Precipitation Preventing a Deficit of Readily Available Soil Water in Arable Soils in Poland
Abstract
:1. Introduction
2. Problem Identification
- −
- what amount of natural precipitation is required to provide crop plants with continuous access to readily available water under field conditions without groundwater and without supplying the root zone with water by capillary rise from the groundwater table?
- −
- how often does such precipitation occur in a multi-year period?
3. Materials and Methods
- −
- stage I consisted of determining critical precipitation resulting from the properties of soils to prevent the depletion of readily available soil water,
- −
- stage II was aimed at examining, based on the long-term data on rainfall obtained from meteorological observations, whether during the growing season, with what frequency and what amount critical rainfall occurs that could prevent the depletion of readily available soil water.
- when
- when
4. Background—General Characteristics of Rainfall Conditions in Poland in 1970–2004
5. Results and Discussion
5.1. Critical Precipitation and Its Frequency
5.2. Cartographic Presentation of Critical Precipitation Conditioning the Provision of Water Reserves Readily Available in the Soil
6. Conclusions
- The applied method of modeling and the procedure of computer data processing made it possible to determine critical precipitation preventing readily available soil water depletion in relation to the analyzed arable soils and cartographic presentation of its spatial distribution.
- The obtained results of the calculations indicate a significant variation of critical precipitation and its spatial area variability on arable land.
- The analysis of the 35-year period of precipitation measured at 40 national meteorological stations shows a relatively small share of decades in which there were estimated values of precipitation treated as a minimum for maintaining continuity in the availability of soil water for arable crops.
- The most common (about 20%) are decades in which the required precipitation does not exceed 20–25 mm. Decades in which there should be more rainfall to prevent the exhaustion of readily available water occur less often.
- The estimated rainfall values can be considered as one of the parametric criteria for the need to take into account irrigation to preserve the stability of crop management on arable land.
- Spatial visualization of critical rainfall variation in the background of the actual soil cover in Poland may be useful for farmers for preliminary, estimated operational assessment of irrigation needs under conditions of water consumption by field crops in the range of 3.5–4.2 mm·day−1.
- Using the maps, you can assess the irrigation needs based on the daily measurement of precipitation and precipitation forecast for the next 10 days, with knowledge of the type of soil. Precipitation measured or predicted less than the critical rainfall indicates the need for irrigation.
