Oasis Irrigation-Induced Hydro-Climatic Effects: A Case Study in the Hyper-Arid Region of Northwest China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Categorization of Meteorological Stations
2.3. Estimation of ET0
2.4. Statistical Analysis
3. Results
3.1. Hydro-Climatic Characteristics
3.2. Spatial Distribution of ET0 Trends
3.3. Irrigation-Induced ET0 Effect
3.4. Irrigation-Induced Climatic Effect
4. Discussion
5. Conclusions and Uncertainty
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–573. [Google Scholar] [CrossRef] [PubMed]
- Ellis, E.C.; Goldewijk, K.K.; Siebert, S.; Lightman, D.; Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 2010, 19, 589–606. [Google Scholar] [CrossRef]
- Kuchment, L.S. The hydrological cycle and human impact on it. In Water Resour. Manag(EOLSS), Developed under the Auspices of the UNESCO; Hoekstra, A.Y., Savenije, H.H.G., Eds.; Eolss Publishers: Oxford, UK, 2004. [Google Scholar]
- Christidis, N.; Stott, P.A.; Hegerl, G.C.; Betts, R.A. The role of land use change in the recent warming of daily extreme temperatures. Geophys. Res. Lett. 2013, 40, 589–594. [Google Scholar] [CrossRef]
- Ahn, K.H.; Merwade, V. Quantifying the relative impact of climate and human activities on streamflow. J. Hydrol. 2014, 515, 257–266. [Google Scholar] [CrossRef]
- Oliveraguerra, L.; Mattar, C.; Merlin, O.; Durán-Alarcón, C.; Santamaría-Artigas, A.; Fuster, R. An operational method for the disaggregation of land surface temperature to estimate actual evapotranspiration in the arid region of Chile. ISPRS J. Photogramm. Remote Sens. 2017, 128, 170–181. [Google Scholar] [CrossRef]
- Santos, C.A.G.; Silva, R.M.D.; Silva, A.M.; Neto, R.M.B. Estimation of evapotranspiration for different land covers in a Brazilian semi-arid region: A case study of the Brígida River basin, Brazil. J. S. Am. Earth Sci. 2017, 74, 54–66. [Google Scholar] [CrossRef]
- Huo, Z.; Dai, X.; Feng, S.; Kang, S.; Huang, G. Effect of climate change on reference evapotranspiration and aridity index in arid region of China. J. Hydrol. 2013, 492, 24–34. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S. Influence of modern land cover on the climate of the United States. Clim. Dyn. 2009, 33, 945–958. [Google Scholar] [CrossRef]
- Mahmood, R.; Sr, R.A.P.; Hubbard, K.G.; Niyogi, D.; Dirmeyer, P.A.; McAlpine, C.; Carleton, A.M.; Hale, R.; Gameda, S. Land cover changes and their biogeophysical effects on climate. Int. J. Climatol. 2014, 34, 929–953. [Google Scholar] [CrossRef]
- Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology and climatic variability. Rev. Geophys. 2012, 50, RG2005. [Google Scholar] [CrossRef]
- Cannarozzo, M.; Noto, L.V.; Viola, F. Spatial distribution of rainfall trends in Sicily (1921–2000). Phys. Chem. Earth 2006, 31, 1201–1211. [Google Scholar] [CrossRef]
- Boucher, O.; Myhre, G.; Myhre, A. Direct human influence of irrigation on atmospheric water vapor and climate. Clim. Dyn. 2004, 22, 597–603. [Google Scholar] [CrossRef]
