The Impact of Residential Combustion Emissions on Health Expenditures: Empirical Evidence from Sub-Saharan Africa
Abstract
:1. Introduction
2. Background
Literature Review
3. Experiments
3.1. Data
3.2. Model
3.2.1. Why the Two-Step System Generalized Method of Moments (GMM)?
- -
- To control for endogeneity problem because some explanatory variables may not be fully exogenous (for instance per capita GDP and residential combustion emissions variables may be endogenous since the use of fuels types may be associated with households economic conditions).
- -
- The time dimension (T = 16) of the panel dataset is shorter and country dimension (N = 44) is larger.
- -
- To remove the time-invariant country-characteristics (fixed effects). Time-invariant country heterogeneity, such as geography, may be correlated with the explanatory variables (for example, one may think that people of Sub-Saharan African (SSA) countries located in more forested areas are likely to use wood and charcoal as fuels in their households). The fixed effects are contained in the error term in Equation (1), which consists of the unobserved time-invariant country-specific effects, and the observation-specific errors, .
- -
- To control for autocorrelation, which may rise because of the presence of the lagged dependent variable (lagged health expenditure variable, lnHEPC (−1), lnOOPPTHE (−1), lnHEPUBTHE (−1)).
3.2.2. Assumptions and Tests to Meet Them
3.2.3. How Was Two-Step System Generalized Method of Moments (GMM) Chosen?
4. Results
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Benin | The Gambia | Burundi | Uganda |
Burkina Faso | Guinea-Bissau | Comoros | Angola |
Central African Republic | Equatorial Guinea | Djibouti | Botswana |
Cote d’Ivoire | Mali | Eritrea | Lesotho |
Cameroon | Mauritania | Ethiopia | Mozambique |
The Republic of Congo | Niger | Kenya | Malawi |
The Democratic Republic of Congo | Nigeria | Madagascar | Namibia |
Cabo Verde | Senegal | Mauritius | Swaziland |
Gabon | Sierra Leone | Rwanda | Tanzania |
Ghana | Chad | Sudan | South Africa |
Guinea | Togo | Seychelles | Zambia |
Acronyms | Corresponding Meanings |
---|---|
SSA | Sub-Saharan Africa |
CO | Carbon monoxide |
NOx | Nitrogen oxide |
PM2.5 | Particulate Matter with aerodynamic diameter less than 2.5 μm |
PM10 | Particulate Matter with aerodynamic diameter less than 10 μm |
lnSO2 | Sulphur dioxide |
HEPC | Per Capita Health Expenditure |
OOPPTHE | Out of Pocket Health Expenditure |
HEPUBTHE | Public Health Expenditure |
GDPPCGR | Per Capita GDP Growth Rate |
PGR | Population Growth Rate |
DAHPC | Per Capita Development Assistance for Health |
GMM | Generalized Method of Moments |
EDGAR | Emissions Database for Global Atmospheric Research |
IHME | Institute for Health Metrics and Evalution |
WHO | World Health Organization |
IEA | International Energy Agency |
FAO | Food and Agricultural Organization |
OECD | Organization for Economic Cooperation and Development |
WDI | World Development Indicators |
References
- Kamila, S.; Kappen, J.; Rysankova, D.; Hyseni, B.; Putti, R.V. Clean and Improved CookIng in Sub-Saharan Africa; World Bank: Washington, DC, USA, 2014. [Google Scholar]
- Smith, K.R. Indoor air pollution in developing countries: Recommendations for research. Indoor Air 2002, 12, 198–207. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Burning Opportunity: Clean Household Energy for Health, Sustainable Development, and Wellbeing of Women and Children; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- World Health Organization. Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Ezzati, M. Indoor air pollution and health in developing countries. Lancet 2005, 366, 104–106. [Google Scholar] [CrossRef]