- Despite the simplicity of the problem considered and the method used, the solution shows a valuable and useful data input. Because of the simplicity of the analysis, the results can be interpreted easily.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Huza, J.; Teuling, A.J.; Braud, I.; Grazioli, J.; Melsen, L.A.; Nord, G.; Raupach, T.H.; Uijlenhoet, R. Precipitation, soil moisture and runoff variability in a small river catchment (Ardèche, France) during HyMeX Special Observation Period 1. J. Hydrol. 2014, 516, 330–342. [Google Scholar] [CrossRef] [Green Version]
- Milly, P.C.D. A minimalist probabilistic description of root zone soil water. Water Resour. Res. 2001, 37, 457–463. [Google Scholar] [CrossRef]
- Ramos, M.C.; Martínez-Casasnovas, J.A. Effects of precipitation patterns and temperature trends on soil water available for vineyards in a Mediterranean climate area. Agric. Water Manag. 2010, 97, 1495–1505. [Google Scholar] [CrossRef]
- Xie, W.; Yang, J. Assessment of soil water content in field with antecedent precipitation index and groundwater depth in the Yangtze River Estuary. J. Integr. Agric. 2013, 12, 711–722. [Google Scholar] [CrossRef]
- Xiaohua, X.; Xiaoling, W.; Xi, C.; Qifeng, S.; Xianwu, X. Integrating Topography and Soil Properties for Spatial Soil Moisture Storage Modeling. Water 2017, 9, 647. [Google Scholar] [CrossRef]
- Ostrowski, J.; Łabędzki, L.; Kowalik, W.; Kanecka-Geszke, E.; Kasperska-Wołowicz, W.; Smarzyńska, K.; Tusiński, E. Atlas of Water Deficits of Cultivated Plants and Grasslands in Poland; IMUZ: Falenty, Poland, 2008; p. 19. ISBN 978-83-88763-8-16. [Google Scholar]
- Ostrowski, J.; Łabędzki, L. Excess rainwater and hypoxia of arable soils in Poland. In Woda Środowisko Obszary Wiejskie. Rozprawy Naukowe i Monografie 43; ITP: Falenty, Poland, 2016; p. 118. ISSN 1644-1095. [Google Scholar]
- Ostrowski, J. Oxygen determinants of arable soil melioration. In Agrophysics—Processes, Properties, Methods; Gliński, J., Horabik, J., Lipiec, J., Sławiński, C., Eds.; Instytut Agrofizyki im. Bohdana Dobrzańskiego PAN: Lublin, Poland, 2014; pp. 57–65. ISBN 978-83-89969-34-7. [Google Scholar]
- Sławiński, C. Soil-plant-atmosphere system as a continuum. In Agrophysics—Processes, Properties, Methods; Gliński, J., Horabik, J., Lipiec, J., Sławiński, C., Eds.; Instytut Agrofizyki im. Bohdana Dobrzańskiego PAN: Lublin, Poland, 2014; pp. 81–88. ISBN 978-83-89969-34-7. [Google Scholar]
- Walczak, R.; Ostrowski, J.; Witkowska-Walczak, B.; Stawiński, C. Hydrophysical Characteristics of Mineral Arable Soils in Poland. Acta Agrophys. 2002, 79, 1–14. [Google Scholar]
- Witkowska-Walczak, B.; Gliński, J.; Sławiński, C. Hydrophysical Properties of Soils; Polish Academy of Sciences: Lublin, Poland, 2012; p. 132. ISBN 978-83-930665-6-8. [Google Scholar]