- Lobell, D.; Bala, G.; Mirin, A.; Phillips, T.; Maxwell, R.; Rotman, D. Regional differences in the influence of irrigation on climate. J. Clim. 2009, 22, 2248–2255. [Google Scholar] [CrossRef]
- Sr, R.A.P.; Pitman, A.; Niyogi, D.; Mahmood, R.; McAlpine, C.; Hossain, H.; Goldewijk, K.K.; Nair, U.; Betts, R.; Fall, S.; et al. Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 828–850. [Google Scholar]
- Lei, H.M.; Yang, D.W.; Yang, H.B.; Yuan, Z.J.; Lv, H.F. Simulated impacts of irrigation on evapotranspiration in a strongly exploited region: A case study of the Haihe River basin, China. Hydrol. Process. 2014, 29, 2704–2719. [Google Scholar] [CrossRef]
- Bonfils, C.; Lobell, D. Empirical evidence for a recent slowdown in irrigation-induced cooling. Proc. Natl. Acad. Sci. USA 2007, 104, 13582–13587. [Google Scholar] [CrossRef] [PubMed]
- Matthews, H.D.; Weaver, A.J.; Eby, M.; Meissner, K.J. Radiative forcing of climate by historical land cover change. Geophys. Res. Lett. 2003, 30, 1055. [Google Scholar] [CrossRef]
- Matthews, H.D.; Weaver, A.J.; Meissner, K.J.; Gillett, N.P.; Eby, M. Natural and anthropogenic climate change: Incorporating historical land cover change, vegetation dynamics and the global carbon cycle. Clim. Dyn. 2004, 22, 461–479. [Google Scholar] [CrossRef]
- Kijne, J.W.; Barker, R.; Molden, D. Water Productivity in Agriculture: Limits and Opportunities for Improvement; CABI Publishing: Wallingford, UK, 2003; pp. 390–391. [Google Scholar]
- Wu, P.; Zhao, X. Impact of climate change on agricultural water use and grain production in China. Trans. Chin. Soc. Agric. Eng. 2010, 26, 1–6. [Google Scholar]
- Zhong, R.S.; Dong, X.G.; Ma, Y.J. Sustainable water saving: New concept of modern agricultural water saving, starting from development of Xinjiang’s agricultural irrigation over the last 50 years. Irrig. Drain. 2009, 58, 383–392. [Google Scholar]
- Siebert, S.; Doll, P.; Hoogeveen, J.; Faures, J.-M.; Frenken, K.; Feick, S. Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci. 2005, 9, 535–547. [Google Scholar] [CrossRef]
- Tong, L.; Kang, S.; Zhang, L. Temporal and spatial variations of evapotranspiration for spring wheat in the Shiyang River basin in Northwest China. Agric. Water Manag. 2007, 87, 241–250. [Google Scholar] [CrossRef]
- Wang, X.M.; Dong, Z.B.; Zhang, J.W.; Lium, L.C. Modern dust storms in China: An overview. J. Arid Environ. 2004, 58, 559–574. [Google Scholar] [CrossRef]
- Beringer, J. Ecological Climatology: Concepts and Applications, 2nd ed.; Bonan, G.B., Ed.; Cambridge University Press: New York, NY, USA, 2010; Volume 48, pp. 221–222. [Google Scholar]
- Koster, R.D.; Dirmeyer, P.A.; Guo, Z.C.; Bonan, G.; Chan, R.; Cox, P.; Gordon, C.T.; Kanae, S.; Kowalczyk, E.; Lawrence, D.; et al. Regions of strong coupling between soil moisture and precipitation. Science 2004, 305, 1138–1140. [Google Scholar] [CrossRef] [PubMed]
- Dai, A.; Trenberth, K.E.; Karl, T.R. Effects of clouds, soil moisture, precipitation and water vapor on diurnal temperature range. J. Clim. 1999, 12, 2451–2473. [Google Scholar] [CrossRef]