- Ezzati, M.; Kammen, D.M. Indoor air pollution from biomass combustion and acute respiratory infections in Kenya: An exposure-response study. Lancet 2001, 358, 619–624. [Google Scholar] [CrossRef]
- Ezzati, M.; Kammen, D.M. Quantifying the effects of exposure to indoor air pollution from biomass combustion on acute respiratory infections in developing countries. Environ. Health Perspect. 2001, 109, 481. [Google Scholar] [CrossRef] [PubMed]
- Bruce, N.; Perez-Padilla, R.; Albalak, R. Indoor air pollution in developing countries: A major environmental and public health challenge. Bull. World Health Organ. 2000, 78, 1078–1092. [Google Scholar] [PubMed]
- Masera, O.R.; Saatkamp, B.D.; Kammen, D.M. From linear fuel switching to multiple cooking strategies: A critique and alternative to the energy ladder model. World Dev. 2000, 28, 2083–2103. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef]
- Arellano, M.; Bover, O. Another look at the instrumental variable estimation of error-components models. J. Econ. 1995, 68, 29–51. [Google Scholar] [CrossRef]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data models. J. Econ. 1998, 87, 115–143. [Google Scholar] [CrossRef]
- Hansen, L.P. Large sample properties of generalized method of moments estimators. Econ. J. Econ. Soc. 1982, 50, 1029–1054. [Google Scholar] [CrossRef]
- Roodman, D. How to Do Xtabond2: An Introduction to Difference and System GMM in Stata; Center for Global Development: Washington, DC, USA, 2006. [Google Scholar]
- Anenberg, S.C.; Horowitz, L.W.; Tong, D.Q.; West, J.J. An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. Environ. Health Perspect. 2010, 118, 1189. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, R.; Anderson, H.; Strachan, D.; Bland, J.; Bremmer, S.; Ponce de Leon, A. Short-term associations between outdoor air pollution and visits to accident and emergency departments in London for respiratory complaints. Eur. Respir. J. 1999, 13, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Boy, E.; Bruce, N.; Delgado, H. Birth weight and exposure to kitchen wood smoke during pregnancy in rural Guatemala. Environ. Health Perspect. 2002, 110, 109. [Google Scholar] [CrossRef] [PubMed]
- Brook, R.D.; Franklin, B.; Cascio, W.; Hong, Y.; Howard, G.; Lipsett, M.; Luepker, R.; Mittleman, M.; Samet, J.; Smith, S.C. Air pollution and cardiovascular disease. Circulation 2004, 109, 2655–2671. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.J.; Ross Anderson, H.; Ostro, B.; Pandey, K.D.; Krzyzanowski, M.; Künzli, N.; Gutschmidt, K.; Pope, A.; Romieu, I.; Samet, J.M. The global burden of disease due to outdoor air pollution. J. Toxicol. Environ. Health Part A 2005, 68, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.-C.; Lee, J.-T.; Kim, H.; Ha, E.-H.; Schwartz, J.; Christiani, D.C. Effects of air pollutants on acute stroke mortality. Environ. Health Perspect. 2002, 110, 187. [Google Scholar] [CrossRef] [PubMed]
- Laden, F.; Schwartz, J.; Speizer, F.E.; Dockery, D.W. Reduction in fine particulate air pollution and mortality: Extended follow-up of the Harvard Six Cities study. Am. J. Respir. Crit. Care Med. 2006, 173, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-H.; Ezzati, M.; Murray, M. Tobacco smoke, indoor air pollution and tuberculosis: A systematic review and meta-analysis. PLoS Med. 2007, 4, e20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, V.; Dai, X.; Smith, K.R.; Mika, L. Maternal exposure to biomass smoke and reduced birth weight in Zimbabwe. Ann. Epidemiol. 2004, 14, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.; Retherford, R.D. Does biofuel smoke contribute to anaemia and stunting in early childhood? Int. J. Epidemiol. 2007, 36, 117–129. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Burden of Disease from Ambient Air Pollution for 2012; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- World Health Organization. Burden of Disease from Ambient Air Pollution for 2012—Summary of Results; World Health Organization (WHO): Geneva, Switzerland, 2014. [Google Scholar]
