Exchange Processes in the Atmospheric Boundary Layer Over Mountainous Terrain
Abstract
:1. Introduction
2. Understanding the Atmospheric Boundary Layer Over Mountains
2.1. General Considerations
2.2. Micrometeorology and Scaling in the Layer Near the Surface
2.2.1. The Surface Energy Balance in Complex Terrain
2.2.2. Data Processing Methods
2.2.3. Fundamental Properties of Turbulence Over Complex Terrain
2.3. Daytime Thermally Driven Winds
2.3.1. Pointwise Perspective on Upslope Winds
2.3.2. Ridge-Scale Perspective on Upslope Winds
2.3.3. Valley Winds
2.4. The Convective Boundary Layer Over Mountainous Terrain
2.4.1. Advective and Turbulent Exchange in the CBL Over Mountainous Terrain
2.4.2. The Vertical Extent of the CBL Over Complex Orography
2.5. The Stable Boundary Layer Over Mountainous Terrain
2.5.1. The Stable Boundary Layer at the Valley Floor
2.5.2. The Stable Boundary Layer Over Slopes
2.5.3. The Role of Gravity Waves
2.6. Multiscale Interactions
- Stable layers below mountain crest control whether the valley atmosphere is sheltered from or exposed to synoptic cross-valley flow (e.g., Foehn; Figure 5a). Processes controlling whether ambient flow overflows or flushes the valley atmosphere [207,208,209,210,211] have obvious air-quality implications for large urban areas in mountains [142,212].
- Inversion layers above mountain tops control the amplitude and wavelength of propagating and trapped wave modes (Figure 5b). Low-level inversions exceeding critical strength or located above critical height trap wave energy in the underlying boundary layer [213]. Some authors described the impact of stable layers on gravity waves as if it were that of a virtual topography [214]. The analogy might be inappropriate because, unlike orography, stable layers evolve over meteorological time-scales and are affected by the ambient flow. However, just like orography, low-level stable layers can affect gravity wave drag (the removal of momentum from the synoptic flow) in ways that have not yet been completely explored.
- Ground-based stable layers control intermittent turbulent exchange in the stable boundary layer, effectively turning it off when they are strong enough to decouple the SBL from the overlying nocturnal jet, suppressing shear turbulence production (Figure 5c).
- Elevated stable layers trap heat and moisture underneath them (Figure 5d). In combination with horizontal advection towards mountainous regions, elevated stable layers may thus favour the accumulation of moist static energy within valleys and the establishment of convectively or potentially unstable conditions. Furthermore, wind shear across stable layers might aid convective organization and enhance storm longevity [215].
3. Representing the Mountain Atmosphere in Weather Prediction Models
3.1. Modelling Surface Exchange
3.2. Modelling Turbulent and Advective Exchange within the CBL
3.3. Stochastic Boundary-Layer Parameterization
4. Conclusions
- studying systematically the surface energy balance at mountainous sites to understand the factors that determine its lack of closure;
- achieving a more thorough understanding of the implications of data processing (e.g., anemometer tilt correction and the determination of the turbulence averaging scale) on the estimate of turbulence statistics with the eddy-covariance method;
- studying the origins of turbulence anisotropy, in particular whether orographic variability has any direct or indirect impact on it;
- extending similarity theory by accounting for horizontal heterogeneity in landforms and land-cover, in order to improve the accuracy of scaling laws over complex orography.
- quantifying the vertical heat and mass fluxes due to diurnal anabatic flow, in particular over heterogeneous slopes and during transition phases, to understand whether the existing boundary-layer parameterizations model the bulk effects of these circulations well enough;
- modelling the intensity of thermally driven valley and plain-to-mountain flows, using either equilibrium models based on the concept of topographic amplification or heat-engine theory;
- improving the existing approaches to map the three-dimensional state of the atmosphere over valleys and near ridges from sparse measurements;
- evaluating the scales of vertical and horizontal mixing in the CBL over mountains and how they depend on orography and weather conditions; in particular, the spatial and temporal variability of the upper boundary of the aerosol layer and of the convective boundary layer, and how they are affected by mountain and advective venting.
- making progress in discriminating turbulent fluctuations in field quantities (which cause local mixing of momentum and heat) from wave oscillations (which instead radiate wave energy and momentum);
- quantifying (possibly parameterizing) the extent to which turbulent fluxes are enhanced by the intermittent mixing generated by low-level jets and wave–turbulence interactions, and how orography affects intermittent mixing.
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ABL | Atmospheric Boundary Layer |
AL | Aerosol Layer |
ALPEX | Alpine Experiment |
ASCOT | Atmospheric Studies in Complex Terrain |
AV | Advective Venting |
BLLAST | Boundary-Layer Late Afternoon and Sunset Turbulence Experiment |
CBL | Convective Boundary Layer |
COLPEX | Cold-Air Pooling Experiment |
COPS | Convective and Orographically induced Precipitation Study |
CT | Crook and Tucker linear model |
CUPIDO | Cumulus Photogrammetric, In-Situ, and Doppler Observations |
DOMEX | Dominica Experiment: Orographic Precipitation in the Tropics |
EPS | Ensemble Prediction System |
HVAMS | Hudson Valley Ambient Meteorology Study |
HYMEX SOP1 | Hydrological Cycle in the Mediterranean Experiment, Special Observation Period 1 |
i-Box | Innsbruck Box |
IGW | Internal Gravity Waves |
LES | Large-Eddy Simulation |
LSM | Land-Surface Model |
MAP | Mesoscale Alpine Programme |
MATERHORN | Mountain Terrain Atmospheric Modeling and Observations Program |
MBL | Mountain Boundary Layer |
MCV | Mountain-Cloud Venting |
METCRAX | Meteor Crater Experiment |
MOST | Monin-Obukhov Similarity Theory |
MV | Mountain Venting |
NWP | Numerical Weather Prediction |
PAP | Pollution Atmospheric in the Pyrenees |
PCAPS | Persistent Cold-Air Pool Study |
PYREX | Momentum Budget over the Pyrénées Experiment |
SBL | Stable Boundary Layer |
SEB | Surface Energy Balance |
SGS | Sub-Grid-Scale |
SL | Surface Layer |
SPPT | Stochastically Perturbed Parameterized Tendencies |
T-REX | Terrain-induced Rotor Experiment |
TAF | Topographic Amplification Factor |
TAS | Turbulence Averaging Scale |
TRACT | Transport of Air Pollutants Over Complex Terrain |
VERTIKATOR | Vertikaler Austausch und Orographie (Vertical Transport and Orography) |
VOTALP | Vertical Ozone Transports in the Alps |
VTMX | Vertical Transport and Mixing |
References
- Stensrud, D.J. Parameterization Schemes. Keys to Understanding Numerical Weather Prediction Models; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Baklanov, A.A.; Grisogono, B.; Bornstein, R.; Mahrt, L.; Zilitinkevich, S.S.; Taylor, P.; Larsen, S.E.; Rotach, M.W.; Fernando, H.J.S. The Nature, Theory, and Modeling of Atmospheric Planetary Boundary Layers. Bull. Am. Meteorol. Soc. 2011, 92, 123–128. [Google Scholar] [CrossRef]