- Ostrowski, J. Base of soil-cartographic data—Structure and use. In Proceedings of the VI Science Conference Technology PTIP on Systems of Geospatial Information, Warsaw, Poland, 18–20 June 1996; pp. 471–480. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998; p. 300. ISBN 92-5-104219-5. [Google Scholar]
- Łabędzki, L.; Bąk, B.; Smarzyńska, K. Spatio–temporal variability and trends of Penman–Monteith reference evapotranspiration (FAO–56) in 1971–2010 under climatic conditions of Poland. Polish J. Environ. Stud. 2014, 23, 2083–2091. [Google Scholar] [CrossRef]
- Polish Soil Classification; Roczniki Gleboznawcze—Soil Science Annual; Marcinek, J.; Komisarek, J. (Eds.) Polskie Towarzystwo Gleboznawcze: Warszawa, Poland, 2011; Volume 62, pp. 1–193. ISSN 0080-3642. [Google Scholar]
- Global Reference Base of Soil Resources 2014; Polskie Towarzystwo Gleboznawcze: Toruń, Poland, 2015; p. 239. ISBN 978-83-934096-7-9.
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; p. 203. ISBN 978-92-5-108369-7. [Google Scholar]
Soil Symbol | Generalized Soil Unit—Derived from 1 | Thickness of the Layer (cm) | RASW (mm) in the Layer | ||||
---|---|---|---|---|---|---|---|
I | II | III | I | II | III | ||
1 | Rendzic Leptosols (pure) | 20 | 30 | 10 | 9.0 | 13.5 | 4.5 |
2 | Rendzic Leptosols (mixed) | 20 | 30 | 10 | 9.0 | 13.5 | 7.5 |
3 | Haplic Phaeozems—silt | 30 | 20 | 50 | 22.5 | 15.0 | 37.5 |
4 | Haplic Luvisols and Dystric Cambisols—loose sand | 20 | 30 | 50 | 9.0 | 13.5 | 7.5 |
5 | Haplic Luvisols and Dystric Cambisols—light loamy sand | 20 | 30 | 50 | 9.0 | 13.5 | 22.5 |
6 | Haplic Luvisols and Eutric Cambisols—loamy sand | 25 | 45 | 30 | 11.3 | 33.8 | 13.5 |
7 | Eutric Cambisols—loamy sand over loam | 25 | 45 | 30 | 11.3 | 20.3 | 13.5 |
7a | Haplic Podzols—loamy sand over loam | 25 | 25 | 50 | 11.3 | 11.3 | 22.5 |
8 | Eutric Cambisols—light loam | 25 | 25 | 50 | 11.3 | 11.3 | 22.5 |
8a | Haplic Podzols—light loam | 25 | 25 | 50 | 11.3 | 11.3 | 22.5 |
9 | Eutric Cambisols—medium loam | 25 | 25 | 50 | 11.3 | 11.3 | 22.5 |
9a | Haplic Podzols—medium loam | 25 | 25 | 50 | 11.3 | 11.3 | 22.5 |
10 | Eutric Cambisols and Haplic Luvisols—heavy loam | 25 | 25 | 50 | 11.3 | 11.3 | 22.5 |
11 | Eutric Cambisols and Haplic Luvisols—loam | 25 | 45 | 30 | 11.3 | 20.3 | 4.5 |
12 | Haplic Luvisols and Dystric Cambisols—gravel | 20 | 30 | 50 | 9.0 | 4.5 | 37.5 |
13 | Eutric Cambisols—hydrogenic silt | 25 | 25 | 50 | 18.8 | 18.8 | 22.5 |
13a | Haplic Podzols—hydrogenic silt | 25 | 25 | 50 | 11.3 | 11.3 | 37.5 |
14 | Haplic Luvisols and Eutric Cambisols—loess | 27 | 23 | 50 | 12.2 | 17.3 | 7.5 |
15 | Haplic Luvisols and Eutric Cambisols—clay | 20 | 30 | 50 | 9.0 | 4.5 | 22.5 |
16 | Haplic Luvisols and Eutric Cambisols—loams and skeleton loam | 15 | 35 | 10 | 6.8 | 15.8 | 4.5 |