- Orozco-Levi, M.; Garcia-Aymerich, J.; Villar, J.; Ramirez-Sarmiento, A.; Anto, J.; Gea, J. Wood smoke exposure and risk of chronic obstructive pulmonary disease. Eur. Respir. J. 2006, 27, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Pokhrel, A.K.; Smith, K.R.; Khalakdina, A.; Deuja, A.; Bates, M.N. Case-control study of indoor cooking smoke exposure and cataract in Nepal and India. Int. J. Epidemiol. 2005, 34, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., III; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.; Kulkarni, P.; Shah, A.; Patel, M.; Saiyed, H. Ocular morbidity and fuel use: an experience from India. Occup. Environ. Med. 2005, 62, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.R.; Mehta, S.; Maeusezahl-Feuz, M. Indoor air pollution from household use of solid fuels. In Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors; World Health Organization: Geneva, Switzerland, 2004; Volume 2, pp. 1435–1493. [Google Scholar]
- Zhao, Y.; Wang, S.; Aunan, K.; Seip, H.M.; Hao, J. Air pollution and lung cancer risks in China—A meta-analysis. Sci. Total Environ. 2006, 366, 500–513. [Google Scholar] [CrossRef] [PubMed]
- Di Matteo, L.; Di Matteo, R. Evidence on the determinants of Canadian provincial government health expenditures: 1965–1991. J. Health Econ. 1998, 17, 211–228. [Google Scholar] [CrossRef]
- Freeman, D.G. Is health care a necessity or a luxury? Pooled estimates of income elasticity from US state-level data. Appl. Econ. 2003, 35, 495–502. [Google Scholar] [CrossRef]
- Gbesemete, K.P.; Gerdtham, U.-G. Determinants of health care expenditure in Africa: A cross-sectional study. World Dev. 1992, 20, 303–308. [Google Scholar] [CrossRef]
- Gerdtham, U.-G.; Löthgren, M. On stationarity and cointegration of international health expenditure and GDP. J. Health Econ. 2000, 19, 461–475. [Google Scholar] [CrossRef]
- Gerdtham, U.-G.; Søgaard, J.; Andersson, F.; Jönsson, B. An econometric analysis of health care expenditure: A cross-section study of the OECD countries. J. Health Econ. 1992, 11, 63–84. [Google Scholar] [CrossRef]
- Hansen, P.; King, A. The determinants of health care expenditure: A cointegration approach. J. Health Econ. 1996, 15, 127–137. [Google Scholar] [CrossRef]
- Herwartz, H.; Theilen, B. The determinants of health care expenditure: Testing pooling restrictions in small samples. Health Econ. 2003, 12, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Murthy, N.; Ukpolo, V. Aggregate health care expenditure in the United States: New results. Appl. Econ. Lett. 1995, 2, 419–421. [Google Scholar] [CrossRef]
- Murthy, N.V.; Okunade, A.A. Managed care, deficit financing, and aggregate health care expenditure in the United States: A cointegration analysis. Health Care Manag. Sci. 2000, 3, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Murthy, N.V.; Ukpolo, V. Aggregate health care expenditure in the United States: Evidence from cointegration tests. Appl. Econ. 1994, 26, 797–802. [Google Scholar] [CrossRef]
- Jerrett, M.; Eyles, J.; Dufournaud, C.; Birch, S. Environmental influences on healthcare expenditures: An exploratory analysis from Ontario, Canada. J. Epidemiol. Community Health 2003, 57, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Narayan, P.K.; Narayan, S. Does environmental quality influence health expenditures? Empirical evidence from a panel of selected OECD countries. Ecol. Econ. 2008, 65, 367–374. [Google Scholar] [CrossRef]
- Emissions Database for Global Atmospheric Research. Available online: http://edgar.jrc.ec.europa.eu/index.php (accessed on 6 July 2017).