- Arnold, D.; Morton, D.; Schicker, I.; Seibert, P.; Rotach, M.W.; Horvath, K.; Dudhia, J.; Satomura, T.; Müller, M.; Zängl, G.; et al. High Resolution Modelling in Complex Terrain. Report on the HiRCoT 2012 Workshop, Vienna, 21–23 February 2012; Technical Report, BOKU-Met Report 21; BOKU-Met: Vienna, Austria, 2012. [Google Scholar]
- King, J.C.; Connolley, W.M.; Derbyshire, S.H. Sensitivity of modelled Antarctic climate to surface and boundary-layer flux parametrizations. Q. J. R. Meteorol. Soc. 2001, 127, 779–794. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Lüthi, D.; Litschi, M.; Schär, C. Land-atmosphere coupling and climate change in Europe. Nature 2006, 443, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, E.; Giovannini, L.; Zardi, D.; de Franceschi, M. Optimization of Noah and Noah_MP WRF Land Surface Schemes in Snow-Melting Conditions over Complex Terrain. Mon. Weather Rev. 2017, 145, 4727–4745. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Rotach, M.W.; Wohlfahrt, G.; Hansel, A.; Reif, M.; Wagner, J.; Gohm, A. The World is Not Flat: Implications for the Global Carbon Balance. Bull. Am. Meteorol. Soc. 2014, 95, 1021–1028. [Google Scholar] [CrossRef]
- Rotach, M.W.; Gohm, A.; Lang, M.N.; Leukauf, D.; Stiperski, I.; Wagner, J.S. On the Vertical Exchange of Heat, Mass, and Momentum Over Complex, Mountainous Terrain. Front. Earth Sci. 2015, 3, 76. [Google Scholar] [CrossRef]
- Smith, R.B. The Influence of Mountains on the Atmosphere. Adv. Geophys. 1979, 21, 87–230. [Google Scholar]
- Atkinson, B.W. Topographically induced circulations. In Meso-Scale Atmospheric Circulations; Chapter Part II; Academic Press: Cambridge, MA, USA, 1981; pp. 25–122. [Google Scholar]
- Lin, Y.L. Orographically forced flows. In Mesoscale Dynamics; Cambridge University Press: Cambridge, UK, 2007; Chapter 5; pp. 109–183. [Google Scholar]
- Markowski, P.; Richardson, Y. Orographic mesoscale phenomena. In Mesoscale Meteorology in Midlatitudes; Wiley: Hoboken, NJ, USA, 2010; Chapter Part IV; pp. 315–366. [Google Scholar]
- Jiménez, M.A.; Cuxart, J. A study of the nocturnal flows generated in the north side of the Pyrenees. Atmos. Res. 2014, 145–146, 244–254. [Google Scholar] [CrossRef]
- Rotach, M.W.; Zardi, D. On the boundary-layer structure over highly complex terrain: Key findings from MAP. Q. J. R. Meteorol. Soc. 2007, 133, 937–948. [Google Scholar] [CrossRef]
- De Franceschi, M.; Zardi, D.; Tagliazucca, M.; Tampieri, F. Analysis of second-order moments in surface layer turbulence in an Alpine valley. Q. J. R. Meteorol. Soc. 2009, 135, 1750–1765. [Google Scholar] [CrossRef]
- Whiteman, C.D. Mountain Meteorology. Fundamentals and Applications; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Zardi, D.; Whiteman, D. Diurnal mountain wind systems. In Mountain Weather Research and Forecasting: Recent Progress and Current Challenges; Chow, F., De Wekker, S., Snyder, B., Eds.; Springer Atmospheric Sciences; Springer: Dordrecht, The Netherlands, 2013; pp. 35–119. [Google Scholar]
- Schicker, I.; Arnold Arias, D.; Seibert, P. Influences of updated land-use datasets on WRF simulations for two Austrian regions. Meteorol. Atmos. Phys. 2016, 128, 279–301. [Google Scholar] [CrossRef]
- Laiti, L.; Zardi, D.; de Franceschi, M.; Rampanelli, G.; Giovannini, L. Analysis of the diurnal development of a lake-valley circulation in the Alps based on airborne and surface measurements. Atmos. Chem. Phys. 2014, 14, 9771–9786. [Google Scholar] [CrossRef] [Green Version]
- Giovannini, L.; Laiti, L.; Zardi, D.; de Franceschi, M. Climatological characteristics of the Ora del Garda wind in the Alps. Int. J. Climatol. 2015, 35, 4103–4115. [Google Scholar] [CrossRef]
- Davies, H.C.; Pichler, H. Mountain meteorology and ALPEX—An introduction. Meteorol. Atmos. Phys. 1990, 43, 3–4. [Google Scholar] [CrossRef]
- Bougeault, P.; Clar, A.J.; Benech, B.; Carissimo, B.; Pelon, J.; Richard, E. Momentum Budget over the Pyrénées: The PYREX Experiment. Bull. Am. Meteorol. Soc. 1990, 71, 806–818. [Google Scholar] [CrossRef]
- Bougeault, P.; Binder, P.; Buzzi, A.; Dirks, R.; Kuettner, J.; Houze, R.; Smith, R.B.; Steinacker, R.; Volkert, H. The MAP Special Observing Period. Bull. Am. Meteorol. Soc. 2001, 82, 433–462. [Google Scholar] [CrossRef]
- Ducrocq, V.; Braud, I.; Davolio, S.; Ferretti, R.; Flamant, C.; Jansa, A.; Kalthoff, N.; Richard, E.; Taupier-Letage, I.; Ayral, P.A.; et al. HyMeX-SOP1: The Field Campaign Dedicated to Heavy Precipitation and Flash Flooding in the Northwestern Mediterranean. Bull. Am. Meteorol. Soc. 2013, 95, 1083–1100. [Google Scholar] [CrossRef]
- Clements, W.E.; Archuleta, J.A.; Gudiksen, P.H. Experimental Design of the 1984 ASCOT Field Study. J. Appl. Meteorol. 1989, 28, 405–413. [Google Scholar] [CrossRef]
- Lothon, M.; Lohou, F.; Pino, D.; Couvreux, F.; Pardyjak, E.R.; Reuder, J.; Vilȁ-Guerau de Arellano, J.; Durand, P.; Hartogensis, O.; Legain, D.; et al. The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence. Atmos. Chem. Phys. 2014, 14, 10931–10960. [Google Scholar] [CrossRef] [Green Version]
- Price, J.D.; Vosper, S.; Brown, A.; Ross, A.; Clark, P.; Davies, F.; Horlacher, V.; Claxton, B.; McGregor, J.R.; Hoare, J.S.; et al. COLPEX: Field and Numerical Studies over a Region of Small Hills. Bull. Am. Meteorol. Soc. 2011, 92, 1636–1650. [Google Scholar] [CrossRef]
- Wulfmeyer, V.; Behrendt, A.; Kottmeier, C.; Corsmeier, U.; Barthlott, C.; Craig, G.C.; Hagen, M.; Althausen, D.; Aoshima, F.; Arpagaus, M.; et al. The Convective and Orographically-induced Precipitation Study (COPS): The scientific strategy, the field phase, and research highlights. Q. J. R. Meteorol. Soc. 2011, 137, 3–30. [Google Scholar] [CrossRef] [Green Version]
- Damiani, R.; Geerts, B.; Demko, J.; Haimov, S.; French, J.; Zehnder, J.; Razdan, A.; Hu, J.; Petti, J.; Leuthold, M.; et al. The Cumulus, Photogrammetric, In Situ, and Doppler Observations Experiment of 2006. Bull. Am. Meteorol. Soc. 2008, 89, 57–73. [Google Scholar] [CrossRef]
- Smith, R.B.; Minder, J.R.; Nugent, A.D.; Storelvmo, T.; Kirshbaum, D.J.; Warren, R.; Lareau, N.; Palany, P.; James, A.; French, J. Orographic Precipitation in the Tropics: The Dominica Experiment. Bull. Am. Meteorol. Soc. 2012, 93, 1567–1579. [Google Scholar] [CrossRef]
- Fernando, H.J.S.; Pardyjak, E.R.; Di Sabatino, S.; Chow, F.K.; De Wekker, S.F.J.; Hoch, S.W.; Hacker, J.; Pace, J.C.; Pratt, T.; Pu, Z.; et al. The MATERHORN: Unraveling the Intricacies of Mountain Weather. Bull. Am. Meteorol. Soc. 2015, 96, 1945–1967. [Google Scholar] [CrossRef] [Green Version]
- Whiteman, C.D.; Hoch, S.W.; Hahnenberger, M.; Muschinski, A.; Hohreiter, V.; Behn, M.; Cheon, Y.; Zhong, S.; Yao, W.; Fritts, D.; et al. Metcrax 2006: Meteorological Experiments in Arizona’s Meteor Crater. Bull. Am. Meteorol. Soc. 2008, 89, 1665–1680. [Google Scholar] [CrossRef]
- Lehner, M.; Whiteman, C.D.; Hoch, S.W.; Crosman, E.T.; Jeglum, M.E.; Cherukuru, N.W.; Calhoun, R.; Adler, B.; Kalthoff, N.; Rotunno, R.; et al. The METCRAX II Field Experiment: A Study of Downslope Windstorm-Type Flows in Arizona’s Meteor Crater. Bull. Am. Meteorol. Soc. 2016, 97, 217–235. [Google Scholar] [CrossRef]