17 | Haplic Luvisols and Eutric Cambisols—loam | 18 | 32 | 10 | 8.1 | 14.4 | 4.5 |
18 | Haplic Luvisols and Eutric Cambisols—massive rock clay | 18 | 32 | 10 | 2.7 | 4.8 | 4.5 |
19 | Haplic Luvisols and Eutric Cambisols—silt | 18 | 32 | 10 | 8.1 | 14.4 | 4.5 |
20 | Eutric Fluvisols—heavy loam and silt | 25 | 25 | 50 | 3.8 | 3.8 | 7.5 |
21 | Distric Fluvisols—sand | 25 | 25 | 50 | 11.3 | 11.3 | 22.5 |
22 | Eutric Fluvisols—light silty loam | 25 | 25 | 50 | 11.3 | 11.3 | 22.5 |
23 | Gleyic Charnozem—loam and silt | 27 | 23 | 50 | 12.2 | 10.4 | 7.5 |
24 | Gleyic Charnozem—sand | 27 | 23 | 50 | 12.2 | 3.5 | 7.5 |
25 | Mollic Gleysol | 20 | 30 | 50 | 15.0 | 13.5 | 22.5 |
Soil Symbol | Generalized Soil Unit—Derived from 1 | Pc (mm) at ETPmax (mm·day−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
3.5 | 4.0 | 4.2 | ||||||||
I | II | III | I | II | III | I | II | III | ||
1 | Rendzic Leptosols (pure) | 26.0 | 21.5 | 30.5 | 31.0 | 26.5 | 35.5 | 33.0 | 28.5 | 37.5 |
2 | Rendzic Leptosols (mixed) | 26.0 | 21.5 | 27.5 | 31.0 | 26.5 | 32.5 | 33.0 | 28.5 | 34.5 |
3 | Haplic Phaeozems—silt | 12.5 | 20.0 | 0.0 | 17.5 | 25.0 | 2.5 | 19.5 | 27.0 | 4.5 |
4 | Haplic Luvisols and Dystric Cambisols—loose sand | 26.0 | 21.5 | 27.5 | 31.0 | 26.5 | 32.5 | 33.0 | 28.5 | 34.5 |
5 | Haplic Luvisols and Dystric Cambisols—light loamy sand | 26.0 | 21.5 | 12.5 | 31.0 | 26.5 | 17.5 | 33.0 | 28.5 | 19.5 |
6 | Haplic Luvisols and Eutric Cambisols—loamy sand | 23.8 | 1.3 | 21.5 | 28.8 | 6.3 | 26.5 | 30.8 | 8.3 | 28.5 |
7 | Eutric Cambisols—loamy sands over loam | 23.8 | 14.8 | 21.5 | 28.8 | 19.8 | 26.5 | 30.8 | 21.8 | 28.5 |
7a | Haplic Podzols—loamy sand over loam | 23.8 | 23.8 | 12.5 | 28.8 | 28.8 | 17.5 | 30.8 | 30.8 | 19.5 |
8 | Eutric Cambisols—light loam | 23.8 | 23.8 | 12.5 | 28.8 | 28.8 | 17.5 | 30.8 | 30.8 | 19.5 |
8a | Haplic Podzols—light loam | 23.8 | 23.8 | 12.5 | 28.8 | 28.8 | 17.5 | 30.8 | 30.8 | 19.5 |
9 | Eutric Cambisols—medium loam | 23.8 | 23.8 | 12.5 | 28.8 | 28.8 | 17.5 | 30.8 | 30.8 | 19.5 |
9a | Haplic Podzols—medium loam | 23.8 | 23.8 | 12.5 | 28.8 | 28.8 | 17.5 | 30.8 | 30.8 | 19.5 |
10 | Eutric Cambisols and Haplic Luvisols—heavy loam | 23.8 | 23.8 | 12.5 | 28.8 | 28.8 | 17.5 | 30.8 | 30.8 | 19.5 |
11 | Eutric Cambisols and Haplic Luvisols—loam | 23.8 | 14.8 | 30.5 | 28.8 | 19.8 | 35.5 | 30.8 | 21.8 | 37.5 |
12 | Haplic Luvisols and Dystric Cambisols—gravel | 26.0 | 30.5 | 0.0 | 31.0 | 35.5 | 2.5 | 33.0 | 37.5 | 4.5 |
13 | Eutric Cambisols—hydrogenic silt | 16.3 | 16.3 | 12.5 | 21.3 | 21.3 | 17.5 | 23.3 | 23.3 | 19.5 |
13a | Haplic Podzols—hydrogenic silt | 23.8 | 23.8 | 0.0 | 28.8 | 28.8 | 2.5 | 30.8 | 30.8 | 4.5 |
14 | Haplic Luvisols and Eutric Cambisols—loess | 22.9 | 17.8 | 27.5 | 27.9 | 22.8 | 32.5 | 29.9 | 24.8 | 34.5 |
15 | Haplic Luvisols and Eutric Cambisols—clay | 26.0 | 30.5 | 12.5 | 31.0 | 35.5 | 17.5 | 33.0 | 37.5 | 19.5 |
