Remote Ocean Response to the Madden–Julian Oscillation during the DYNAMO Field Campaign: Impact on Somali Current System and the Seychelles–Chagos Thermocline Ridge
Abstract
:1. Introduction
2. Experiment
2.1. Model and Experiment
2.2. Observational Data for Model Evaluation
2.2.1. DYNAMO and RAMA Buoy Data
2.2.2. SeaSoar, XBT, CTD, and XCTD Measurements
2.2.3. Satellite Observations
3. Results
3.1. Comparison of the Model Simulation with Observations
3.1.1. Local Ocean Response to MJO Forcing
3.1.2. Thermocline Ridge
3.2. Large-Scale Variability
3.2.1. Equatorial Kelvin Wave
3.2.2. Reflected Rossby Wave
3.2.3. Influence on Somali Current System
3.2.4. Influence on the Seychelles–Chagos Thermocline Ridge Region
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yoneyama, K.; Zhang, C.; Long, C.N. Tracking pulses of the Madden-Julian oscillation. Bull. Am. Meteorol. Soc. 2013, 94, 1871–1891. [Google Scholar] [CrossRef]
- Shinoda, T.; Jensen, T.G.; Flatau, M.; Chen, S.; Han, W.; Wang, C. Large-scale oceanic variability associated with the Madden-Julian oscillation during the CINDY/DYNAMO field campaign from satellite observations. Remote Sens. 2013, 5, 2072–2092. [Google Scholar] [CrossRef]
- Gottschalck, J.; Roundy, P.; Schreck, C.; Vintzileos, A.; Zhang, C. Large-scale Atmospheric and Oceanic Conditions During the 2011–2012 DYNAMO Field Campaign. Mon. Weather Rev. 2013, 141, 4173–4196. [Google Scholar] [CrossRef]
- De Szoeke, S.; Edson, J.; Marion, J.; Fairall, C.; Bariteau, L. The MJO and Air-Sea Interaction in TOGA COARE and DYNAMO. J. Clim. 2015, 28, 597–622. [Google Scholar] [CrossRef]
- Moum, J.N.; de Szoeke, S.P.; Smyth, W.D.; Edson, J.B.; DeWitt, H.L.; Moulin, A.J.; Thompson, E.J.; Zappa, C.J.; Rutledge, S.A.; Johnson, H.R.; et al. Air-Sea Interactions from Westerly Wind Bursts during the November 2011 MJO in the Indian Ocean. Bull. Am. Meteorol. Soc. 2013, 95, 1185–1199. [Google Scholar] [CrossRef]
- Sprintall, J.; Gordon, A.L.; Murtugudde, R.; Susanto, R.D. A semiannual Indian Ocean forced Kelvin wave observed in the Indonesian seas in May 1997. J. Geophys. Res. 2000, 105, 17217–17230. [Google Scholar] [CrossRef]
- Susanto, R.D.; Ffield, A.; Gordon, A.; Adi, T.R. Variability of Indonesian throughflow with Makassar Strait: 2004–2009. J. Geophys. Res. 2012, 117, C09013. [Google Scholar] [CrossRef]
- Pujiana, K.; Gordon, A.L.; Sprintall, J. Intraseasonal Kelvin waves in Makassar Strait. J. Geophys. Res. 2013, 118, 2023–2034. [Google Scholar] [CrossRef]
- Shinoda, T.; Han, W.; Metzger, E.J.; Hurlburt, H.E. Seasonal variation of the Indonesian through flow in Makassar Strait. J. Phys. Oceanogr. 2012, 42, 1099–1123. [Google Scholar] [CrossRef]
- Shinoda, T.; Han, W.; Jensen, T.; Zamudio, L.; Metzger, E.J.; Lien, R.-C. Impact of the Madden-Julian Oscillation on the Indonesian Throughflow during the CINDY/DYNAMO field campaign. J. Clim. 2016, 29, 6085–6108. [Google Scholar] [CrossRef]
- Potemra, J.T.; Luther, M.E.; O’Brien, J.J. The Seasonal Circulation of the Upper Ocean in the Bay of Bengal. J. Geophys. Res. 1991, 96, 12667–12683. [Google Scholar] [CrossRef]