- Ezcurra, A.; Benech, B.; Echelecou, A.; Santamaría, J.M.; Herrero, I.; Zulueta, E. Influence of local air flow regimes on the ozone content of two Pyrenean valleys. Atmos. Environ. 2013, 74, 367–377. [Google Scholar] [CrossRef]
- Lareau, N.P.; Crosman, E.; Whiteman, C.D.; Horel, J.D.; Hoch, S.W.; Brown, W.O.J.; Horst, T.W. The Persistent Cold-Air Pool Study. Bull. Am. Meteorol. Soc. 2013, 94, 51–63. [Google Scholar] [CrossRef]
- Gheusi, F.; Ravetta, F.; Delbarre, H.; Tsamalis, C.; Chevalier-Rosso, A.; Leroy, C.; Augustin, P.; Delmas, R.; Ancellet, G.; Athier, G.; et al. Pic 2005, a field campaign to investigate low-tropospheric ozone variability in the Pyrenees. Atmos. Res. 2011, 101, 640–665. [Google Scholar] [CrossRef]
- Larsen, S.; Fiedler, F.; Borrell, P. (Eds.) Exchange and Transport of Air Pollutants over Complex Terrain and the Sea; Springer: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Grubišić, V.; Doyle, J.D.; Kuettner, J.; Dirks, R.; Cohn, S.A.; Pan, L.L.; Mobbs, S.; Smith, R.B.; Whiteman, C.D.; Czyzyk, S.; et al. The Terrain-Induced Rotor Experiment: A Field Campaign Overview Including Observational Highlights. Bull. Am. Meteorol. Soc. 2008, 89, 1513–1533. [Google Scholar] [CrossRef]
- Weissmann, M.; Braun, F.J.; Gantner, L.; Mayr, G.J.; Rahm, S.; Reitebuch, O. The Alpine Mountain–Plain Circulation: Airborne Doppler Lidar Measurements and Numerical Simulations. Mon. Weather Rev. 2005, 133, 3095–3109. [Google Scholar] [CrossRef] [Green Version]
- Wotawa, G.; Kromp-Kolb, H. The research project VOTALP—General objectives and main results. Atmos. Environ. 2000, 34, 1319–1322. [Google Scholar] [CrossRef]
- Doran, J.C.; Fast, J.D.; Horel, J. The VTMX 2000 campaign. Bull. Am. Meteorol. Soc. 2002, 83, 537–551. [Google Scholar] [CrossRef]
- Blumen, W.E. Atmospheric Processes over Complex Terrain; Meteorological Monographs; American Meteorological Society: Boston, MA, USA, 1990. [Google Scholar]
- Barry, R.G. Mountain Weather and Climate, 3rd ed.; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Chow, F.; De Wekker, S.; Snyder, B. Mountain Weather Research and Forecasting: Recent Progress and Current Challenges; Springer Atmospheric Sciences; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Rotach, M.W.; Stiperski, I.; Fuhrer, O.; Goger, B.; Gohm, A.; Obleitner, F.; Rau, G.; Sfyri, E.; Vergeiner, J. Investigating Exchange Processes over Complex Topography: The Innsbruck Box (i-Box). Bull. Am. Meteorol. Soc. 2017, 98, 787–805. [Google Scholar] [CrossRef]
- Medeiros, L.E.; Fitzjarrald, D.R. Stable Boundary Layer in Complex Terrain. Part I: Linking Fluxes and Intermittency to an Average Stability Index. J. Appl. Meteorol. Climatol. 2014, 53, 2196–2215. [Google Scholar] [CrossRef]
- Emeis, S.; Kalthoff, N.; Adler, B.; Pardyjak, E.; Paci, A.; Junkermann, W. High-resolution observation of transport and exchange processes in mountainous terrain. Atmosphere 2018. in preparation. [Google Scholar]
- Chow, F.K.; Schär, C.; Ban, N.; Lundquist, K.A.; Schlemmer, L.; Shi, X. Crossing multiple gray zones in the transition from mesoscale to microscale simulation over complex terrain. Atmosphere 2018. in preparation. [Google Scholar]
- Hacker, J.; Draper, C.; Madaus, L. Challenges and Opportunities for Data Assimilation in Mountainous Environments. Atmosphere 2018. submitted. [Google Scholar]
- Kirshbaum, D.J.; Adler, B.; Kalthoff, N.; Barthlott, C.; Serafin, S. Moist orographic convection: Physical mechanisms and links to surface-exchange processes. Atmosphere 2018, 9, 80. [Google Scholar] [CrossRef]
- Pal Arya, S. Introduction to Micrometeorology; Academic Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Garratt, J.R. The Atmospheric Boundary Layer; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Panofsky, H.A.; Dutton, J.A. Atmospheric Turbulence: Models and Methods for Engineering Applications; Wiley: Hoboken, NJ, USA, 1984. [Google Scholar]
- Foken, T. Micrometeorology, 2nd ed.; Springer: Dordrecht, The Netherlands, 2017. [Google Scholar]
- Cuxart, J.; Conangla, L.; Jiménez, M.A. Evaluation of the surface energy budget equation with experimental data and the ECMWF model in the Ebro Valley. J. Geophys. Res. Atmos. 2015, 120, 1008–1022. [Google Scholar] [CrossRef]
- Rotach, M.W.; Andretta, M.; Calanca, P.; Weigel, A.; Weiss, A. Boundary layer characteristics and turbulent exchange mechanisms in highly complex terrain. Acta Geophys. 2008, 56, 194–219. [Google Scholar] [CrossRef]
- Stiperski, I.; Rotach, M.W. On the Measurement of Turbulence Over Complex Mountainous Terrain. Bound. Layer Meteorol. 2016, 159, 97–121. [Google Scholar] [CrossRef]
- Foken, T. The energy balance closure problem: An overview. Ecol. Appl. 2008, 18, 1351–1367. [Google Scholar] [CrossRef] [PubMed]
- Stoy, P.C.; Mauder, M.; Foken, T.; Marcolla, B.; Boegh, E.; Ibrom, A.; Arain, M.A.; Arneth, A.; Aurela, M.; Bernhofer, C.; et al. A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity. Agric. For. Meteorol. 2013, 171–172, 137–152. [Google Scholar] [CrossRef]
- Cuxart, J.; Wrenger, B.; Martínez-Villagrasa, D.; Reuder, J.; Jonassen, M.O.; Jiménez, M.A.; Lothon, M.; Lohou, F.; Hartogensis, O.; Dünnermann, J.; et al. Estimation of the advection effects induced by surface heterogeneities in the surface energy budget. Atmos. Chem. Phys. 2016, 16, 9489–9504. [Google Scholar] [CrossRef] [Green Version]
- Wohlfahrt, G.; Albin, H.; Niedrist, G.; Scholz, K.; Enrico, T.; Peng, Z. On the energy balance closure and net radiation in complex terrain. Agric. For. Meteorol. 2016, 226–227, 37–49. [Google Scholar]
- Matzinger, N.; Andretta, M.; Gorsel, E.V.; Vogt, R.; Ohmura, A.; Rotach, M.W. Surface radiation budget in an Alpine valley. Q. J. R. Meteorol. Soc. 2003, 129, 877–895. [Google Scholar] [CrossRef]
- Nadeau, D.F.; Pardyjak, E.R.; Higgins, C.W.; Parlange, M.B. Similarity Scaling Over a Steep Alpine Slope. Bound. Layer Meteorol. 2013, 147, 401–419. [Google Scholar] [CrossRef]
- Rotach, M.W.; Calanca, P.; Graziani, G.; Gurtz, J.; Steyn, D.G.; Vogt, R.; Andretta, M.; Christen, A.; Cieslik, S.; Connolly, R.; et al. Turbulence Structure and Exchange Processes in an Alpine Valley: The Riviera Project. Bull. Am. Meteorol. Soc. 2004, 85, 1367–1385. [Google Scholar] [CrossRef]
- Tennekes, H.; Lumley, J.L. A First Course in Turbulence; MIT Press: Cambridge, MA, USA, 1972. [Google Scholar]
- Oldroyd, H.J.; Pardyjak, E.R.; Huwald, H.; Parlange, M.B. Adapting Tilt Corrections and the Governing Flow Equations for Steep, Fully Three-Dimensional, Mountainous Terrain. Bound. Layer Meteorol. 2016, 159, 539–565. [Google Scholar] [CrossRef]
- De Franceschi, M.; Zardi, D. Evaluation of Cut-off Frequency and Correction of Filter-Induced Phase Lag and Attenuation in Eddy Covariance Analysis of Turbulence Data. Bound. Layer Meteorol. 2003, 108, 289–303. [Google Scholar] [CrossRef]
- Vinnichenko, N.K. The kinetic energy spectrum in the free atmosphere—1 second to 5 years. Tellus 1970, 22, 158–166. [Google Scholar] [CrossRef]