- Han, S.J.; Xu, D.; Wang, S.L. Decreasing potential evaporation trends in China from 1956 to 2005: Accelerated in regions with significant agricultural influence? Agric. For. Meteorol. 2012, 154–155, 44–56. [Google Scholar] [CrossRef]
- Feng, Z.; Liu, B.; Yang, Y. A study of the changing trend of Chinese cultivated land amount and data reconstructing: 1949–2003. J. Nat. Resour. 2005, 20, 35–43. [Google Scholar]
- Deng, M.J.; Wang, S.J.; Dong, X.G.; Zhang, S.M. Water Resources and Sustainable Utilization in Xinjiang Uygur Autonomous Region; China Water Power Press: Beijing, China, 2005. [Google Scholar]
- Dai, X.; Pu, L.; Rao, F. Assessing the Effect of a Crop-Tree Intercropping Program on Smallholders’ Incomes in Rural Xinjiang, China. Sustainability 2017, 9, 1542. [Google Scholar] [CrossRef]
- Allen, R.G. Evaluation of Procedures for Estimating Mean Monthly Solar Radiation from Air Temperature; United Nations Food and Agricultural Organization (FAO): Rome, Italy, 1995. [Google Scholar]
- Belward, A.S. The IGBP-DIS Global 1 km Land Cover Data Set ‘DISCover’ Proposal and Implementation Plans; Report of the Land Cover Working Group of IGBP-DIS; IGBP-DIS Working Paper #13; IGBP Data and Information System Office: Toulouse, France, 1996; pp. 11–19. [Google Scholar]
- Rim, C.S. The effects of urbanization, geographical and topographical conditions on reference evapotranspiration. Clim. Chang. 2009, 97, 483–514. [Google Scholar] [CrossRef]
- Lobell, D.B.; Bonfils, C. The effect of irrigation on regional temperatures: A spatial and temporal analysis of trends in California, 1934–2002. J. Clim. 2008, 21, 2063–2071. [Google Scholar] [CrossRef]
- Allen, R.G.; Periera, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guideline for Computing Crop Water Requirement; FAO Irrigation and Drainage Paper No. 56; United Nations Food and Agricultural Organization (FAO): Rome, Italy, 1998. [Google Scholar]
- Hargreaves, G.H.; Samani, Z.A. Estimating potential evapotranspiration. J. Irrig. Drain. Div. 1982, 108, 223–230. [Google Scholar]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Method, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficients based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Salmi, T.; Maatta, A.; Anttila, P.; Ruoho-Airola, T.; Amnell, T. Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sen’s Slope Estimates—The Excel Template Application MAKESENS; Finnish Meteorological Institute: Helsinki, Finland, 2002. [Google Scholar]
- Dinpashoh, Y.; Jhajharia, D.; Fakheri-Fard, A.; Singh, V.P.; Kahya, E. Trends in reference crop evapotranspiration over Iran. J. Hydrol. 2011, 399, 422–433. [Google Scholar] [CrossRef]