- Vinayachandran, P.N.; Yamagata, T. Monsoon Response of the Sea around Sri Lanka: Generation of Thermal Domes and Anticyclonic Vortices. J. Phys. Oceangr. 1998, 28, 1946–1960. [Google Scholar] [CrossRef]
- Han, W.; Webster, P.J. Forcing mechanisms of sea level interannual variability in the Bay of Bengal. J. Phys. Oceanogr. 2002, 32, 216–239. [Google Scholar] [CrossRef]
- Rao, R.R.; Girish Kumar, M.S.; Ravichandran, M.; Rao, A.R.; Gopalakrishna, V.V.; Thadathil, P. Interannual variability of Kelvin wave propagation in the wave guides of the equatorial Indian Ocean, the coastal Bay of Bengal and the southeastern Arabian Sea during 1993–2006. Deep Sea Res. 2010, 57, 1–13. [Google Scholar] [CrossRef]
- Webber, B.G.M.; Matthews, A.J.; Heywood, K.J. A dynamical ocean feedback mechanism for the Madden-Julian oscillation. Q. J. R. Meteorol. Soc. 2010, 136, 740–754. [Google Scholar] [CrossRef] [Green Version]
- Webber, B.G.M.; Matthews, A.J.; Heywood, K.J.; Stevens, D.P. Ocean Rossby waves as a triggering mechanism for primary Madden-Julian events. Q. J. R. Meteorol. Soc. 2012, 138, 514–527. [Google Scholar] [CrossRef] [Green Version]
- Tozuka, T.; Nagura, M.; Yamagata, T. Influence of the reflected Rossby waves on the western Arabian Sea upwelling region. J. Phys. Oceanogr. 2014, 44, 1424–1438. [Google Scholar] [CrossRef]
- Wyrtki, K. An equatorial jet in the Indian Ocean. J. Clim. 1973, 181, 262–264. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.G. Equatorial variability and resonance in a wind-driven Indian Ocean model. J. Geophys. Res. 1993, 98, 22533–22552. [Google Scholar] [CrossRef]
- Han, W.; McCreary, J.P.; Anderson, D.L.T.; Mariano, A.J. Dynamics of the eastward surface jets in the equatorial Indian Ocean. J. Phys. Oceanogr. 1999, 29, 2191–2209. [Google Scholar] [CrossRef]
- Marshall, A.G.; Hendon, H.H. Impacts of the MJO in the Indian Ocean and on the Western Australian coast. Clim. Dyn. 2014, 42, 579–595. [Google Scholar] [CrossRef]
- Woodberry, K.E.; Luther, M.E.; O’Brien, J. The wind-driven seasonal circulation in the southern tropical Indian Ocean. J. Geophys. Res. 1989, 94, 17985–18002. [Google Scholar] [CrossRef]
- McCreary, J.P., Jr.; Kundu, P.K.; Molinari, R.L. A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean. Prog. Oceanogr. 1993, 31, 181–244. [Google Scholar] [CrossRef]
- Xie, S.-P.; Annamalai, H.; Schott, F.A.; McCreary, J.P., Jr. Structure and mechanism of South Indian Ocean climate variability. J. Clim. 2002, 15, 864–878. [Google Scholar] [CrossRef]
- Hermes, J.; Reason, C.J.C. Annual cycle of the South Indian Ocean (Seychelles-Chagos) thermocline ridge in a regional ocean model. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Bleck, R. An oceanic general circulation model framed in Hybrid Isopycnic-Cartesian Coordinates. Ocean Model. 2002, 4, 55–88. [Google Scholar] [CrossRef]
- Large, W.G.; McWilliams, J.C.; Doney, S.C. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 1994, 32, 363–403. [Google Scholar] [CrossRef]