- Večenaj, Ž.; De Wekker, S.F.J.; Grubišić, V. Near-Surface Characteristics of the Turbulence Structure during a Mountain-Wave Event. J. Appl. Meteorol. Climatol. 2010, 50, 1088–1106. [Google Scholar] [CrossRef]
- Večenaj, Ž.; Belušić, D.; Grubišić, V.; Grisogono, B. Along-Coast Features of Bora-Related Turbulence. Bound. Layer Meteorol. 2012, 143, 527–545. [Google Scholar] [CrossRef]
- Babić, N.; Večenaj, Ž.; De Wekker, S.F.J. Spectral gap characteristics in a daytime valley boundary layer. Q. J. R. Meteorol. Soc. 2017, 143, 2509–2523. [Google Scholar] [CrossRef]
- Oncley, S.P.; Friehe, C.A.; Larue, J.C.; Businger, J.A.; Itsweire, E.C.; Chang, S.S. Surface-Layer Fluxes, Profiles, and Turbulence Measurements over Uniform Terrain under Near-Neutral Conditions. J. Atmos. Sci. 1996, 53, 1029–1044. [Google Scholar] [CrossRef]
- Howell, J.F.; Mahrt, L. Multiresolution Flux Decomposition. Bound. Layer Meteorol. 1997, 83, 117–137. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Vickers, D.; Mahrt, L. The Cospectral Gap and Turbulent Flux Calculations. J. Atmos. Ocean. Technol. 2003, 20, 660–672. [Google Scholar] [CrossRef]
- Večenaj, Ž.; De Wekker, S.F.J. Determination of non-stationarity in the surface layer during the T-REX experiment. Q. J. R. Meteorol. Soc. 2015, 141, 1560–1571. [Google Scholar] [CrossRef]
- Babić, N.; Večenaj, Ž.; De Wekker, S.F.J. Flux–Variance Similarity in Complex Terrain and Its Sensitivity to Different Methods of Treating Non-stationarity. Bound. Layer Meteorol. 2016, 159, 123–145. [Google Scholar] [CrossRef]
- Lampert, A.; Pätzold, F.; Jiménez, M.A.; Lobitz, L.; Martin, S.; Lohmann, G.; Canut, G.; Legain, D.; Bange, J.; Martínez-Villagrasa, D.; et al. A study of local turbulence and anisotropy during the afternoon and evening transition with an unmanned aerial system and mesoscale simulation. Atmos. Chem. Phys. 2016, 16, 8009–8021. [Google Scholar] [CrossRef]
- Stiperski, I.; Calaf, M. Dependence of near-surface similarity scaling on the anisotropy of atmospheric turbulence. Q. J. R. Meteorol. Soc. 2018. [Google Scholar] [CrossRef]
- Carruthers, D.J.; Hunt, J.C.R. Fluid Mechanics of Airflow over Hills: Turbulence, Fluxes, and Waves in the Boundary Layer. In Atmospheric Processes Over Complex Terrain; Meteorological Monographs; Blumen, W., Ed.; American Meteorological Society: Boston, MA, USA, 1990; Volume 23, pp. 83–103. [Google Scholar]
- Moraes, O.L.L.; Acevedo, O.C.; Degrazia, G.A.; Anfossi, D.; da Silva, R.; Anabor, V. Surface layer turbulence parameters over a complex terrain. Atmos. Environ. 2005, 39, 3103–3112. [Google Scholar] [CrossRef]
- Sfyri, E.; Rotach, M.; Stiperski, I.; Bosveld, F.; Obleitner, F.; Lehner, M. Scalar flux similarity in the layer near the surface over mountainous terrain. Bound. Layer Meteorol. 2018. submitted. [Google Scholar]
- Medeiros, L.E.; Fitzjarrald, D.R. Stable Boundary Layer in Complex Terrain. Part II: Geometrical and Sheltering Effects on Mixing. J. Appl. Meteorol. Climatol. 2015, 54, 170–188. [Google Scholar] [CrossRef]
- Noppel, H.; Fiedler, F. Mesoscale Heat Transport Over Complex Terrain By Slope Winds—A Conceptual Model And Numerical Simulations. Bound. Layer Meteorol. 2002, 104, 73–97. [Google Scholar] [CrossRef]
- Kirshbaum, D.J. On upstream blocking over heated mountain ridges. Q. J. R. Meteorol. Soc. 2017, 143, 53–68. [Google Scholar] [CrossRef]
- Prandtl, L. Führer durch die Strömungslehre; Vieweg und Sohn: Braunschweig, Germany, 1942. [Google Scholar]
- Defant, F. Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. Arch. Meteorol. Geophys. Bioklimatol. A 1949, 1, 421–450. [Google Scholar]
- Haiden, T. On the Pressure Field in the Slope Wind Layer. J. Atmos. Sci. 2003, 60, 1632–1635. [Google Scholar] [CrossRef]
- Gutman, L.N.; Malbakhov, V.M. On the theory of katabatic winds of Antarctic. Meteorol. Issled. 1964, 9, 150–155. (In Russian) [Google Scholar]
- Fedorovich, E.; Shapiro, A. Oscillations in Prandtl slope flow started from rest. Q. J. R. Meteorol. Soc. 2017, 143, 670–677. [Google Scholar] [CrossRef]
- Zammett, R.J.; Fowler, A.C. Katabatic Winds on Ice Sheets: A Refinement of the Prandtl Model. J. Atmos. Sci. 2007, 64, 2707–2716. [Google Scholar] [CrossRef]
- Egger, J. On the Linear Two-Dimensional Theory of Thermally Induced Slope Winds. Beitr. Phys. Atmos. 1981, 54, 465–481. [Google Scholar]
- Zardi, D.; Serafin, S. An analytic solution for time-periodic thermally driven slope flows. Q. J. R. Meteorol. Soc. 2015, 141, 1968–1974. [Google Scholar] [CrossRef]
- Ye, Z.J.; Segal, M.; Pielke, R.A. Effects of Atmospheric Thermal Stability and Slope Steepness on the Development of Daytime Thermally Induced Upslope Flow. J. Atmos. Sci. 1987, 44, 3341–3354. [Google Scholar] [CrossRef]
- Grisogono, B.; Oerlemans, J. Katabatic Flow: Analytic Solution for Gradually Varying Eddy Diffusivities. J. Atmos. Sci. 2001, 58, 3349–3354. [Google Scholar] [CrossRef]
- Giometto, M.G.; Grandi, R.; Fang, J.; Monkewitz, P.A.; Parlange, M.B. Katabatic Flow: A Closed-Form Solution with Spatially-Varying Eddy Diffusivities. Bound. Layer Meteorol. 2017, 162, 307–317. [Google Scholar] [CrossRef]
- Schumann, U. Large-eddy simulation of the up-slope boundary layer. Q. J. R. Meteorol. Soc. 1990, 116, 637–670. [Google Scholar] [CrossRef] [Green Version]
- Vergeiner, I.; Dreiseitl, E. Valley winds and slope winds—Observations and elementary thoughts. Meteorol. Atmos. Phys. 1987, 36, 264–286. [Google Scholar] [CrossRef]
- Schmidli, J. Daytime Heat Transfer Processes over Mountainous Terrain. J. Atmos. Sci. 2013, 70, 4041–4066. [Google Scholar] [CrossRef]
- Kuwagata, T.; Kondo, J. Observation and modeling of thermally induced upslope flow. Bound. Layer Meteorol. 1989, 49, 265–293. [Google Scholar]
- Leukauf, D.; Gohm, A.; Rotach, M.W. Quantifying horizontal and vertical tracer mass fluxes in an idealized valley during daytime. Atmos. Chem. Phys. 2016, 16, 13049–13066. [Google Scholar] [CrossRef]
- Leukauf, D.; Gohm, A.; Rotach, M.W.; Wagner, J.S. The Impact of the Temperature Inversion Breakup on the Exchange of Heat and Mass in an Idealized Valley: Sensitivity to the Radiative Forcing. J. Appl. Meteorol. Climatol. 2015, 54, 2199–2216. [Google Scholar] [CrossRef]
- Hocut, C.; Liberzon, D.; Fernando, H. Separation of upslope flow over a uniform slope. J. Fluid Mech. 2015, 775, 266–287. [Google Scholar] [CrossRef]
- Khanna, S.; Brasseur, J.G. Analysis of Monin–Obukhov similarity from large-eddy simulation. J. Fluid Mech. 1997, 345, 251–286. [Google Scholar] [CrossRef]
- Crook, N.A.; Tucker, D.F. Flow over Heated Terrain. Part I: Linear Theory and Idealized Numerical Simulations. Mon. Weather Rev. 2005, 133, 2552–2564. [Google Scholar] [CrossRef]
- Kirshbaum, D.J. On Thermally Forced Circulations over Heated Terrain. J. Atmos. Sci. 2013, 70, 1690–1709. [Google Scholar] [CrossRef]
- Kirshbaum, D.J.; Wang, C.C. Boundary Layer Updrafts Driven by Airflow over Heated Terrain. J. Atmos. Sci. 2014, 71, 1425–1442. [Google Scholar] [CrossRef]
- Braham, R.R.; Draginis, M. Roots of orographic cumuli. J. Meteorol. 1960, 17, 214–226. [Google Scholar] [CrossRef]
- Raymond, D.; Wilkening, M. Mountain-Induced Convection under Fair Weather Conditions. J. Atmos. Sci. 1980, 37, 2693–2706. [Google Scholar] [CrossRef]
