Temporal Variability of Atmospheric Total Gaseous Mercury in Windsor, ON, Canada
Abstract
:1. Introduction
2. Methodology
2.1. Sampling Site and Instrumentation
2.2. Meteorological Data and Other Air Pollutants
2.3. Data Analysis
3. Results and Discussion
3.1. Temporal Variability
3.1.1. Inter-Annual Variability
3.1.2. Seasonal Variability
3.1.3. Day-of-Week Variability
3.1.4. Diurnal Variability
3.2. Environmental Factors Influencing TGM
Parameter | 2007–2011 (N = 23,467) | Winter (N = 5303) | Spring (N = 6041) | Summer (N = 5512) | Fall (N = 6612) |
---|---|---|---|---|---|
SO2 | −0.008 | 0.046 | 0.031 | −0.045 | −0.039 |
NO | 0.083 | 0.084 | 0.188 | 0.112 | 0.162 |
NO2 | 0.106 | 0.117 | 0.288 | 0.130 | 0.146 |
NOx | 0.105 | 0.109 | 0.269 | 0.142 | 0.177 |
CO | 0.100 | 0.105 | 0.318 | 0.178 | 0.190 |
O3 | −0.068 | −0.090 | −0.227 | −0.106 | −0.092 |
PM2.5 | 0.074 | 0.067 | 0.248 | −0.021 | 0.053 |
Temperature | 0.090 | −0.084 | 0.144 | −0.042 | 0.112 |
Relative humidity | 0.078 | −0.007 | 0.251 | 0.108 | 0.006 |
Wind speed | −0.083 | 0.025 | −0.216 | −0.051 | −0.068 |
Pressure | −0.073 | −0.022 | −0.115 | −0.076 | −0.063 |
Parameter | 2007–2011 (N = 23,467) | Winter (N = 5303) | Spring (N = 6041) | Summer (N = 5512) | Fall (N = 6612) |
---|---|---|---|---|---|
SO2 | 0.018 | 0.110 | 0.089 | −0.082 | −0.015 |
NO | 0.205 | 0.382 | 0.165 | 0.228 | 0.245 |
NO2 | 0.305 | 0.349 | 0.398 | 0.336 | 0.271 |
NOx | 0.311 | 0.399 | 0.381 | 0.356 | 0.309 |
CO | 0.249 | 0.378 | 0.378 | 0.439 | 0.341 |
O3 | −0.263 | −0.294 | −0.384 | −0.273 | −0.224 |
PM2.5 | 0.180 | 0.252 | 0.247 | 0.029 | 0.091 |
Temperature | 0.065 | −0.135 | 0.044 | −0.115 | 0.071 |
Relative humidity | 0.212 | 0.017 | 0.348 | 0.257 | 0.120 |
Wind speed | −0.186 | −0.076 | −0.265 | −0.183 | −0.122 |
Pressure | −0.142 | −0.050 | −0.145 | −0.172 | −0.120 |
Parameter | Fossil Fuel Combustion | Diurnal Trend&PM2.5 | Photo-Chemistry | Synoptic Systems | Industrial Sulfur |
---|---|---|---|---|---|
TGM | 0.26 | 0.20 | 0.11 | 0.21 | 0.67 |
SO2 | 0.17 | 0.21 | 0.11 | 0.18 | −0.63 |
NO | 0.48 | −0.06 | 0.11 | −0.05 | 0.12 |
NO2 | 0.39 | 0.05 | −0.16 | −0.08 | −0.13 |
NOx | 0.50 | −0.01 | −0.01 | −0.07 | 0.01 |
CO | 0.43 | −0.01 | −0.02 | 0.17 | −0.02 |
O3 | −0.15 | 0.24 | 0.48 | 0.06 | 0.00 |
PM2.5 | 0.14 | 0.62 | −0.05 | 0.00 | −0.24 |
Temperature | −0.17 | 0.56 | 0.14 | 0.00 | 0.17 |
Relative humidity | −0.09 | 0.08 | −0.75 | 0.11 | 0.00 |
Wind speed | 0.01 | −0.35 | 0.28 | 0.59 | −0.16 |
Pressure | 0.07 | −0.15 | 0.22 | −0.72 | −0.09 |
Variance (%) | 34.8 | 14.1 | 11.2 | 10.5 | 7.8 |
Eigen value | 4.18 | 1.70 | 1.35 | 1.26 | 0.93 |
Parameter | Fossil Fuel Combustion | Diurnal Trend | Transport | Industrial Sulfur |
---|---|---|---|---|
TGM | 0.28 | −0.10 | 0.65 | −0.27 |
SO2 | 0.06 | −0.05 | 0.06 | 0.87 |
NO | 0.40 | −0.04 | 0.06 | −0.07 |
NO2 | 0.40 | −0.06 | −0.09 | 0.09 |
NOx | 0.45 | −0.06 | 0.00 | −0.01 |
CO | 0.39 | 0.04 | 0.07 | −0.03 |
O3 | −0.31 | −0.22 | 0.15 | −0.14 |
PM2.5 | 0.30 | 0.12 | −0.09 | 0.19 |
Temperature | −0.12 | 0.56 | −0.02 | 0.08 |
Relative humidity | 0.10 | 0.60 | −0.10 | −0.13 |
Wind speed | −0.18 | −0.06 | 0.57 | 0.27 |
Pressure | 0.05 | −0.49 | −0.44 | −0.03 |
Variance (%) | 38.9 | 15.9 | 9.9 | 8.0 |
Eigen value | 4.67 | 1.90 | 1.19 | 0.96 |
Parameter | Fossil Fuel Combustion | Diurnal Trend&PM2.5 | Synoptic Systems &Photo-Chemistry | Transport &Industrial Sulfur |
---|---|---|---|---|