- Hurlburt, H.E.; Metzger, E.J.; Sprintall, J.; Riedlinger, S.N.; Arnone, R.A.; Shinoda, T.; Xu, X. Circulation in the Philippine Archipelago simulated by 1/12° and 1/25° global HYCOM and EAS NCOM. Oceanography 2011, 24, 28–47. [Google Scholar] [CrossRef]
- Rosmond, T.E.; Teixeira, J.; Peng, M.; Hogan, T.F.; Pauley, R. Navy Operational Global Atmospheric Prediction System: Forcing for ocean models. Oceanography 2002, 15, 99–108. [Google Scholar] [CrossRef]
- Chi, N.-H.; Lien, R.-C.; D’Asaro, E.A.; Ma, B.B. The surface mixed layer heat budget from mooring observations in the Central Indian Ocean during Madden-Julian oscillation events. J. Geophys. Res. Ocean 2014, 119, 4638–4652. [Google Scholar] [CrossRef]
- McPhaden, M.J.; Meyers, G.; Ando, K.; Masumoto, Y.; Murty, V.S.N.; Ravichandran, M.; Syamsudin, F.; Vialard, J.; Yu, L.; Yu, W. RAMA: The Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction. Bull. Am. Meteorol. Soc. 2009, 90, 459–480. [Google Scholar] [CrossRef]
- JAMSTEC. R/V Mirai MR11-07 Cruise Report. 2011. Available online: http://www.godac.jamstec.go.jp/catalog/doc_catalog/metadataDisp/MR11-07_leg1-2_all (accessed on 15 September 2017).
- Jensen, T.G.; Shinoda, T.; Chen, S.; Flatau, M. Ocean response to CINDY/DYNAMO MJOs in air-sea coupled COAMPS. J. Meteorol. Soc. Jpn. 2015, 93A, 157–178. [Google Scholar] [CrossRef]
- Moore, D.W.; McCreary, J.P. Excitation of intermediate frequency equatorial waves at a western ocean boundary: With application to observations from the western Indian Ocean. J. Geophys. Res. 1990, 95, 5219–5231. [Google Scholar] [CrossRef]
- Han, W. Origins and dynamics of the 90-day and 30–60 day variations in the equatorial Indian Ocean. J. Phys. Oceanogr. 2005, 35, 708–728. [Google Scholar] [CrossRef]
- Yoshida, K. A theory of the Cromwell current (the equatorial undercurrent) and of equatorial upwelling—An interpretation in a similarity to a coastal circulation. J. Oceanogr. Soc. Jpn. 1959, 15, 159–170. [Google Scholar] [CrossRef]
- Moore, D.W.; Philander, S.G.H. Modeling of the tropical oceanic circulation. In The Sea; Wiley: New York, NY, USA, 1977; Volume 6. [Google Scholar]
- Vialard, J.; Shenoi, S.S.C.; McCreary, J.P.; Shankar, D.; Durand, F.; Fernando, V.; Shetye, S.R. Intraseasonal response of the northern Indian Ocean coastal waveguide to the Madden-Julian Oscillation. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Knox, R.A.; Anderson, D.L.T. Recent advances in the study of the low-latitude ocean circulation. Prog. Oceanogr. 1985, 14, 259–317. [Google Scholar] [CrossRef]
- Schott, F.; McCreary, J.P. The monsoon circulation of the Indian Ocean. Prog. Oceanogr. 2001, 51, 1–123. [Google Scholar] [CrossRef]
- Lighthill, M.J. Dynamic responseof the Indian Ocean to onset of the Southwest Monsoon. Philos. Trans. R. Soc. Lond. 1969, 265, 45–92. [Google Scholar] [CrossRef]
- Hurlburt, H.E.; Thompson, J.D. A numerical model of the Somali Current. J. Phys. Oceanogr. 1976, 6, 646–664. [Google Scholar] [CrossRef]
- Luther, M.E.; O’Brien, J.J. A model of the seasonal circulation in the Arabian Sea forced by observed winds. Prog. Oceanogr. 1985, 1, 353–385. [Google Scholar] [CrossRef]