16 | Haplic Luvisols and Eutric Cambisols—loam and skeleton loam | 28.3 | 19.3 | 30.5 | 33.3 | 24.3 | 35.5 | 35.3 | 26.3 | 37.5 |
17 | Haplic Luvisols and Eutric Cambisols—loam | 26.9 | 20.6 | 30.5 | 31.9 | 25.6 | 35.5 | 33.9 | 27.6 | 37.5 |
18 | Haplic Luvisols and Eutric Cambisols—massive rock clay | 32.3 | 30.2 | 30.5 | 37.3 | 35.2 | 35.5 | 39.3 | 37.2 | 37.5 |
19 | Haplic Luvisols and Eutric Cambisols—silt | 26.9 | 20.6 | 30.5 | 31.9 | 25.6 | 35.5 | 33.9 | 27.6 | 37.5 |
20 | Eutric Fluvisols—heavy loam and silt | 31.3 | 31.3 | 27.5 | 36.3 | 36.3 | 32.5 | 38.3 | 38.3 | 34.5 |
21 | Distric Fluvisols—sand | 23.8 | 23.8 | 12.5 | 28.8 | 28.8 | 17.5 | 30.8 | 30.8 | 19.5 |
22 | Eutric Fluvisols—light silty loam | 23.8 | 23.8 | 12.5 | 28.8 | 28.8 | 17.5 | 30.8 | 30.8 | 19.5 |
23 | Gleyic Charnozem—loam and silt | 22.9 | 24.7 | 27.5 | 27.9 | 29.7 | 32.5 | 29.9 | 31.7 | 34.5 |
24 | Gleyic Charnozem—sand | 22.9 | 31.6 | 27.5 | 27.9 | 36.6 | 32.5 | 29.9 | 38.6 | 34.5 |
25 | Mollic Gleysol | 20.0 | 21.5 | 12.5 | 25.0 | 26.5 | 17.5 | 27.0 | 28.5 | 19.5 |
Station | Frequency (%) of Critical Precipitation in the Ranges (mm) | ||||
---|---|---|---|---|---|
13–23 | 20–30 | 24–33 | 27–35 | 31–39 | |
Białystok | 22.1 | 17.8 | 13.8 | 12.5 | 11.0 |
Biebrza | 21.1 | 16.8 | 12.1 | 9.5 | 8.1 |
Bielsko–Biała | 19.2 | 17.0 | 12.7 | 13.2 | 11.4 |
Bydgoszcz | 20.2 | 15.4 | 10.5 | 8.4 | 6.3 |
Chojnice | 22.2 | 14.3 | 12.2 | 9.5 | 7.8 |
Częstochowa | 19.7 | 15.4 | 11.9 | 9.2 | 8.9 |
Elbląg | 22.1 | 17.8 | 13.8 | 12.5 | 11.0 |
Gniezno | 21.7 | 12.4 | 10.2 | 8.6 | 7.1 |
Gorzów Wlkp. | 20.3 | 11.7 | 12.2 | 9.0 | 7.6 |
Jelenia Góra | 20.8 | 22.2 | 16.3 | 12.4 | 10.6 |
Kalisz | 24.8 | 14.9 | 10.0 | 7.1 | 6.8 |
Kielce | 23.5 | 15.7 | 11.4 | 8.7 | 9.2 |
Kłodzko | 23.7 | 16.5 | 12.4 | 9.0 | 7.5 |
Koło | 20.2 | 15.9 | 11.1 | 8.3 | 5.6 |
Koszalin | 19.0 | 14.8 | 12.1 | 11.3 | 9.2 |
Kórnik | 21.6 | 16.5 | 12.2 | 10.6 | 8.1 |
Kraków | 24.6 | 17.9 | 12.4 | 9.7 | 10.3 |
Lesko | 20.5 | 17.8 | 15.2 | 14.8 | 12.1 |
Leszno | 22.9 | 14.3 | 10.8 | 7.6 | 6.7 |
Lublin | 22.1 | 17.6 | 13.8 | 10.3 | 7.9 |
Łódź | 22.7 | 17.0 | 12.2 | 8.7 | 7.1 |
Mława | 23.3 | 16.7 | 12.5 | 9.5 | 8.9 |
Nowy Sącz | 22.5 | 18.4 | 15.2 | 11.7 | 10.5 |
Olsztyn | 20.5 | 17.9 | 14.3 | 10.2 | 7.1 |
Opole | 22.9 | 15.4 | 12.2 | 9.8 | 10.8 |
Piła | 22.9 | 14.9 | 12.1 | 9.7 | 7.5 |
Płock | 22.2 | 16.2 | 11.9 | 9.2 | 8.1 |
Poznań | 21.3 | 15.9 | 12.9 | 8.9 | 5.1 |
Puławy | 22.7 | 16.3 | 12.7 | 10.2 | 7.5 |
Racibórz | 23.7 | 16.7 | 13.8 | 12.5 | 10.0 |
Rzeszów | 20.6 | 18.6 | 14.8 | 10.6 | 8.6 |
Siedlce | 19.8 | 17.3 | 12.2 | 9.0 | 7.8 |
Skierniewice | 22.1 | 14.8 | 11.9 | 9.5 | 6.3 |
Suwałki | 20.8 | 17.9 | 13.3 | 10.2 | 5.9 |
Szczecin | 23.5 | 12.4 | 9.5 | 8.9 | 8.3 |
Toruń | 21.4 | 14.9 | 10.6 | 8.4 | 7.1 |
Warszawa | 24.3 | 16.0 | 10.5 | 8.3 | 8.6 |
Włodawa | 21.0 | 14.6 | 11.0 | 9.2 | 10.0 |
