0.219 | −0.175 | 0.167 |
RDA1-PM2.5-2 | −0.110 | 0.147 | 0.809 | −0.068 | −0.454 | 0.761 |
RDA2-PM2.5-2 | −1.826 ** | 2.144 ** | 1.723 ** | −0.446 | −0.634 | 0.804 |
RDA1-PM2.5-3 | −1.511 ** | 1.224 ** | 1.650 ** | 0.157 | −0.652 | 0.460 |
RDA2-PM2.5-3 | 1.276 ** | −1.254 ** | −0.998 * | 0.057 | 0.660 | 0.381 |
RDA1-PM2.5-4 | 0.065 | −0.003 | 0.322 | −0.077 | −0.125 | 0.463 |
RDA2-PM2.5-4 | 0.252 | −0.091 | −0.492 | −0.072 | 0.455 | 0.204 |
RDA1-PM2.5-5 | −0.054 | −0.177 | 0.471 | 0.192 | −0.261 | 0.346 |
RDA2-PM2.5-5 | 0.372 | −0.075 | −0.740 | −0.421 | 0.583 | 0.179 |
RDA1-PM2.5-6 | −0.290 | −0.001 | 0.449 | 0.378 | −0.418 | −0.373 |
RDA2-PM2.5-6 | 0.063 | −0.246 | 0.436 | 0.101 | −0.349 | 0.138 |
RDA1-PM10-1 | −1.103 ** | −0.938 | 0.774 | 1.677 ** | 0.073 | 0.037 |
RDA2-PM10-1 | 0.467 | 0.267 | −0.508 | −0.333 | 0.173 | −0.279 |
RDA1-PM10-2 | 0.048 | −0.704 | 1.138 ** | 0.945 | −0.473 | 0.813 |
RDA2-PM10-2 | 0.662 | −0.295 | −0.904 | −0.015 | 0.311 | −0.545 |
RDA1-PM10-3 | 0.486 | −0.609 | 0.505 | 0.655 | −0.086 | 0.618 |
RDA2-PM10-3 | 0.660 | 0.529 | −0.668 | −0.816 | −0.309 | −0.559 |
RDA1-PM10-4 | −0.378 | 0.210 | 1.146 ** | 0.616 | −0.472 | 0.568 |
RDA2-PM10-4 | 1.042 ** | −0.085 | −0.965* | −0.622 | 0.019 | −0.499 |
RDA1-PM10-5 | 0.140 | −0.192 | 0.774 | 0.578 | −0.431 | 0.394 |
RDA2-PM10-5 | 0.680 | 0.033 | −0.606 | −0.468 | −0.079 | −0.431 |
RDA1-PM10-6 | 0.580 | −0.242 | 0.490 | 0.164 | −0.329 | 0.327 |
RDA2-PM10-6 | 0.205 | 0.071 | −0.437 | −0.196 | 0.003 | −0.449 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Y.; Duan, Y.; He, D.; Zhang, X.; Chen, L.; Li, Y.; Gao, Y.G.; Tian, G.; Zheng, J. Effects of Urban Greenspace Patterns on Particulate Matter Pollution in Metropolitan Zhengzhou in Henan, China. Atmosphere 2018, 9, 199. https://doi.org/10.3390/atmos9050199
Lei Y, Duan Y, He D, Zhang X, Chen L, Li Y, Gao YG, Tian G, Zheng J. Effects of Urban Greenspace Patterns on Particulate Matter Pollution in Metropolitan Zhengzhou in Henan, China. Atmosphere. 2018; 9(5):199. https://doi.org/10.3390/atmos9050199
Chicago/Turabian StyleLei, Yakai, Yanbo Duan, Dan He, Xiwen Zhang, Lanqi Chen, Yonghua Li, Yu Gary Gao, Guohang Tian, and Jingbiao Zheng. 2018. "Effects of Urban Greenspace Patterns on Particulate Matter Pollution in Metropolitan Zhengzhou in Henan, China" Atmosphere 9, no. 5: 199. https://doi.org/10.3390/atmos9050199
APA StyleLei, Y., Duan, Y., He, D., Zhang, X., Chen, L., Li, Y., Gao, Y. G., Tian, G., & Zheng, J. (2018). Effects of Urban Greenspace Patterns on Particulate Matter Pollution in Metropolitan Zhengzhou in Henan, China. Atmosphere, 9(5), 199. https://doi.org/10.3390/atmos9050199