TGM | 0.02 | 0.33 | −0.30 | −0.37 |
SO2 | 0.31 | 0.18 | 0.20 | 0.49 |
NO | 0.41 | −0.08 | 0.04 | 0.06 |
NO2 | 0.43 | 0.02 | 0.00 | −0.07 |
NOx | 0.47 | −0.03 | 0.02 | −0.01 |
CO | 0.38 | 0.14 | −0.14 | 0.04 |
O3 | −0.27 | 0.29 | 0.28 | 0.16 |
PM2.5 | 0.24 | 0.51 | 0.01 | −0.01 |
Temperature | −0.16 | 0.65 | 0.04 | −0.04 |
Relative humidity | 0.05 | −0.14 | −0.60 | −0.10 |
Wind speed | −0.10 | −0.10 | −0.15 | 0.68 |
Pressure | 0.11 | −0.20 | 0.62 | −0.34 |
Variance (%) | 38.1 | 14.7 | 12.5 | 8.8 |
Eigen value | 4.58 | 1.76 | 1.50 | 1.05 |
Parameter | Fossil Fuel Combustion | PM2.5 &Industrial Sulfur | Synoptic Systems | Photo-Chemistry &Diurnal Trend |
---|---|---|---|---|
TGM | 0.19 | −0.12 | −0.49 | −0.05 |
SO2 | 0.08 | 0.45 | 0.13 | −0.09 |
NO | 0.59 | −0.15 | 0.02 | −0.15 |
NO2 | 0.36 | 0.21 | −0.06 | 0.18 |
NOx | 0.54 | 0.05 | −0.03 | 0.04 |
CO | 0.24 | 0.25 | −0.36 | 0.07 |
O3 | −0.19 | 0.27 | 0.02 | −0.39 |
PM2.5 | −0.04 | 0.67 | −0.04 | 0.06 |
Temperature | −0.05 | 0.27 | −0.14 | −0.48 |
Relative humidity | −0.20 | 0.10 | −0.25 | 0.59 |
Wind speed | −0.03 | −0.19 | −0.18 | −0.45 |
Pressure | 0.20 | 0.06 | 0.70 | 0.05 |
Variance (%) | 34.4 | 17.4 | 10.9 | 9.0 |
Eigen value | 4.12 | 2.09 | 1.31 | 1.08 |
Parameter | Fossil Fuel Combustion | Diurnal Trend&PM2.5 | Synoptic Systems | Relative Humidity | Industrial Sulfur |
---|---|---|---|---|---|
TGM | 0.24 | 0.15 | −0.16 | −0.16 | 0.70 |
SO2 | 0.20 | 0.14 | −0.20 | −0.25 | −0.61 |
NO | 0.46 | −0.08 | 0.06 | −0.14 | 0.12 |
NO2 | 0.42 | 0.02 | 0.06 | 0.10 | −0.17 |
NOx | 0.51 | −0.05 | 0.07 | −0.06 | 0.01 |
CO | 0.40 | 0.06 | −0.17 | 0.12 | 0.05 |
O3 | −0.21 | 0.41 | 0.04 | −0.31 | 0.01 |
PM2.5 | 0.18 | 0.58 | 0.02 | 0.22 | −0.23 |
Temperature | −0.09 | 0.63 | 0.00 | −0.06 | 0.14 |
Relative humidity | −0.05 | −0.01 | −0.03 | 0.75 | 0.01 |
Wind speed | −0.08 | −0.19 | −0.60 | −0.28 | −0.09 |
Pressure | 0.02 | −0.10 | 0.73 | −0.26 | −0.07 |
Variance (%) | 33.3 | 15.6 | 11.1 | 9.8 | 8.9 |
Eigen value | 4.00 | 1.87 | 1.33 | 1.17 | 1.07 |
3.3. Directional TGM Concentrations
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Poissant, L. Field observations of total gaseous mercury behaviour: Interactions with ozone concentration and water vapour mixing ratio in air at a rural site. Water Air Soil Pollut. 1997, 97, 341–353. [Google Scholar]
- Lindberg, S.E.; Bullock, R.; Ebinghaus, R.; Engstrom, D.; Feng, X.; Fitzgerald, W.; Pirrone, N.; Prestbo, E.; Seigneur, C.A. Synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio 2007, 36, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Krabbenhoft, D.P.; Branfireun, B.A.; Heyes, A. Biogeochemical cycles affecting the speciation, fate and transport of mercury in the environment. In Mercury: Sources, Measurements, Cycles, and Effects; Parsons, M.B., Percival, J.B., Eds.; Short Course Series; Mineralogical Association of Canada: Ottawa, ON, Canada, 2005; Volume 34, pp. 139–156. [Google Scholar]
- Swain, E.B.; Jakus, P.M.; Rice, G.; Lupi, F.; Maxon, P.A.; Pacyna, J.M.; Penn, A.; Speigel, S.J.; Veiga, M.M. Socioeconomic consequences of mercury use and pollution. Ambio 2007, 36, 45–61. [Google Scholar] [CrossRef] [PubMed]
- Nadim, F.; Perkins, C.; Liu, S.; Carley, R.J.; Hoag, J.E. Long-term investigation of atmospheric mercury contamination in Connecticut. Chemosphere 2001, 45, 1033–1043. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.J.; Holsen, T.M.; Lai, S.O.; Hopke, P.K.; