Advanced Ultraviolet Radiation and Ozone Retrieval for Applications (AURORA): A Project Overview
Abstract
:1. Introduction
- measurements acquired at wavelengths from the ultraviolet to the reflected infrared by the UVN (Ultraviolet-Visible-Near Infrared) spectrometer of S-4, and by the UVNS (Ultraviolet-Visible-Near Infrared Shortwave) spectrometer of S-5; and
- data in the spectral range of the emitted infrared made available by the EUMETSAT IRS (Infrared Sounder) and by IASI-NG (Infrared Atmospheric Sounding Interferometer—Next Generation) also part of the MTG-S and of the MetOp-SG payloads, respectively.
2. Objectives and Scope
3. Atmospheric Scenarios and Data Simulation
- They have been produced with a system that is substantially different from the one used for the assimilation of simulated data.
- They need to provide a realistic characterization of the state of the atmosphere.
4. AURORA Data Processing Chain
- all the data related to the processing (simulated Level 2, intermediate and final products) are stored in a centralized database in cloud (GEO-DB);
- each processing tool runs on partner premises and communicates with the database to read input data and upload products; and
- the elaboration is supervised by a task scheduler that manages and controls the execution of distributed processing.
- Download L2 data from GEO-DB takes 2.5 s per orbit (average);
- Fusion + VMR to column conversion + upload results to GEO-DB;
- The full processing of one day of L2 data takes about 20 min.Note that the full processing in the condition of this preliminary experiment consists of:
- -
- complete upload to GEO-DB of all L2 simulated orbits of the day;
- -
- complete Fusion+conversion process + upload fused data to GEO-DB; and
- -
- only data exchange for assimilation, tropospheric O3 calculation and UV radiation products calculation.
5. Preliminary Results of Data Fusion
6. Data Handling and Visualization
7. Performance Assessment and Data Validation
- the full prototype data processor respects all requirements in terms of sequence of operations, process synchronization, and execution time;
- the intermediate and final data products are identical to the products computed using standalone tools; and
- the geo-database, web service for queries, and data transfer respect the project requirements.
- the estimation of the bias and spread of the data as compared to Fiducial Reference Measurements (FRMs, see Table 2);
- the identification of the temporal and spatial domains over which the bias and spread estimates are valid;
- the comparison with ex-ante uncertainty estimates taking into account sampling and smoothing difference errors [51]; and
- the assessment of the dependence of the bias and spread estimates on parameters such as time, latitude, solar zenith angle, atmospheric temperature, fractional cloud cover, etc.
8. Innovation and Exploitation
- UV exposure and air quality for individuals: Air pollution can substantially vary with time in urban areas. Not only can severe air pollution episodes seriously affect people who suffer from chronic lung diseases, they can also limit outdoor activities of healthy people. Mobile applications can be developed to help citizens plan outdoor activities when air quality is a concern. Another application of AURORA-like data is in the field of UV exposure and can particularly—though not exclusively—be useful for tourists. Prolonged exposure to UV radiation can be harmful. Mobile applications can be designed to help tourists to make decisions to limit UV exposure. Furthermore, given the large number of professions performed outdoors, an understanding of environmental impact on employee health is important for employers. Applications based on air quality and UV exposure can be developed of gaining such insights.
- Air quality monitoring for cities: We are increasingly aware of the impacts of increased urbanization around the world, in combination with increased traffic and industry, on air quality and of its related socio-economic consequences. Effective measures to improve air quality require accurate information over entire urban areas. It is difficult to obtain such information from ground-based sensors globally. AURORA-like data have the potential to foster the development of air quality services for cities. While the core project will focus mainly over Europe, a collaboration with the TEMPO and GEMS communities, currently under discussion, can pave the way replicating these services in North American and Asian cities.
- UV and air quality measurements for transnational organizations: The routine monitoring of air quality and UV radiation levels cross border is also of primary relevance for organizations that aim to provide information to policy makers, such as (transnational) environmental agencies. The prospect of a collaboration with the TEMPO and GEMS communities could extend the area of influence beyond Europe to East Asia and North America.
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Acronym | Definition |
AC-SAF | Atmospheric Composition - Satellite Application Facility |
CF | Climate and Forecast |
DOAS | Differential Optical Absorption Spectroscopy |
ESA | European Space Agency |
GAW | Global Atmosphere Watch |
GEMS | Geostationary Environmental. Monitoring Spectrometer |
GEO | Geostationary Orbit |
GHG | Green-house Gases |
GIS | Geographic Information System |
GOME-2 | The second Global Ozone Monitoring Experiment |
IFS | Integrated Forecasting System |
KLIMA | Kyoto protocoL and Informed Management of the Adaptation |
LEO | Low Earth Orbit |
LIDORT | LInearized Discrete Ordinate Radiative Transfer |
MACC | Monitoring Atmospheric Composition and Climate |
NDACC | Network for the Detection of Atmospheric Composition Change |
NOAA | National Oceanic and Atmospheric Administration |
O3-CCI | The Ozone Climate Change Initiative |
O3M SAF | Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring |
OMI | Ozone Monitoring Instrument |
RTM | Radiative Transfer Model |
SHADOZ | Southern Hemisphere ADditional OZonesondes |
TEMPO | Tropospheric Emissions: Monitoring POllution |
TIR | Thermal InfraRed |
TM5 | Transport Model version 5 |
TM5DAM | TM5 Data Assimilation Model |
UV | UltraViolet |
UVA | UltraViolet A |
UVB | UltraViolet B |
VIS | Visible |
WMO | World Meteorological Office |
References
- Deeter, M.N.; Emmons, L.K.; Francis, G.L.; Edwards, D.P.; Gille, J.C.; Warner, J.X.; Khattatov, B.; Ziskin, D.; Lamarque, J.F.; Ho, S.P.; et al. Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument. J. Geophys. Res. 2003, 108, 4399. [Google Scholar] [CrossRef]
- Deeter, M.N.; Martínez-Alonso, S.; Edwards, D.P.; Emmons, L.K.; Gille, J.C.; Worden, H.M.; Sweeney, C.; Pittman, J.V.; Daube, B.C.; Wofsy, S.C. The MOPITT Version 6 product: Algorithm enhancements and validation. Atmos. Meas. Tech. 2014, 7, 3623–3632. [Google Scholar] [CrossRef]
- Cuesta, J.; Eremenko, M.; Liu, X.; Dufour, G.; Cai, Z.; Höpfner, M.; von Clarmann, T.; Sellitto, P.; Foret, G.; Gaubert, B.; et al. Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe. Atmos. Chem. Phys. 2013, 13, 9675–9693. [Google Scholar] [CrossRef] [Green Version]
- Fu, D.; Worden, J.R.; Liu, X.; Kulawik, S.S.; Bowman, K.W.; Natraj, V. Characterization of ozone profiles derived from Aura TES and OMI radiances. Atmos. Chem. Phys. 2013, 13, 3445–3462. [Google Scholar] [CrossRef] [Green Version]
- Hache, E.; Attié, J.L.; Tourneur, C.; Ricaud, P.; Coret, L.; Lahoz, W.A.; El Amraoui, L.; Josse, B.; Hamer, P.; Warner, J.; et al. The added value of a visible channel to a geostationary thermal infrared instrument to monitor ozone for air quality. Atmos. Meas. Tech. 2014, 7, 2185–2201. [Google Scholar] [CrossRef] [Green Version]
- Cortesi, U.; Del Bianco, S.; Ceccherini, S.; Gai, M.; Dinelli, B.M.; Castelli, E.; Oelhaf, H.; Woiwode, W.; Höpfner, M.; Gerber, D. Synergy between middle infrared and millimeter-wave limb sounding of atmospheric temperature and minor constituents. Atmos. Meas. Tech. 2016, 9, 2267–2289. [Google Scholar] [CrossRef] [Green Version]
- Dragani, R. Joint project trials new way to exploit satellite retrievals. ECMWF Newsl. 2016, 149, 20–24. [Google Scholar] [CrossRef]
- Keppens, A.; Loenen, E.; Simeone, E. Real-time health Advice from Space. GIM Int. 2007, 31, 28–31. [Google Scholar]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- McPeters, R.D.; Labow, G.J. Climatology 2011: An MLS and sonde derived ozone climatology for satellite retrieval algorithms. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Cortesi, U.; Del Bianco, S.; Gai, M.; Laurenza, L.M.; Ceccherini, S.; Carli, B.; Barbara, F.; Buchwitz, M. Sensitivity analysis and application of KLIMA algorithm to GOSAT and OCO validation. Tech. Sci. Res. Rep. 2014, 6, 1–153. [Google Scholar]
- Yang, P.; Gao, B.C.; Baum, B.A.; Hu, Y.X.; Wiscombe, W.J.; Tsay, S.C.; Winker, D.M.; Nasiri, S.L. Radiative properties of cirrus clouds in the infrared (8–13 μm) spectral region. J. Quant. Spectrosc. Radiat. Transf. 2001, 70, 473–504. [Google Scholar] [CrossRef]
- Hess, M.; Koepke, P.; Schult, I. Optical properties of aerosols and clouds: The software package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, 831–844. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Q.; Lin, H.C.; Schwartz, C.S.; Lee, Y.H.; Wang, T. Three-dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Platt, U. Differential optical absorption spectroscopy (DOAS). In Air Monitoring by Spectroscopic Techniques; Siegrist, M., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 1994; Volume 127, pp. 27–84. [Google Scholar]
- Spurr, R.; Kurosu, T.; Chance, K. A linearized discrete ordinate radiative transfer model for atmospheric remote-sensing retrieval. J. Quant. Spectrosc. Radiat. Transf. 2001, 68, 689–735. [Google Scholar] [CrossRef]
- de Haan, J.F. DISAMAR: Determining Instrument Specifications and Analyzing Methods for Atmospheric Retrieval, Algorithm Description and Background Information; Technical Report; RP-TROPOMI-KNMI-066 DISAMAR V2.2.1 Documentation; KNMI: Debilt, The Netherlands, 2011. [Google Scholar]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice; World Scientific: Singapore, 2000. [Google Scholar]
- de Haan, J.F.; Bosma, P.; Hovenier, J. The adding method for multiple scattering calculations of polarized light. Astron. Astrophys. 1987, 183, 371–391. [Google Scholar]
- Liu, X.; Chance, K.; Sioris, C.; Spurr, R.; Kurosu, T.; Martin, R.; Newchurch, M. Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment: Algorithm description and validation. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Ceccherini, S.; Cortesi, U.; Del Bianco, S.; Raspollini, P.; Carli, B. IASI-METOP and MIPAS-ENVISAT data fusion. Atmos. Chem. Phys. 2010, 10, 4689–4698. [Google Scholar] [CrossRef] [Green Version]
- Aires, F.; Aznay, O.; Prigent, C.; Paul, M.; Bernardo, F. Synergistic multi-wavelength remote sensing versus a posteriori combination of retrieved products: Application for the retrieval of atmospheric profiles using MetOp-A. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Ceccherini, S.; Carli, B.; Raspollini, P. Equivalence of data fusion and simultaneous retrieval. Opt. Express 2015, 23, 8476–8488. [Google Scholar] [CrossRef] [PubMed]
- Ceccherini, S.; Carli, B.; Tirelli, C.; Zoppetti, N.; Del Bianco, S.; Cortesi, U.; Kujanpää, J.; Dragani, R. Importance of interpolation and coincidence errors in data fusion. Atmos. Meas. Tech. 2018, 11, 1009–1017. [Google Scholar] [CrossRef] [Green Version]
- ECMWF. Documentation of the ECMWF Integrated Forecasting System (IFS). 2017. Available online: https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model/ifs-documentation (accessed on 15 September 2018).