- Jhajharia, D.; Dinpahoh, Y.; Kahya, E.; Singh, V.P.; Fakheri-Fard, A. Trends in reference evapotranspiration in the humid region of North East India. Hydrol. Process. 2011, 26, 421–435. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Tang, Y.; Yang, Y. Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. J. Geophys. Res. Atmos. 2007, 112, 113–120. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, Z.; Cui, B.; Sun, T. The temporal trends of reference evapotranspiration and its sensitivity to key meteorological variables in the Yellow River basin, China. Hydrol. Process. 2010, 24, 2171–2181. [Google Scholar] [CrossRef]
- Xing, W.; Wang, W.G.; Shao, Q.X.; Peng, S.X.; Yu, Z.B.; Yong, B.; Taylor, J. Changes of reference evapotranspiration in the Haihe River Basin: Present observations and future projection from climatic variables through multi-model ensemble. Glob. Planet. Chang. 2014, 115, 1–15. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, Q.; Zheng, J.; Ge, Q. Warming/cooling effects of cropland greenness changes during 1982–2006 in the North China Plain. Environ. Res. Lett. 2013, 8, 24–38. [Google Scholar] [CrossRef]
- Ozdogan, M.; Salvucci, G.D.; Anderson, B.T. Examination of the Bouchet Morton complementary relationship using a mesoscale climate model and observations under a progressive irrigation scenario. J. Hydrometeorol. 2006, 7, 235–251. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change, Summary for Policymakers. Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Cook, B.I.; Puma, M.J.; Krakauer, N.Y. Irrigation induced surface cooling in the context of modern and increased greenhouse gas forcing. Clim. Dyn. 2011, 37, 1587–1600. [Google Scholar] [CrossRef]
- Najafi, M.R.; Zwiers, F.W.; Gillett, N.P. Attribution of Arctic temperature change to greenhouse-gas and aerosol influences. Nat. Clim. Chang. 2015, 5, 246–249. [Google Scholar] [CrossRef]
- Xu, L.H.; Shi, Z.J.; Wang, Y.H.; Zhang, D.L.; Chu, X.Z.; Yu, P.T.; Xiong, W.; Zuo, H.J.; Wang, Y.N. Spatiotemporal variation and driving forces of reference evapotranspiration in Jing River Basin, northwest China. Hydrol. Process. 2015, 29, 4846–4862. [Google Scholar] [CrossRef]
- Adegoke, J.O.; Pielke, R.A.; Eastman, J.; Mahmood, R.; Hubbard, K.G. Impact of irrigation on midsummer surface fluxes and temperature under dry synoptic conditions: A regional atmospheric model study of the U.S. high plains. Mon. Weather Rev. 2003, 131, 556–564. [Google Scholar] [CrossRef]
- Mahmood, R.; Hubbard, K.G.; Carlson, C. Modification of growing-season surface temperature records in the northern Great Plains due to land-use transformation: Verification of modelling results and implication for global climate change. Int. J. Climatol. 2004, 24, 311–327. [Google Scholar] [CrossRef]
- Lobell, D.B.; Bala, G.; Duffy, P.B. Biogeophysical impacts of cropland management changes on climate. Geophys. Res. Lett. 2006, 33, L06708. [Google Scholar] [CrossRef]
- Williams, K.R.S. Correlation between Palmer drought indices and various measures of air temperature in the climatic zones of the United States. Phys. Geogr. 1992, 13, 349–367. [Google Scholar]