- Souza, E.P.; Rennó, N.O.; Silva Dias, M.A.F. Convective Circulations Induced by Surface Heterogeneities. J. Atmos. Sci. 2000, 57, 2915–2922. [Google Scholar] [CrossRef]
- Rennó, N.O.; Ingersoll, A.P. Natural Convection as a Heat Engine: A Theory for CAPE. J. Atmos. Sci. 1996, 53, 572–585. [Google Scholar] [CrossRef]
- Tian, W.; Parker, D.J. A Modeling Study and Scaling Analysis of Orographic Effects on Boundary Layer Shallow Convection. J. Atmos. Sci. 2003, 60, 1981–1991. [Google Scholar] [CrossRef]
- Wang, C.C.; Kirshbaum, D.J. Thermally Forced Convection over a Mountainous Tropical Island. J. Atmos. Sci. 2015, 72, 2484–2506. [Google Scholar] [CrossRef]
- Rampanelli, G.; Zardi, D. A Method to Determine the Capping Inversion of the Convective Boundary Layer. J. Appl. Meteorol. 2004, 43, 925–933. [Google Scholar] [CrossRef]
- Serafin, S.; Zardi, D. Daytime Development of the Boundary Layer over a Plain and in a Valley under Fair Weather Conditions: A Comparison by Means of Idealized Numerical Simulations. J. Atmos. Sci. 2011, 68, 2128–2141. [Google Scholar] [CrossRef]
- Schmidli, J.; Rotunno, R. Influence of the Valley Surroundings on Valley Wind Dynamics. J. Atmos. Sci. 2012, 69, 561–577. [Google Scholar] [CrossRef]
- Giovannini, L.; Laiti, L.; Serafin, S.; Zardi, D. The thermally driven diurnal wind system of the Adige Valley in the Italian Alps: Thermally Driven Wind System of Adige Valley. Q. J. R. Meteorol. Soc. 2017, 143, 2389–2402. [Google Scholar] [CrossRef]
- Schmidli, J.; Rotunno, R. The Quasi-Steady State of the Valley Wind System. Front. Earth Sci. 2015, 3, 79. [Google Scholar] [CrossRef]
- Nickus, U.; Vergeiner, I. The thermal structure of the Inn valley atmosphere. Arch. Meteorol. Geophys. Bioklimatol. 1984, A33, 195–215. [Google Scholar]
- Wagner, J.S.; Gohm, A.; Rotach, M.W. Influence of along-valley terrain heterogeneity on exchange processes over idealized valleys. Atmos. Chem. Phys. 2015, 15, 6589–6603. [Google Scholar] [CrossRef]
- Wagner, A. Theorie und Beobachtung der periodischen Gebirgswinde. Gerlands Beitr. Geophys. 1938, 52, 408–449. [Google Scholar]
- Steinacker, R. Area-Height Distribution of a Valley and its Relation to the Valley Wind. Beitr. Phys. Atmos. 1984, 57, 64–71. [Google Scholar]
- Rampanelli, G.; Zardi, D.; Rotunno, R. Mechanisms of Up-Valley Winds. J. Atmos. Sci. 2004, 61, 3097–3111. [Google Scholar] [CrossRef]
- Schmidli, J.; Rotunno, R. Mechanisms of Along-Valley Winds and Heat Exchange over Mountainous Terrain. J. Atmos. Sci. 2010, 67, 3033–3047. [Google Scholar] [CrossRef]
- Wagner, J.S.; Gohm, A.; Rotach, M.W. The impact of valley geometry on daytime thermally driven flows and vertical transport processes: Impact of Valley Geometry on Thermally Driven Flows. Q. J. R. Meteorol. Soc. 2015, 141, 1780–1794. [Google Scholar] [CrossRef]
- Weigel, A.P.; Chow, F.K.; Rotach, M.W.; Street, R.L.; Xue, M. High-Resolution Large-Eddy Simulations of Flow in a Steep Alpine Valley. Part II: Flow Structure and Heat Budgets. J. Appl. Meteorol. Climatol. 2006, 45, 87–107. [Google Scholar] [CrossRef]
- Laiti, L.; Zardi, D.; de Franceschi, M.; Rampanelli, G. Atmospheric boundary layer structures associated with the Ora del Garda wind in the Alps as revealed from airborne and surface measurements. Atmos. Res. 2013, 132–133, 473–489. [Google Scholar] [CrossRef]
- Giovannini, L.; Zardi, D.; de Franceschi, M. Analysis of the Urban Thermal Fingerprint of the City of Trento in the Alps. J. Appl. Meteorol. Climatol. 2011, 50, 1145–1162. [Google Scholar] [CrossRef]
- Giovannini, L.; Zardi, D.; de Franceschi, M.; Chen, F. Numerical simulations of boundary-layer processes and urban-induced alterations in an Alpine valley. Int. J. Climatol. 2014, 34, 1111–1131. [Google Scholar] [CrossRef]
- Rendón, A.M.; Salazar, J.F.; Palacio, C.A.; Wirth, V.; Brötz, B. Effects of Urbanization on the Temperature Inversion Breakup in a Mountain Valley with Implications for Air Quality. J. Appl. Meteorol. Climatol. 2014, 53, 840–858. [Google Scholar] [CrossRef]
- Rendón, A.M.; Salazar, J.F.; Palacio, C.A.; Wirth, V. Temperature Inversion Breakup with Impacts on Air Quality in Urban Valleys Influenced by Topographic Shading. J. Appl. Meteorol. Climatol. 2015, 54, 302–321. [Google Scholar] [CrossRef]
- Vergeiner, I. An elementary valley wind model. Meteorol. Atmos. Phys. 1987, 36, 255–263. [Google Scholar] [CrossRef]
- Egger, J. Simple models of the valley-plain circulation Part I: Minimum resolution model. Meteorol. Atmos. Phys. 1987, 36, 231–242. [Google Scholar]
- Egger, J. Thermally forced flows: Theory. In Atmospheric Processes over Complex Terrain; Blumen, W., Ed.; Meteorological Monographs; American Meteorological Society: Boston, MA, USA, 1990; Volume 23, pp. 43–58. [Google Scholar]
- Zängl, G. A reexamination of the valley wind system in the Alpine Inn Valley with numerical simulations. Meteorol. Atmos. Phys. 2004, 87, 241–256. [Google Scholar] [CrossRef]
- Doran, J.C.; Zhong, S. Thermally Driven Gap Winds into the Mexico City Basin. J. Appl. Meteorol. 2000, 39, 1330–1340. [Google Scholar] [CrossRef]
- Egger, J.; Bajrachaya, S.; Egger, U.; Heinrich, R.; Reuder, J.; Shayka, P.; Wendt, H.; Wirth, V. Diurnal Winds in the Himalayan Kali Gandaki Valley. Part I: Observations. Mon. Weather Rev. 2000, 128, 1106–1122. [Google Scholar] [CrossRef]
- Zängl, G.; Egger, J.; Wirth, V. Diurnal Winds in the Himalayan Kali Gandaki Valley. Part II: Modeling. Mon. Weather Rev. 2001, 129, 1062–1080. [Google Scholar] [CrossRef]
- Egger, J.; Bajrachaya, S.; Heinrich, R.; Kolb, P.; Lämmlein, S.; Mech, M.; Reuder, J.; Schäper, W.; Shakya, P.; Schween, J.; et al. Diurnal Winds in the Himalayan Kali Gandaki Valley. Part III: Remotely Piloted Aircraft Soundings. Mon. Weather Rev. 2002, 130, 2042–2058. [Google Scholar] [CrossRef]
- Schnitzhofer, R.; Norman, M.; Wisthaler, A.; Vergeiner, J.; Harnisch, F.; Gohm, A.; Obleitner, F.; Fix, A.; Neininger, B.; Hansel, A. A multimethodological approach to study the spatial distribution of air pollution in an Alpine valley during wintertime. Atmos. Chem. Phys. 2009, 9, 3385–3396. [Google Scholar] [CrossRef]
- Gohm, A.; Harnisch, F.; Vergeiner, J.; Obleitner, F.; Schnitzhofer, R.; Hansel, A.; Fix, A.; Neininger, B.; Emeis, S.; Schäfer, K. Air Pollution Transport in an Alpine Valley: Results From Airborne and Ground-Based Observations. Bound. Layer Meteorol. 2009, 131, 441–463. [Google Scholar] [CrossRef] [Green Version]
- Laiti, L.; Zardi, D.; de Franceschi, M.; Rampanelli, G. Residual kriging analysis of airborne measurements: Application to the mapping of atmospheric boundary-layer thermal structures in a mountain valley. Atmos. Sci. Lett. 2013, 14, 79–85. [Google Scholar] [CrossRef]
- De Wekker, S.F.J.; Godwin, K.S.; Emmitt, G.D.; Greco, S. Airborne Doppler Lidar Measurements of Valley Flows in Complex Coastal Terrain. J. Appl. Meteorol. Climatol. 2012, 51, 1558–1574. [Google Scholar] [CrossRef]
- Lehner, M.; Rotach, M.W.R. Current challenges in understanding and predicting transport and exchange in the atmosphere over mountainous terrain. Atmosphere 2018. in preparation. [Google Scholar]