- Agustí-Panareda, A.; Massart, S.; Chevallier, F.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Ciais, P.; Deutscher, N.M.; Engelen, R.; Jones, L.; et al. Forecasting global atmospheric CO2. Atmos. Chem. Phys. 2014, 14, 11959–11983. [Google Scholar] [CrossRef]
- Rabier, F.; Järvinen, H.; Klinker, E.; Mahfouf, J.F.; Simmons, A. The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart. J. R. Meteorol. Soc. 2000, 126, 1143–1170. [Google Scholar] [CrossRef]
- Courtier, P.; Thépaut, J.N.; Hollingsworth, A. A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. R. Meteorol. Soc. 1994, 120, 1367–1387. [Google Scholar] [CrossRef]
- Dethof, A.; Holm, E. Ozone assimilation in the ERA-40 reanalysis project. Quart. J. R. Meteorol. Soc. 2004, 130, 2851–2872. [Google Scholar] [CrossRef] [Green Version]
- Cariolle, D.; Teyssedre, H. A revised linear ozone photochemistry parameterization for use in transport and general circulation models: Multi-annual simulations. Atmos. Chem. Phys. 2007, 7, 2183–2196. [Google Scholar] [CrossRef]
- Dragani, R. A comparative analysis of UV nadir-backscatter and infrared limb-emission ozone data assimilation. Atmos. Chem. Phys. 2016, 16, 8539–8557. [Google Scholar] [CrossRef] [Green Version]
- Hogan, R.; Ahlgrimm, M.; Balsamo, G.; Beljaars, A.; Berrisford, P.; Bozzo, A.; Giuseppe, F.D.; Forbes, R.; Haiden, T.; Lang, S.; et al. Radiation in Numerical Weather Prediction; Technical Report 816; ECMWF: Reading, UK, 2017. [Google Scholar]
- Bozzo, A.; Remy, S.; Benedetti, A.; Flemming, J.; Bechtold, P.; Rodwell, M.; Morcrette, J.J. Implementation of a CAMS-Based Aerosol Climatology in the IFS; Technical Report 801; ECMWF: Reading, UK, 2017. [Google Scholar]
- Flemming, J.; Benedetti, A.; Inness, A.; Engelen, R.J.; Jones, L.; Huijnen, V.; Remy, S.; Parrington, M.; Suttie, M.; Bozzo, A.; et al. The CAMS interim Reanalysis of Carbon Monoxide, Ozone and Aerosol for 2003–2015. Atmos. Chem. Phys. 2017, 17, 1945–1983. [Google Scholar] [CrossRef]
- Dragani, R. Variational Bias Correction of Satellite Ozone Data; Technical Report R43.8/RD/0934; ECMWF: Reading, UK, 2009. [Google Scholar]
- Flemming, J.; Inness, A.; Flentje, H.; Huijnen, V.; Moinat, P.; Schultz, M.; Stein, O. Coupling global chemistry transport models to ECMWF’s integrated forecast system. Geosci. Model Dev. 2009, 2, 253–265. [Google Scholar] [CrossRef]
- Hollingsworth, A.; Engelen, R.; Benedetti, A.; Dethof, A.; Flemming, J.; Kaiser, J.; Morcrette, J.; Simmons, A.; Textor, C.; Boucher, O.; et al. Toward a monitoring and forecasting system for atmospheric composition: The GEMS project. Bull. Am. Meteorol. Soc. 2008, 89, 1147–1164. [Google Scholar] [CrossRef]
- Inness, A.; Blechschmidt, A.M.; Bouarar, I.; Chabrillat, S.; Crepulja, M.; Engelen, R.J.; Eskes, H.; Flemming, J.; Gaudel, A.; Hendrick, F.; et al. Data assimilation of satellite-retrieved ozone, carbon monoxide and nitrogen dioxide with ECMWF’s Composition-IFS. Atmos. Chem. Phys. 2015, 15, 5275–5303. [Google Scholar] [CrossRef] [Green Version]
- Flemming, J.; Huijnen, V.; Arteta, J.; Bechtold, P.; Beljaars, A.; Blechschmidt, A.M.; Diamantakis, M.; Engelen, R.J.; Gaudel, A.; Inness, A.; et al. Tropospheric chemistry in the Integrated Forecasting System of ECMWF. Geosci. Model Dev. 2015, 8, 975–1003. [Google Scholar] [CrossRef] [Green Version]
- Engelen, R.J.; Andersson, E.; Chevallier, F.; Hollingsworth, A.; Matricardi, M.; McNally, A.P.; Thépaut, J.N.; Watts, P.D. Estimating atmospheric CO2 from advanced infrared satellite radiances within an operational 4D-Var data assimilation system: Methodology and first results. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Benedetti, A.; Morcrette, J.J.; Boucher, O.; Dethof, A.; Engelen, R.; Fisher, M.; Flentje, H.; Huneeus, N.; Jones, L.; Kaiser, J.; et al. Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation. J. Geophys. Res. (Atmos.) 2009, 114. [Google Scholar] [CrossRef]