- Vautard, R.; Cattiaux, J.; Yiou, P.; Thepau, J.N.; Ciais, P. Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat. Geosci. 2010, 3, 756–761. [Google Scholar] [CrossRef]
- Roderick, M.L.; Farquhar, G.D. The cause of decreased pan evaporation over the past 50 years. Science 2002, 298, 1410–1411. [Google Scholar] [PubMed]
- Stanhill, G.; Cohen, S. Global dimming: A review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric. For. Meteorol. 2001, 107, 255–278. [Google Scholar] [CrossRef]
- Han, S.J.; Tang, Q.H.; Xu, D.; Wang, S.L. Irrigation-induced changes in potential evaporation: More attention is needed. Hydrol. Process. 2014, 28, 2717–2720. [Google Scholar] [CrossRef]
- Wang, S.D.; Wang, Y.G.; Wang, J.; Mao, W.Y.; Shen, Y.P. Change of climate and hydrology in the Tarim River Basin during past 40 years and their impact. J. Glaciol. Geocryol. 2003, 25, 315–320. [Google Scholar]
- Wang, Y.B.; Chen, Y.N. Impact of population growth and land-use change on water resources and ecosystems of the arid Tarim River Basin in Western China. Int. J. Sustain. Dev. World Ecol. 2006, 13, 295–305. [Google Scholar]
- Bai, Y.; Xu, H.L.; Ling, H.B. Drought-flood variation and its correlation with runoff in three headstreams of Tarim River, Xingjiang, China. Environ. Earth Sci. 2014, 71, 1297–1309. [Google Scholar] [CrossRef]
- Ye, Z.X.; Chen, Y.N.; Zhang, X. Dynamics of runoff, river sediments and climate change in the upper reaches of the Tarim River, China. Quat. Int. 2014, 26, 13–19. [Google Scholar] [CrossRef]
- Brutsaert&Amp, W.; Parlange, M.B. Hydrologic cycle explains the evaporation paradox. Nature 1998, 396, 30. [Google Scholar]
- Brown, A.E.; Zhang, L.; McMahon, T.A.; Western, A.W.; Vertessy, R.A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Li, H.Y.; Liu, X.H.; Kejia, D.; Zhou, Q.; Ma, T.; Gao, Y. Ecological restoration and its effects on a regional Climate: The Source Region of the Yellow River, China. Environ. Sci. Technol. 2015, 49, 5897–5904. [Google Scholar] [CrossRef] [PubMed]
- Gordon, L.J.; Steffen, W.; Jonsson, B.F.; Folke, C.; Falkenmark, M.; Johannessen, Å. Human modification of global water vapor € flows from the land surface. Proc. Natl. Acad. Sci. USA 2005, 102, 7612–7617. [Google Scholar] [CrossRef] [PubMed]
- Sorooshian, S.; Li, J.; Hsu, K.L.; Guo, X.G. Influence of irrigation schemes used in regional climate models on evapotranspiration estimation: Results and comparative studies from California’s Central Valley agricultural regions. J. Geophys. Res. 2012, 117, 6107. [Google Scholar] [CrossRef]
- Lo, M.H.; Famiglietti, J.S. Irrigation in California’s Central Valley strengthens the southwestern US water cycle. Geophys. Res. Lett. 2013, 40, 301–306. [Google Scholar] [CrossRef]
- Leng, G.; Huang, M.; Tang, Q.; Leung, L.R. A modeling study of irrigation effects on global surface water and groundwater resources under a changing climate. J. Adv. Model. Earth Syst. 2015, 7, 1285–1304. [Google Scholar] [CrossRef]