- De Wekker, S.F.J.; Kossmann, M. Convective Boundary Layer Heights Over Mountainous Terrain—A Review of Concepts. Front. Earth Sci. 2015, 3, 77. [Google Scholar] [CrossRef]
- Kossmann, M.; Corsmeier, U.; De Wekker, S.F.; Fiedler, F.; Vögtlin, R.; Kalthoff, N.; Güsten, H.; Neininger, B. Observations of handover processes between the atmospheric boundary layer and the free troposphere over mountainous terrain. Beitr. Phys. Atmos. 1999, 72, 329–350. [Google Scholar]
- De Wekker, S.F.J.; Steyn, D.G.; Nyeki, S. A Comparison Of Aerosol-Layer And Convective Boundary-Layer Structure Over A Mountain Range During Staaarte’ 97. Bound. Layer Meteorol. 2004, 113, 249–271. [Google Scholar] [CrossRef]
- Whiteman, C.D. Breakup of Temperature Inversions in Deep Mountain Valleys: Part I. Observations. J. Appl. Meteorol. 1982, 21, 270–289. [Google Scholar] [CrossRef]
- Weigel, A.P.; Rotach, M.W. Flow structure and turbulence characteristics of the daytime atmosphere in a steep and narrow Alpine valley. Q. J. R. Meteorol. Soc. 2004, 130, 2605–2627. [Google Scholar] [CrossRef]
- Khodayar, S.; Kalthoff, N.; Fiebig-Wittmaack, M.; Kohler, M. Evolution of the atmospheric boundary-layer structure of an arid Andes Valley. Meteorol. Atmos. Phys. 2008, 99, 181–198. [Google Scholar] [CrossRef]
- Serafin, S.; Zardi, D. Daytime Heat Transfer Processes Related to Slope Flows and Turbulent Convection in an Idealized Mountain Valley. J. Atmos. Sci. 2010, 67, 3739–3756. [Google Scholar] [CrossRef]
- Serafin, S.; Zardi, D. Structure of the Atmospheric Boundary Layer in the Vicinity of a Developing Upslope Flow System: A Numerical Model Study. J. Atmos. Sci. 2010, 67, 1171–1185. [Google Scholar] [CrossRef]
- Fast, J.D.; Zhong, S. Meteorological factors associated with inhomogeneous ozone concentrations within the Mexico City basin. J. Geophys. Res. Atmos. 1998, 103, 18927–18946. [Google Scholar] [CrossRef]
- Lu, R.; Turco, R.P. Air Pollutant Transport in a Coastal Environment. Part I: Two-Dimensional Simulations of Sea-Breeze and Mountain Effects. J. Atmos. Sci. 1994, 51, 2285–2308. [Google Scholar] [CrossRef]
- Ching, J.K.S.; Shipley, S.T.; Browell, E.V. Evidence for cloud venting of mixed layer ozone and aerosols. Atmos. Environ. 1988, 22, 225–242. [Google Scholar] [CrossRef]
- Kalthoff, N.; Adler, B.; Wieser, A.; Kohler, M.; Träumner, K.; Handwerker, J.; Corsmeier, U.; Khodayar, S.; Lambert, D.; Kopmann, A.; et al. KITcube—A mobile observation platform for convection studies deployed during HyMeX. Meteorol. Z. 2013, 22, 633–647. [Google Scholar] [CrossRef]
- Panosetti, D.; Böing, S.; Schlemmer, L.; Schmidli, J. Idealized Large-Eddy and Convection-Resolving Simulations of Moist Convection over Mountainous Terrain. J. Atmos. Sci. 2016, 73, 4021–4041. [Google Scholar] [CrossRef]
- Langhans, W.; Schmidli, J.; Fuhrer, O.; Bieri, S.; Schär, C. Long-Term Simulations of Thermally Driven Flows and Orographic Convection at Convection-Parameterizing and Cloud-Resolving Resolutions. J. Appl. Meteorol. Climatol. 2013, 52, 1490–1510. [Google Scholar] [CrossRef]
- Henne, S.; Furger, M.; Nyeki, S.; Steinbacher, M.; Neininger, B.; de Wekker, S.F.J.; Dommen, J.; Spichtinger, N.; Stohl, A.; Prévôt, A.S.H. Quantification of topographic venting of boundary layer air to the free troposphere. Atmos. Chem. Phys. 2004, 4, 497–509. [Google Scholar] [CrossRef]
- Adler, B.; Kalthoff, N. Multi-scale Transport Processes Observed in the Boundary Layer over a Mountainous Island. Bound. Layer Meteorol. 2014, 153, 515–537. [Google Scholar] [CrossRef]
- Lang, M.N.; Gohm, A.; Wagner, J.S. The impact of embedded valleys on daytime pollution transport over a mountain range. Atmos. Chem. Phys. 2015, 15, 11981–11998. [Google Scholar] [CrossRef]
- Adler, B.; Kalthoff, N.; Kohler, M.; Handwerker, J.; Wieser, A.; Corsmeier, U.; Kottmeier, C.; Lambert, D.; Bock, O. The Variability of Water Vapour over the Mountainous Island of Corsica. Q. J. R. Meteorol. Soc. 2016, 142, 335–346. [Google Scholar] [CrossRef]
- Bischoff-Gauß, I.; Kalthoff, N.; Fiedler, F. The Impact of Secondary Flow Systems on Air Pollution in the Area of São Paulo. J. Appl. Meteorol. 1998, 37, 269–287. [Google Scholar] [CrossRef]
- Bischoff-Gauß, I.; Kalthoff, N.; Khodayar, S.; Fiebig-Wittmaack, M.; Montecinos, S. Model Simulations of the Boundary-Layer Evolution over an Arid Andes Valley. Bound. Layer Meteorol. 2008, 128, 357–379. [Google Scholar] [CrossRef]
- Arritt, R.W.; Wilczak, J.M.; Young, G.S. Observations and Numerical Modeling of an Elevated Mixed Layer. Mon. Weather Rev. 1992, 120, 2869–2880. [Google Scholar] [CrossRef]
- Kalthoff, N.; Horlacher, V.; Corsmeier, U.; Volz-Thomas, A.; Kolahgar, B.; Geiß, H.; Möllmann-Coers, M.; Knaps, A. Influence of valley winds on transport and dispersion of airborne pollutants in the Freiburg-Schauinsland area. J. Geophys. Res. Atmos. 2000, 105, 1585–1597. [Google Scholar] [CrossRef]
- Kuwagata, T.; Kimura, F. Daytime Boundary Layer Evolution in a Deep Valley. Part II: Numerical Simulation of the Cross-Valley Circulation. J. Appl. Meteorol. 1997, 36, 883–895. [Google Scholar] [CrossRef]
- Wagner, J.S.; Gohm, A.; Rotach, M.W. The Impact of Horizontal Model Grid Resolution on the Boundary Layer Structure over an Idealized Valley. Mon. Weather Rev. 2014, 142, 3446–3465. [Google Scholar] [CrossRef]
- Kalthoff, N.; Bischoff-Gauß, I.; Fiebig-Wittmaack, M.; Fiedler, F.; Thürauf, J.; Novoa, E.; Pizarro, C.; Castillo, R.; Gallardo, L.; Rondanelli, R.; et al. Mesoscale Wind Regimes in Chile at 30°S. J. Appl. Meteorol. 2002, 41, 953–970. [Google Scholar] [CrossRef]
- De Wekker, S.F.J.; Steyn, D.G.; Fast, J.D.; Rotach, M.W.; Zhong, S. The performance of RAMS in representing the convective boundary layer structure in a very steep valley. Environ. Fluid Mech. 2005, 5, 35–62. [Google Scholar] [CrossRef]
- Troen, I.B.; Mahrt, L. A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound. Layer Meteorol. 1986, 37, 129–148. [Google Scholar] [CrossRef]
- Seibert, P.; Beyrich, F.; Gryning, S.E.; Joffre, S.; Rasmussen, A.; Tercier, P. Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ. 2000, 34, 1001–1027. [Google Scholar] [CrossRef]
- Kalthoff, N.; Binder, H.J.; Kossmann, M.; VÖgtlin, R.; Corsmeier, U.; Fiedler, F.; Schlager, H. Temporal evolution and spatial variation of the boundary layer over complex terrain. Atmos. Environ. 1998, 32, 1179–1194. [Google Scholar]
- Kossmann, M.; Vögtlin, R.; Corsmeier, U.; Vogel, B.; Fiedler, F.; Binder, H.J.; Kalthoff, N.; Beyrich, F. Aspects of the convective boundary layer structure over complex terrain. Atmos. Environ. 1998, 32, 1323–1348. [Google Scholar] [CrossRef]
- Stull, R. A theory for mixed-layer-top levelness over irregular topography. In Proceedings of the 10th AMS Symposium on Turbulence and Diffusion, 29 September–2 October, Portland, OR, USA; 1992; pp. 92–94. [Google Scholar]
- Arduini, G.; Staquet, C.; Chemel, C. Interactions between the Nighttime Valley-Wind System and a Developing Cold-Air Pool. Bound. Layer Meteorol. 2016, 161, 49–72. [Google Scholar] [CrossRef]
- Arduini, G.; Chemel, C.; Staquet, C. Energetics of Deep Alpine Valleys in Pooling and Draining Configurations. J. Atmos. Sci. 2017, 74, 2105–2124. [Google Scholar] [CrossRef]
- Cuxart, J. Nocturnal basin low-level jets: An integrated study. Acta Geophys. 2008, 56, 100–113. [Google Scholar] [CrossRef]
- Martínez, D.; Jiménez, M.A.; Cuxart, J.; Mahrt, L. Heterogeneous Nocturnal Cooling in a Large Basin under Very Stable Conditions. Bound. Layer Meteorol. 2010, 137, 97–113. [Google Scholar] [CrossRef]
- De Wekker, S.F.J.; Whiteman, C.D. On the Time Scale of Nocturnal Boundary Layer Cooling in Valleys and Basins and over Plains. J. Appl. Meteorol. Climatol. 2006, 45, 813–820. [Google Scholar] [CrossRef]
- Dorninger, M.; Whiteman, C.D.; Bica, B.; Eisenbach, S.; Pospichal, B.; Steinacker, R. Meteorological Events Affecting Cold-Air Pools in a Small Basin. J. Appl. Meteorol. Climatol. 2011, 50, 2223–2234. [Google Scholar] [CrossRef]
- Whiteman, C.D.; Haiden, T.; Pospichal, B.; Eisenbach, S.; Steinacker, R. Minimum Temperatures, Diurnal Temperature Ranges, and Temperature Inversions in Limestone Sinkholes of Different Sizes and Shapes. J. Appl. Meteorol. 2004, 43, 1224–1236. [Google Scholar] [CrossRef]
- Cuxart, J.; Jiménez, M.A. Mixing Processes in a Nocturnal Low-Level Jet: An LES Study. J. Atmos. Sci. 2007, 64, 1666–1679. [Google Scholar] [CrossRef]
- Banta, R. Stable-boundary-layer regimes from the perspective of the low-level jet. Acta Geophys. 2008, 56, 58–87. [Google Scholar] [CrossRef]
- Mahrt, L. Stratified Atmospheric Boundary Layers. Bound. Layer Meteorol. 1999, 90, 375–396. [Google Scholar] [CrossRef]
- Goger, B.; Rotach, M.W.; Gohm, A.; Fuhrer, O.; Stiperski, I.; Holtslag, A. The Impact of 3D Effects on the Simulation of Turbulence Kinetic Energy Structure in a Major Alpine Valley. Bound. Layer Meteorol. 2018, in press. [Google Scholar] [CrossRef]
- Horst, T.W.; Doran, J.C. The Turbulence Structure of Nocturnal Slope Flow. J. Atmos. Sci. 1988, 45, 605–616. [Google Scholar] [CrossRef]
- Oldroyd, H.J.; Pardyjak, E.R.; Higgins, C.W.; Parlange, M.B. Buoyant Turbulent Kinetic Energy Production in Steep-Slope Katabatic Flow. Bound. Layer Meteorol. 2016, 161, 405–416. [Google Scholar] [CrossRef]
- Banta, R.M.; Pichugina, Y.L.; Newsom, R.K. Relationship between Low-Level Jet Properties and Turbulence Kinetic Energy in the Nocturnal Stable Boundary Layer. J. Atmos. Sci. 2003, 60, 2549–2555. [Google Scholar] [CrossRef]
- Grachev, A.A.; Leo, L.S.; Di Sabatino, S.; Fernando, H.J.S.; Pardyjak, E.R.; Fairall, C.W. Structure of Turbulence in Katabatic Flows Below and Above the Wind-Speed Maximum. Bound. Layer Meteorol. 2016, 159, 469–494. [Google Scholar] [CrossRef]
- Parmhed, O.; Oerlemans, J.; Grisogono, B. Describing surface fluxes in katabatic flow on Breidamerkurjökull, Iceland. Q. J. R. Meteorol. Soc. 2004, 130, 1137–1151. [Google Scholar] [CrossRef]
- Litt, M.; Sicart, J.E.; Helgason, W.D.; Wagnon, P. Turbulence Characteristics in the Atmospheric Surface Layer for Different Wind Regimes over the Tropical Zongo Glacier (Bolivia, 16°S). Bound. Layer Meteorol. 2015, 154, 471–495. [Google Scholar] [CrossRef]
- Sun, J.; Nappo, C.J.; Mahrt, L.; Belušić, D.; Grisogono, B.; Stauffer, D.R.; Pulido, M.; Staquet, C.; Jiang, Q.; Pouquet, A.; et al. Review of wave-turbulence interactions in the stable atmospheric boundary layer. Rev. Geophys. 2015, 53, 956–993. [Google Scholar] [CrossRef] [Green Version]
- Nappo, C.J.; Chimonas, G. Wave Exchange between the Ground Surface and a Boundary-Layer Critical Level. J. Atmos. Sci. 1992, 49, 1075–1091. [Google Scholar] [CrossRef]
- Chimonas, G.; Nappo, C.J. Wave drag in the planetary boundary layer over complex terrain. Bound. Layer Meteorol. 1989, 47, 217–232. [Google Scholar] [CrossRef]
- Grisogono, B. Dissipation of Wave Drag in the Atmospheric Boundary Layer. J. Atmos. Sci. 1994, 51, 1237–1243. [Google Scholar] [CrossRef]
- Steeneveld, G.J.; Holtslag, A.A.M.; Nappo, C.J.; van de Wiel, B.J.H.; Mahrt, L. Exploring the Possible Role of Small-Scale Terrain Drag on Stable Boundary Layers over Land. J. Appl. Meteorol. Climatol. 2008, 47, 2518–2530. [Google Scholar] [CrossRef]
- Tsiringakis, A.; Steeneveld, G.J.; Holtslag, A.A.M. Small-scale orographic gravity wave drag in stable boundary layers and its impact on synoptic systems and near-surface meteorology: Orographic Gravity Wave Drag in Stable Boundary Layers. Q. J. R. Meteorol. Soc. 2017, 143, 1504–1516. [Google Scholar] [CrossRef]
- Sun, J.; Mahrt, L.; Nappo, C.; Lenschow, D.H. Wind and Temperature Oscillations Generated by Wave-Turbulence Interactions in the Stably Stratified Boundary Layer. J. Atmos. Sci. 2014, 72, 1484–1503. [Google Scholar] [CrossRef]
- Mahrt, L. Stably Stratified Atmospheric Boundary Layers. Annu. Rev. Fluid Mech. 2014, 46, 23–45. [Google Scholar] [CrossRef]
- Hoover, J.D.; Stauffer, D.R.; Richardson, S.J.; Mahrt, L.; Gaudet, B.J.; Suarez, A. Submeso Motions within the Stable Boundary Layer and Their Relationships to Local Indicators and Synoptic Regime in Moderately Complex Terrain. J. Appl. Meteorol. Climatol. 2014, 54, 352–369. [Google Scholar] [CrossRef]
- Vercauteren, N.; Mahrt, L.; Klein, R. Investigation of interactions between scales of motion in the stable boundary layer. Q. J. R. Meteorol. Soc. 2016, 142, 2424–2433. [Google Scholar] [CrossRef]
- Galperin, B.; Sukoriansky, S.; Anderson, P.S. On the critical Richardson number in stably stratified turbulence. Atmos. Sci. Lett. 2007, 8, 65–69. [Google Scholar] [CrossRef]
- Grachev, A.A.; Andreas, E.L.; Fairall, C.W.; Guest, P.S.; Persson, P.O.G. On the turbulent Prandtl number in the stable atmospheric boundary layer. Bound. Layer Meteorol. 2007, 125, 329–341. [Google Scholar] [CrossRef]
- Nappo, C.J. An Introduction to Atmospheric Gravity Waves, 2nd ed.; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Jiang, Q.; Doyle, J.D. Diurnal Variation of Downslope Winds in Owens Valley during the Sierra Rotor Experiment. Mon. Weather Rev. 2008, 136, 3760–3780. [Google Scholar] [CrossRef]
- Mayr, G.J.; Armi, L. The Influence of Downstream Diurnal Heating on the Descent of Flow across the Sierras. J. Appl. Meteorol. Climatol. 2010, 49, 1906–1912. [Google Scholar] [CrossRef]
- Armi, L.; Mayr, G.J. The Descending Stratified Flow and Internal Hydraulic Jump in the Lee of the Sierras. J. Appl. Meteorol. Climatol. 2011, 50, 1995–2011. [Google Scholar] [CrossRef]
- Strauss, L.; Serafin, S.; Grubišić, V. Atmospheric Rotors and Severe Turbulence in a Long Deep Valley. J. Atmos. Sci. 2016, 73, 1481–1506. [Google Scholar] [CrossRef]
- Adler, B.; Kalthoff, N. The Impact of Upstream Flow on the Atmospheric Boundary Layer in a Valley on a Mountainous Island. Bound. Layer Meteorol. 2016, 158, 429–452. [Google Scholar] [CrossRef]
- De Franceschi, M.; Zardi, D. Study of wintertime high pollution episodes during the Brenner-South ALPNAP measurement campaign. Meteorol. Atmos. Phys. 2009, 103, 237–250. [Google Scholar] [CrossRef]
- Sachsperger, J.; Serafin, S.; Grubišić, V. Lee Waves on the Boundary-Layer Inversion and Their Dependence on Free-Atmospheric Stability. Front. Earth Sci. 2015, 3, 626–633. [Google Scholar] [CrossRef]
- Armi, L.; Mayr, G.J. Virtual and Real Topography for Flows across Mountain Ranges. J. Appl. Meteorol. Climatol. 2015, 54, 723–731. [Google Scholar]
- Scheffknecht, P.; Serafin, S.; Grubišić, V. A long-lived supercell over mountainous terrain. Q. J. R. Meteorol. Soc. 2018, 143, 2973–2986. [Google Scholar] [CrossRef]
- Epifanio, C.C. A Method for Imposing Surface Stress and Heat Flux Conditions in Finite-Difference Models with Steep Terrain. Mon. Weather Rev. 2007, 135, 906–917. [Google Scholar] [CrossRef]
- Lundquist, K.A.; Chow, F.K.; Lundquist, J.K. An Immersed Boundary Method Enabling Large-Eddy Simulations of Flow over Complex Terrain in the WRF Model. Mon. Weather Rev. 2012, 140, 3936–3955. [Google Scholar] [CrossRef]
- Colette, A.; Chow, F.K.; Street, R.L. A Numerical Study of Inversion-Layer Breakup and the Effects of Topographic Shading in Idealized Valleys. J. Appl. Meteorol. 2003, 42, 1255–1272. [Google Scholar] [CrossRef]
- Giovannini, L.; Zardi, D.; de Franceschi, M. Characterization of the Thermal Structure inside an Urban Canyon: Field Measurements and Validation of a Simple Model. J. Appl. Meteorol. Climatol. 2013, 52, 64–81. [Google Scholar] [CrossRef]
- Duine, G.J.; De Wekker, S.F.J. The effects of horizontal grid spacing on simulated daytime boundary layer depths in an area of complex terrain in Utah. Environ. Fluid Mech. 2017. [Google Scholar] [CrossRef]
- Leukauf, D.; Gohm, A.; Rotach, M.W. Toward Generalizing the Impact of Surface Heating, Stratification, and Terrain Geometry on the Daytime Heat Export from an Idealized Valley. J. Appl. Meteorol. Climatol. 2017, 56, 2711–2727. [Google Scholar] [CrossRef]
- Kim, Y.J.; Eckermann, S.D.; Chun, H.Y. An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos.-Ocean 2003, 41, 65–98. [Google Scholar]
- Kim, Y.J.; Arakawa, A. Improvement of Orographic Gravity Wave Parameterization Using a Mesoscale Gravity Wave Model. J. Atmos. Sci. 1995, 52, 1875–1902. [Google Scholar] [CrossRef]
- Deardorff, J.W. The Counter-Gradient Heat Flux in the Lower Atmosphere and in the Laboratory. J. Atmos. Sci. 1966, 23, 503–506. [Google Scholar] [CrossRef]
- Stevens, B. Quasi-Steady Analysis of a PBL Model with an Eddy-Diffusivity Profile and Nonlocal Fluxes. Mon. Weather Rev. 2000, 128, 824–836. [Google Scholar] [CrossRef]
- Ertel, H. Der Vertikale Turbulenz-Wärmestorm in der Atmosphäre. Meteorol. Z. 1942, 59, 250–253. [Google Scholar]
- Soares, P.M.M.; Miranda, P.M.A.; Siebesma, A.P.; Teixeira, J. An eddy-diffusivity/mass-flux parametrization for dry and shallow cumulus convection. Q. J. R. Meteorol. Soc. 2004, 130, 3365–3383. [Google Scholar] [CrossRef]
- De Morsier, G.; Fuhrer, O.; Arpagaus, M. Challenges for a new 1 km non-hydrostatic model over the Alpine Area. In Proceedings of the 15th Conference on Mountain Meteorology, Steamboat Springs, CO, USA, 20–24 August 2012. [Google Scholar]
- Lorenz, E.N. The predictability of a flow which possesses many scales of motion. Tellus 1969, 21, 289–307. [Google Scholar] [CrossRef]
- Sun, Y.Q.; Zhang, F. Intrinsic versus Practical Limits of Atmospheric Predictability and the Significance of the Butterfly Effect. J. Atmos. Sci. 2016, 73, 1419–1438. [Google Scholar] [CrossRef]
- Durran, D.R.; Gingrich, M. Atmospheric Predictability: Why Butterflies Are Not of Practical Importance. J. Atmos. Sci. 2014, 71, 2476–2488. [Google Scholar] [CrossRef]
- Wyngaard, J.C. Toward Numerical Modeling in the “Terra Incognita”. J. Atmos. Sci. 2004, 61, 1816–1826. [Google Scholar] [CrossRef]
- Eckel, F.A.; Mass, C.F. Aspects of Effective Mesoscale, Short-Range Ensemble Forecasting. Weather Forecast. 2005, 20, 328–350. [Google Scholar] [CrossRef]
- Frogner, I.L.; Haakenstad, H.; Iversen, T. Limited-area ensemble predictions at the Norwegian Meteorological Institute. Q. J. R. Meteorol. Soc. 2006, 132, 2785–2808. [Google Scholar] [CrossRef]
- Bowler, N.E.; Arribas, A.; Mylne, K.R.; Robertson, K.B.; Beare, S.E. The MOGREPS short-range ensemble prediction system. Q. J. R. Meteorol. Soc. 2008, 134, 703–722. [Google Scholar] [CrossRef]
- Montani, A.; Cesari, D.; Marsigli, C.; Paccagnella, T. Seven years of activity in the field of mesoscale ensemble forecasting by the COSMO-LEPS system: Main achievements and open challenges. Tellus A 2011, 63, 605–624. [Google Scholar] [CrossRef]
- Wang, Y.; Bellus, M.; Wittmann, C.; Steinheimer, M.; Weidle, F.; Kann, A.; Ivatek-Šahdan, S.; Tian, W.; Ma, X.; Tascu, S.; et al. The Central European limited-area ensemble forecasting system: ALADIN-LAEF. Q. J. R. Meteorol. Soc. 2011, 137, 483–502. [Google Scholar] [CrossRef]
- Berner, J.; Achatz, U.; Batté, L.; Bengtsson, L.; Cámara, A.D.L.; Christensen, H.M.; Colangeli, M.; Coleman, D.R.B.; Crommelin, D.; Dolaptchiev, S.I.; et al. Stochastic Parameterization: Toward a New View of Weather and Climate Models. Bull. Am. Meteorol. Soc. 2017, 98, 565–588. [Google Scholar] [CrossRef]
- Hacker, J.P.; Ha, S.Y.; Snyder, C.; Berner, J.; Eckel, F.A.; Kuchera, E.; Pocernich, M.; Rugg, S.; Schramm, J.; Wang, X. The U.S. Air ForceWeather Agency’s mesoscale ensemble: scientific description and performance results. Tellus A 2011, 63, 625–641. [Google Scholar] [CrossRef] [Green Version]
- Buizza, R.; Milleer, M.; Palmer, T.N. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Q. J. R. Meteorol. Soc. 2007, 125, 2887–2908. [Google Scholar] [CrossRef]
- Leutbecher, M.; Lock, S.J.; Ollinaho, P.; Lang, S.T.K.; Balsamo, G.; Bechtold, P.; Bonavita, M.; Christensen, H.M.; Diamantakis, M.; Dutra, E.; et al. Stochastic representations of model uncertainties at ECMWF: State of the art and future vision: Stochastic Representations of Model Uncertainties. Q. J. R. Meteorol. Soc. 2017, 143, 2315–2339. [Google Scholar] [CrossRef]
- Hacker, J.P.; Snyder, C.; Ha, S.Y.; Pocernich, M. Linear and non-linear response to parameter variations in a mesoscale model. Tellus A 2011, 63, 429–444. [Google Scholar] [CrossRef] [Green Version]
- Kober, K.; Craig, G.C. Physically Based Stochastic Perturbations (PSP) in the Boundary Layer to Represent Uncertainty in Convective Initiation. J. Atmos. Sci. 2016, 73, 2893–2911. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serafin, S.; Adler, B.; Cuxart, J.; De Wekker, S.F.J.; Gohm, A.; Grisogono, B.; Kalthoff, N.; Kirshbaum, D.J.; Rotach, M.W.; Schmidli, J.; et al. Exchange Processes in the Atmospheric Boundary Layer Over Mountainous Terrain. Atmosphere 2018, 9, 102. https://doi.org/10.3390/atmos9030102
Serafin S, Adler B, Cuxart J, De Wekker SFJ, Gohm A, Grisogono B, Kalthoff N, Kirshbaum DJ, Rotach MW, Schmidli J, et al. Exchange Processes in the Atmospheric Boundary Layer Over Mountainous Terrain. Atmosphere. 2018; 9(3):102. https://doi.org/10.3390/atmos9030102
Chicago/Turabian StyleSerafin, Stefano, Bianca Adler, Joan Cuxart, Stephan F. J. De Wekker, Alexander Gohm, Branko Grisogono, Norbert Kalthoff, Daniel J. Kirshbaum, Mathias W. Rotach, Jürg Schmidli, and et al. 2018. "Exchange Processes in the Atmospheric Boundary Layer Over Mountainous Terrain" Atmosphere 9, no. 3: 102. https://doi.org/10.3390/atmos9030102
APA StyleSerafin, S., Adler, B., Cuxart, J., De Wekker, S. F. J., Gohm, A., Grisogono, B., Kalthoff, N., Kirshbaum, D. J., Rotach, M. W., Schmidli, J., Stiperski, I., Večenaj, Ž., & Zardi, D. (2018). Exchange Processes in the Atmospheric Boundary Layer Over Mountainous Terrain. Atmosphere, 9(3), 102. https://doi.org/10.3390/atmos9030102