- Morcrette, J.J.; Boucher, O.; Jones, L.; Salmond, D.; Bechtold, P.; Beljaars, A.; Benedetti, A.; Bonet, A.; Kaiser, J.W.; Razinger, M.; et al. Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: Forward modeling. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Huijnen, V.; Williams, J.; Weele, M.V.; Noije, T.V.; Krol, M.; Dentener, F.; Segers, A.; Houweling, S.; Peters, W.; Laat, J.D.; et al. The global chemistry transport model TM5: Description and evaluation of the tropospheric chemistry version 3.0. Geosci. Model Dev. 2010, 3, 445–473. [Google Scholar] [CrossRef]
- Krol, M.; Houweling, S.; Bregman, B.; Broek, M.; Segers, A.; Velthoven, P.V.; Peters, W.; Dentener, F.; Bergamaschi, P. The two-way nested global chemistry-transport zoom model TM5: Algorithm and applications. Atmos. Chem. Phys. 2005, 5, 417–432. [Google Scholar] [CrossRef]
- Fortuin, J.P.F.; Kelder, H. An ozone climatology based on ozonesonde and satellite measurements. J. Geophys. Res. 1998, 103, 31709–31734. [Google Scholar] [CrossRef] [Green Version]
- Segers, A.; Eskes, H.; Van Der, A.; Van Oss, R.; Van Velthoven, P. Assimilation of GOME ozone profiles and a global chemistry–transport model using a Kalman filter with anisotropic covariance. Quart. J. R. Meteorol. Soc. 2005, 131, 477–502. [Google Scholar] [CrossRef] [Green Version]
- Reichler, T.; Dameris, M.; Sausen, R. Determining the tropopause height from gridded data. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- World Meteorological Organization. Commission For Aerology (CAe), Abridged Final Report of the Second Session; Report nr. WMO–No. 65. RP. 27; World Meteorological Organization, Secretariat of the World Meteorological Organization: Geneva, Switzerland, 1957. [Google Scholar]
- QA4EO Task Team. A Quality Assurance Framework for Earth Observation: Principles Version 4.0; QA4EO Task Team: Hampshire, UK, 2010. [Google Scholar]
- Cortesi, U.; The AURORA Consortium. AURORA Requirements Document. In AURORA Project Deliverable 2.1; AURORA: Frascati, Italy, 2016. [Google Scholar]
- Verhoelst, T.; Granville, J.; Hendrick, F.; Köhler, U.; Lerot, C.; Pommereau, J.P.; Redondas, A.; Van Roozendael, M.; Lambert, J.C. Metrology of ground-based satellite validation: Co-location mismatch and smoothing issues of total ozone comparisons. Atmos. Meas. Tech. 2015, 8, 5039–5062. [Google Scholar] [CrossRef] [Green Version]
- Keppens, A.; Lambert, J.C.; Granville, J.; Miles, G.; Siddans, R.; van Peet, J.C.A.; van der A, R.J.; Hubert, D.; Verhoelst, T.; Delcloo, A.; et al. Round-robin evaluation of nadir ozone profile retrievals: Methodology and application to MetOp-A GOME-2. Atmos. Meas. Tech. 2015, 8, 2093–2120. [Google Scholar] [CrossRef] [Green Version]
- Bernhard, G.; Arola, A.; Dahlback, A.; Fioletov, V.; Heikkilä, A.; Johnsen, B.; Koskela, T.; Lakkala, K.; Svendby, T.; Tamminen, J. Comparison of OMI UV observations with ground-based measurements at high northern latitudes. Atmos. Chem. Phys. 2015, 15, 7391–7412. [Google Scholar] [CrossRef] [Green Version]
- Tanskanen, A.; Lindfors, A.; Määttä, A.; Krotkov, N.; Herman, J.; Kaurola, J.; Koskela, T.; Lakkala, K.; Fioletov, V.; Bernhard, G.; et al. Validation of daily erythemal doses from Ozone Monitoring Instrument with ground-based UV measurement data. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- WHO. Chronic Obstructive Pulmonary Disease (COPD). 2017. Available online: www.who.int/respiratory/copd/en/ (accessed on 4 September 2017).
- WHO. Asthma. 2003. Available online: www.who.int/respiratory/asthma/en/ (accessed on 4 September 2017).
- WHO. Health Effects of UV Radiation. 2017. Available online: www.who.int/uv/health/uv$_$health2/en/index1.html (accessed on 4 September 2017).
- WHO. Skin Cancers. 2017. Available online: www.who.int/uv/faq/skincancer/en/index1.html (accessed on 4 September 2017).
Thermal Infrared | Ultraviolet | Visible | Fused | |
---|---|---|---|---|
Number of degrees of freedom | 4.90 | 3.41 | 0.97 | 5.72 |
AURORA Processing Chain | Performance Assessment | Data Validation |
---|---|---|
Atmospheric model as “virtual truth” (VT) | / | / |
Ozone profile retrieval | - VT | - FRM |
Fusion of retrievals | - VT | - FRM |
- Retrieved data | ||
Assimilation/forecasting | - VT | - FRM |
- Fused data |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortesi, U.; Ceccherini, S.; Del Bianco, S.; Gai, M.; Tirelli, C.; Zoppetti, N.; Barbara, F.; Bonazountas, M.; Argyridis, A.; Bós, A.; et al. Advanced Ultraviolet Radiation and Ozone Retrieval for Applications (AURORA): A Project Overview. Atmosphere 2018, 9, 454. https://doi.org/10.3390/atmos9110454
Cortesi U, Ceccherini S, Del Bianco S, Gai M, Tirelli C, Zoppetti N, Barbara F, Bonazountas M, Argyridis A, Bós A, et al. Advanced Ultraviolet Radiation and Ozone Retrieval for Applications (AURORA): A Project Overview. Atmosphere. 2018; 9(11):454. https://doi.org/10.3390/atmos9110454
Chicago/Turabian StyleCortesi, Ugo, Simone Ceccherini, Samuele Del Bianco, Marco Gai, Cecilia Tirelli, Nicola Zoppetti, Flavio Barbara, Marc Bonazountas, Argyros Argyridis, André Bós, and et al. 2018. "Advanced Ultraviolet Radiation and Ozone Retrieval for Applications (AURORA): A Project Overview" Atmosphere 9, no. 11: 454. https://doi.org/10.3390/atmos9110454
APA StyleCortesi, U., Ceccherini, S., Del Bianco, S., Gai, M., Tirelli, C., Zoppetti, N., Barbara, F., Bonazountas, M., Argyridis, A., Bós, A., Loenen, E., Arola, A., Kujanpää, J., Lipponen, A., Wandji Nyamsi, W., Van der A, R., Van Peet, J., Tuinder, O., Farruggia, V., ... Verberne, K. (2018). Advanced Ultraviolet Radiation and Ozone Retrieval for Applications (AURORA): A Project Overview. Atmosphere, 9(11), 454. https://doi.org/10.3390/atmos9110454