Wrocław | 21.6 | 17.0 | 11.9 | 9.0 | 6.5 |
Zielona Góra | 22.5 | 15.1 | 9.0 | 6.5 | 5.7 |
mean | 21.9 | 16.2 | 12.3 | 9.8 | 8.3 |
max | 24.8 | 22.2 | 16.3 | 14.8 | 12.1 |
min | 19.0 | 11.7 | 9.0 | 6.5 | 5.1 |
Station | Frequency (%) of Critical Precipitation in the Ranges (mm) | |||
---|---|---|---|---|
16–27 | 22–31 | 26–35 | 33–39 | |
Białystok | 21.1 | 14.8 | 14.3 | 7.1 |
Biebrza | 21.9 | 14.4 | 11.3 | 6.3 |
Bielsko–Biała | 19.4 | 14.1 | 14.1 | 8.6 |
Bydgoszcz | 18.7 | 12.1 | 9.5 | 4.1 |
Chojnice | 19.8 | 12.2 | 10.8 | 5.6 |
Częstochowa | 20.5 | 13.7 | 10.5 | 7.1 |
Elbląg | 21.1 | 14.8 | 14.3 | 7.1 |
Gniezno | 18.9 | 11.3 | 10.0 | 5.1 |
Gorzów Wlkp. | 16.8 | 11.9 | 9.4 | 4.8 |
Jelenia Góra | 24.0 | 17.8 | 14.1 | 8.3 |
Kalisz | 22.2 | 11.6 | 8.1 | 5.1 |
Kielce | 21.7 | 12.9 | 10.0 | 6.5 |
Kłodzko | 24.4 | 13.8 | 11.6 | 5.7 |
Koło | 19.7 | 11.7 | 8.9 | 3.2 |
Koszalin | 16.8 | 13.0 | 12.5 | 6.2 |
Kórnik | 20.6 | 12.1 | 11.6 | 5.4 |
Kraków | 23.7 | 13.2 | 11.0 | 7.0 |
Lesko | 19.2 | 15.7 | 16.5 | 9.2 |
Leszno | 19.8 | 11.6 | 8.7 | 4.8 |
Lublin | 21.0 | 14.4 | 11.7 | 5.6 |
Łódź | 21.4 | 14.3 | 11.1 | 4.8 |
Mława | 21.4 | 13.0 | 11.4 | 5.9 |
Nowy Sącz | 22.9 | 15.7 | 14.0 | 6.5 |
Olsztyn | 21.4 | 15.4 | 11.6 | 4.8 |
Opole | 21.6 | 13.2 | 11.3 | 7.8 |
Piła | 20.6 | 12.2 | 11.6 | 4.4 |
Płock | 20.6 | 12.2 | 11.0 | 5.6 |
Poznań | 19.0 | 13.8 | 10.3 | 3.2 |
Puławy | 20.5 | 14.3 | 11.9 | 5.1 |
Racibórz | 21.4 | 13.8 | 13.8 | 7.1 |
Rzeszów | 23.0 | 17.1 | 12.4 | 6.8 |
Siedlce | 21.0 | 15.2 | 11.7 | 6.2 |
Skierniewice | 18.1 | 11.3 | 11.3 | 4.3 |
Suwałki | 21.0 | 15.4 | 11.9 | 4.0 |
Szczecin | 19.4 | 9.5 | 10.0 | 5.9 |
Toruń | 19.5 | 12.1 | 9.7 | 5.6 |
Warszawa | 23.0 | 12.7 | 10.2 | 7.0 |
Włodawa | 20.8 | 12.4 | 10.8 | 7.3 |
Wrocław | 21.7 | 12.9 | 10.8 | 4.6 |
Zielona Góra | 21.6 | 11.9 | 7.1 | 4.8 |
mean | 20.8 | 13.4 | 11.3 | 5.9 |
max | 24.4 | 17.8 | 16.5 | 9.2 |
min | 16.8 | 9.5 | 7.1 | 3.2 |
Layer | |||||
---|---|---|---|---|---|
Surface arable | |||||
100-cm soil profile | – |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łabędzki, L.; Ostrowski, J. Precipitation Preventing a Deficit of Readily Available Soil Water in Arable Soils in Poland. Atmosphere 2018, 9, 121. https://doi.org/10.3390/atmos9040121
Łabędzki L, Ostrowski J. Precipitation Preventing a Deficit of Readily Available Soil Water in Arable Soils in Poland. Atmosphere. 2018; 9(4):121. https://doi.org/10.3390/atmos9040121
Chicago/Turabian StyleŁabędzki, Leszek, and Janusz Ostrowski. 2018. "Precipitation Preventing a Deficit of Readily Available Soil Water in Arable Soils in Poland" Atmosphere 9, no. 4: 121. https://doi.org/10.3390/atmos9040121
APA StyleŁabędzki, L., & Ostrowski, J. (2018). Precipitation Preventing a Deficit of Readily Available Soil Water in Arable Soils in Poland. Atmosphere, 9(4), 121. https://doi.org/10.3390/atmos9040121