- Beal, L.M.; Hormann, V.; Lumpkin, R.; Foltz, G.R. The response of the surface circulation of the Arabian Sea to monsoonal forcing. J. Phys. Oceanogr. 2013, 43, 2008–2022. [Google Scholar] [CrossRef]
- Rydbeck, A.V.; Jensen, T.G.; Nyadjro, E. Intraseasonal sea surface warming in the western Indian Ocean by oceanic equatorial Rossby waves. Geophys. Res. Lett. 2017, 44, 4224–4232. [Google Scholar] [CrossRef]
- Rydbeck, A.V.; Jensen, T.G. Oceanic impetus for convective onset of the Madden-Julian Oscillation in the western Indian Ocean. J. Clim. 2017, 30, 4299–4316. [Google Scholar] [CrossRef]
- Yokoi, T.; Tozuka, T.; Yamagata, T. Seasonal variation of the Seychelles Dome. J. Clim. 2008, 21, 3740–3754. [Google Scholar] [CrossRef]
- Perigaud, C.; Delecluse, P. Annual sea level variations in the southern tropical Indian Ocean from Geosat and shallow-water simulations. J. Geophys. Res. 1992, 97, 20169–20178. [Google Scholar] [CrossRef]
- Seiki, A.; Katsumata, M.; Horii, T.; Hasegawa, T.; Richards, K.J.; Yoneyama, K.; Shirooka, R. Abrupt cooling associated with the oceanic Rossby wave and lateral advection during CINDY2011. J. Geophys. Res. 2013, 118, 5523–5535. [Google Scholar] [CrossRef]
- DeMott, C.A.; Klingaman, N.P.; Woolnough, S.J. Atmosphere-ocean coupled processes in the Madden-Julian oscillation. Rev. Geophys. 2015, 53, 1099–1154. [Google Scholar] [CrossRef]
- Halkides, D.J.; Waliser, D.E.; Lee, T.; Menemenlis, D.; Guan, B. Quantifying the processing controlling intraseasonal mixed-layer temperature variability in the tropical Indian Ocean. J. Geophys. Res. Oceans 2015, 120, 692–715. [Google Scholar] [CrossRef]
- Li, Y.; Han, W.; Shinoda, T.; Wang, C.; Ravichandran, M.; Wang, J.-W. Revisiting the Wintertime Intraseasonal SST Variability in the Tropical South Indian Ocean: Impact of the Ocean Interannual Variation. J. Phys. Oceanogr. 2014, 44, 1886–1907. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shinoda, T.; Han, W.; Zamudio, L.; Lien, R.-C.; Katsumata, M. Remote Ocean Response to the Madden–Julian Oscillation during the DYNAMO Field Campaign: Impact on Somali Current System and the Seychelles–Chagos Thermocline Ridge. Atmosphere 2017, 8, 171. https://doi.org/10.3390/atmos8090171
Shinoda T, Han W, Zamudio L, Lien R-C, Katsumata M. Remote Ocean Response to the Madden–Julian Oscillation during the DYNAMO Field Campaign: Impact on Somali Current System and the Seychelles–Chagos Thermocline Ridge. Atmosphere. 2017; 8(9):171. https://doi.org/10.3390/atmos8090171
Chicago/Turabian StyleShinoda, Toshiaki, Weiqing Han, Luis Zamudio, Ren-Chieh Lien, and Masaki Katsumata. 2017. "Remote Ocean Response to the Madden–Julian Oscillation during the DYNAMO Field Campaign: Impact on Somali Current System and the Seychelles–Chagos Thermocline Ridge" Atmosphere 8, no. 9: 171. https://doi.org/10.3390/atmos8090171
APA StyleShinoda, T., Han, W., Zamudio, L., Lien, R. -C., & Katsumata, M. (2017). Remote Ocean Response to the Madden–Julian Oscillation during the DYNAMO Field Campaign: Impact on Somali Current System and the Seychelles–Chagos Thermocline Ridge. Atmosphere, 8(9), 171. https://doi.org/10.3390/atmos8090171