- Nazemi, A.; Wheater, H.S. On inclusion of water resource management in Earth system models—Part 1: Problem definition and representation of water demand. Hydrol. Earth Syst. Sci. 2015, 19, 63–90. [Google Scholar] [CrossRef]
- Leng, G.; Leung, L.R.; Huang, M. Significant impacts of irrigation water sources and methods on modeling irrigation effects in the ACME Land Model. J. Adv. Model. Earth Syst. 2017. [Google Scholar] [CrossRef]
Radius (km) | Cultivated Land | Bare Land | ||
---|---|---|---|---|
Annual | Growing Season | Annual | Growing Season | |
1 | −0.35 * | −0.36 * | 0 | 0 |
2 | −0.33 * | −0.35 * | 0 | 0 |
3 | −0.35 * | −0.37 ** | 0.36 ** | 0.37 ** |
4 | −0.36 ** | −0.37 ** | 0.38 ** | 0.39 ** |
5 | −0.31 * | −0.32 * | 0.35 * | 0.35 * |
6 | −0.31 * | −0.32 * | 0.33 * | 0.34 * |
7 | −0.31 * | −0.32 * | 0.33 * | 0.33 * |
8 | −0.28 | −0.30 | 0.31 * | 0.32 * |
9 | −0.27 | −0.29 | 0.31 * | 0.31 * |
10 | −0.26 | −0.27 | 0.31 * | 0.31 * |
15 | −0.21 | −0.23 | 0.30 | 0.30 * |
20 | −0.17 | −0.19 | 0.28 | 0.29 |
25 | −0.14 | −0.16 | 0.27 | 0.27 |
30 | −0.12 | −0.14 | 0.27 | 0.27 |
Group | Number of Stations | Land Use Ratio | ET0 (mm) | Tmax (°C) | Tmin (°C) | RH (%) | WS (m/s) | N (h/a) | P (mm) | Altitude (m) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bare Land | Cropland | Natural Vegetation | ||||||||||
Agricultural group | 17 | 0.07 | 0.60 | 0.33 | 1180.9 | 12.6 | 4.4 | 47.2 | 1.9 | 2922.2 | 54.6 | 1070.50 |
Desert group | 7 | 0.94 | 0.04 | 0.02 | 1405.4 | 10.2 | −0.8 | 36.3 | 3.8 | 3230.6 | 42.3 | 1244.04 |
Natural group | 7 | 0.21 | 0.15 | 0.64 | 1246.4 | 13.0 | 0.1 | 40.2 | 2.7 | 3167.6 | 69.6 | 1275.10 |
Type | Average Trend Magnitude (mm/Decade) | |||||
---|---|---|---|---|---|---|
Annual | Growing Season | Spring | Summer | Autumn | Winter | |
Agricultural group | −24.55 ± 2.51 | −18.50 ± 1.95 | −5.91 ± 0.77 | −10.81 ± 1.11 | −5.40 ± 0.55 | −0.80 ± 0.23 |
Desert group | 9.10 ± 6.62 | 7.06 ± 4.55 | 3.56 ± 1.75 | 4.58 ± 2.63 | 1.17 ± 1.54 | 0.12 ± 0.43 |
Natural group | −16.25 ± 2.34 | −12.00 ± 1.81 | −3.04 ± 0.63 | −7.24 ± 1.10 | −4.30 ± 0.57 | −0.80 ± 0.16 |
All stations | −20.06 ± 2.53 | −14.78 ± 1.95 | −4.51 ± 0.76 | −8.70 ± 1.12 | −4.87 ± 0.58 | −0.89 ± 0.22 |
Difference | −33.65 | −25.56 | −9.47 | −15.39 | −6.57 | −0.92 |
Period | Agricultural Group | Desert Group | Natural Group | Difference |
---|---|---|---|---|
1960–1970 | 10.90 | 92.85 | 36.15 | −81.95 |
1970–1992 | −80.38 | −34.46 | −64.21 | −45.92 |
1992–2013 | 59.53 | 103.72 | 39.85 | −44.19 |
1960–2013 | −21.88 | 14.92 | −15.02 | −36.80 |
Timescale | Station Groups | Tmax (°C/Decade) | Tmin (°C/Decade) | RH (%/Decade) | WS (m/s/Decade) | N (h/a/Decade) | P (mm/Decade) |
---|---|---|---|---|---|---|---|
Annual | Agricultural group | 0.25 ± 0.01 | 0.38 ± 0.03 | 0.30 ± 0.09 | −0.16 ± 0.01 | −6.27 ± 4.89 | 3.76 ± 0.30 |
Desert group | 0.41 ± 0.02 | 0.56 ± 0.03 | 0.06 ± 0.07 | −0.09 ± 0.03 | −19.95 ± 4.99 | 0.76 ± 0.28 | |
Natural group | 0.38 ± 0.01 | 0.64 ± 0.03 | −0.4 ± 0.08 | −0.21 ± 0.02 | −14.79 ± 2.53 | 3.22 ± 0.26 | |