- Crippa, M.; Janssens-Maenhout, G.; Dentener, F.; Guizzardi, D.; Sindelarova, K.; Muntean, M.; Van Dingenen, R.; Granier, C. Forty years of improvements in European air quality: Regional policy-industry interactions with global impacts. Atmos. Chem. Phys. 2016, 16, 3825–3841. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Schneider, M.T.; Gubbins, P.; Leach-Kemon, K.; Jamison, D.; Murray, C.J. Public financing of health in developing countries: A cross-national systematic analysis. Lancet 2010, 375, 1375–1387. [Google Scholar] [CrossRef]
- Roodman, D. A note on the theme of too many instruments. Oxf. Bull. Econ. Stat. 2009, 71, 135–158. [Google Scholar] [CrossRef]
- Roodman, D. How to do xtabond2: An introduction to difference and system gmm in stata. Stata J. 2009, 9, 86–136. [Google Scholar] [CrossRef]
- Dieleman, J.L.; Graves, C.M.; Hanlon, M. The fungibility of health aid: Reconsidering the reconsidered. J. Dev. Stud. 2013, 49, 1755–1762. [Google Scholar] [CrossRef]
- Dieleman, J.L.; Hanlon, M. Measuring the displacement and replacement of government health expenditure. Health Econ. 2014, 23, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, K. First difference or forward orthogonal deviation—Which transformation should be used in dynamic panel data models?: A simulation study. Econ. Bull. 2009, 29, 2008–2017. [Google Scholar]
- Hayakawa, K. A simple efficient instrumental variable estimator for panel AR (p) models when both N and T are large. Econ. Theory 2009, 25, 873–890. [Google Scholar] [CrossRef]
Variable | lnHEPC | lnOOPPTHE | lnHEPUBTHE |
---|---|---|---|
lnHEPC (−1) | 0.822 *** (0.007) | ||
lnOOPPTHE (−1) | 0.875 *** (0.001) | ||
lnHEPUBTHE (−1) | 0.698 *** (0.000) | ||
lnCO | 0.189 *** (0.000) | 0.291 *** (0.001) | 0.129 ** (0.032) |
lnNOx | 0.072 * (0.090) | 0.115 * (0.083) | 0.062 ** (0.048) |
lnPM2.5 | 0.201 *** (0.000) | 0.308 *** (0.000) | 0.175 ** (0.027) |
lnSO2 | 0.059 * (0.055) | 0.093 ** (0.011) | 0.008 * (0.063) |
GDPPCGR | 0.107 ** (0.042) | 0.149 *** (0.000) | 0.085 *** (0.000) |
PGR | 0.122 ** (0.014) | 0.188 * (0.054) | −0.092 (0.133) |
lnDAHPC | 0.066 * (0.078) | −0.065 * (0.071) | 0.113 ** (0.015) |
lnPM2.5T | 0.059 * (0.081) | 0.084 ** (0.035) | 0.028 * (0.069) |
Constant | 0.027 ** (0.036) | 0.021 *** (0.008) | 0.043 * (0.082) |
Observations | 704 | 704 | 704 |
Countries | 44 | 44 | 44 |
Diagnostic Tests (Results of Tests to Meet the Assumptions) | |||
AR(1) [p-value] | 0.032 | 0.012 | 0.005 |
AR(2) [p-value] | 0.236 | 0.380 | 0.395 |
Hansen-J test [p-value] | 0.185 | 0.324 | 0.193 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badamassi, A.; Xu, D.; Leyla, B.H. The Impact of Residential Combustion Emissions on Health Expenditures: Empirical Evidence from Sub-Saharan Africa. Atmosphere 2017, 8, 157. https://doi.org/10.3390/atmos8090157
Badamassi A, Xu D, Leyla BH. The Impact of Residential Combustion Emissions on Health Expenditures: Empirical Evidence from Sub-Saharan Africa. Atmosphere. 2017; 8(9):157. https://doi.org/10.3390/atmos8090157
Chicago/Turabian StyleBadamassi, Aboubacar, Deyi Xu, and Boubacar Hamidou Leyla. 2017. "The Impact of Residential Combustion Emissions on Health Expenditures: Empirical Evidence from Sub-Saharan Africa" Atmosphere 8, no. 9: 157. https://doi.org/10.3390/atmos8090157
APA StyleBadamassi, A., Xu, D., & Leyla, B. H. (2017). The Impact of Residential Combustion Emissions on Health Expenditures: Empirical Evidence from Sub-Saharan Africa. Atmosphere, 8(9), 157. https://doi.org/10.3390/atmos8090157