Difference | −0.16 | −0.18 | 0.24 | −0.07 | 13.68 | 3.00 | |
Growing season | Agricultural group | 0.19 ± 0.02 | 0.33 ± 0.03 | 0.37 ± 0.11 | −0.19 ± 0.01 | 6.16 ± 2.75 | 2.87 ± 0.29 |
Desert group | 0.40 ± 0.02 | 0.57 ± 0.03 | −0.10 ± 0.09 | −0.06 ± 0.03 | −11.39 ± 2.99 | 0.16 ± 0.31 | |
Natural group | 0.36 ± 0.02 | 0.59 ± 0.03 | −0.59 ± 0.08 | −0.23 ± 0.02 | −10.20 ± 2.33 | 2.54 ± 0.26 | |
Difference | −0.21 | −0.24 | 0.47 | −0.13 | 17.55 | 2.71 | |
Spring | Agricultural group | 0.22 ± 0.01 | 0.39 ± 0.03 | −0.37 ± 0.08 | −0.20 ± 0.01 | 10.31 ± 1.53 | 0.31 ± 0.04 |
Desert group | 0.31 ± 0.02 | 0.50 ± 0.03 | −0.23 ± 0.07 | −0.06 ± 0.03 | 3.46 ± 14.59 | 0.25 ± 0.49 | |
Natural group | 0.30 ± 0.02 | 0.54 ± 0.03 | −0.76 ± 0.08 | −0.23 ± 0.03 | 2.67 ± 10.63 | 0.84 ± 0.09 | |
Difference | −0.09 | −0.11 | 0.14 | −0.07 | 6.85 | 0.06 | |
Summer | Agricultural group | 0.15 ± 0.02 | 0.31 ± 0.03 | 0.53 ± 0.12 | −0.18 ± 0.01 | −2.59 ± 1.43 | 2.02 ± 0.18 |
Desert group | 0.40 ± 0.02 | 0.62 ± 0.03 | −0.19 ± 0.09 | −0.05 ± 0.03 | −11.93 ± 1.65 | −0.39 ± 0.19 | |
Natural group | 0.36 ± 0.02 | 0.62 ± 0.03 | −0.54 ± 0.09 | −0.22 ± 0.03 | −8.97 ± 1.34 | 1.66 ± 0.19 | |
Difference | −0.25 | −0.31 | 0.72 | −0.13 | 9.34 | 2.41 | |
Autumn | Agricultural group | 0.23 ± 0.02 | 0.32 ± 0.03 | 0.61 ± 0.14 | −0.13 ± 0.01 | −3.65 ± 0.96 | 0.69 ± 0.10 |
Desert group | 0.45 ± 0.02 | 0.62 ± 0.03 | 0.31 ± 0.10 | −0.07 ± 0.02 | −5.47 ± 1.13 | −0.07 ± 0.10 | |
Natural group | 0.41 ± 0.02 | 0.65 ± 0.03 | −0.31 ± 0.10 | −0.20 ± 0.03 | −3.98 ± 0.86 | 0.35 ± 0.09 | |
Difference | −0.22 | −0.30 | 0.30 | −0.06 | 1.82 | 0.76 | |
Winter | Agricultural group | 0.31 ± 0.02 | 0.49 ± 0.03 | 0.47 ± 0.09 | −0.11 ± 0.01 | −7.33 ± 1.45 | 0.67 ± 0.07 |
Desert group | 0.40 ± 0.02 | 0.58 ± 0.04 | 0.35 ± 0.07 | −0.11 ± 0.03 | −4.22 ± 1.55 | 1.14 ± 0.15 | |
Natural group | 0.35 ± 0.02 | 0.76 ± 0.04 | 0.05 ± 0.08 | −0.19 ± 0.02 | −3.67 ± 1.10 | 0.23 ± 0.15 | |
Difference | −0.09 | −0.09 | 0.12 | 0.00 | −3.11 | −0.47 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, N.; Shi, Z.; Yang, X.; Guo, H.; Zhang, X.; Zhang, Z. Oasis Irrigation-Induced Hydro-Climatic Effects: A Case Study in the Hyper-Arid Region of Northwest China. Atmosphere 2018, 9, 142. https://doi.org/10.3390/atmos9040142
Shan N, Shi Z, Yang X, Guo H, Zhang X, Zhang Z. Oasis Irrigation-Induced Hydro-Climatic Effects: A Case Study in the Hyper-Arid Region of Northwest China. Atmosphere. 2018; 9(4):142. https://doi.org/10.3390/atmos9040142
Chicago/Turabian StyleShan, Nan, Zhongjie Shi, Xiaohui Yang, Hao Guo, Xiao Zhang, and Zhiyong Zhang. 2018. "Oasis Irrigation-Induced Hydro-Climatic Effects: A Case Study in the Hyper-Arid Region of Northwest China" Atmosphere 9, no. 4: 142. https://doi.org/10.3390/atmos9040142
APA StyleShan, N., Shi, Z., Yang, X., Guo, H., Zhang, X., & Zhang, Z. (2018). Oasis Irrigation-Induced Hydro-Climatic Effects: A Case Study in the Hyper-Arid Region of Northwest China. Atmosphere, 9(4), 142. https://doi.org/10.3390/atmos9040142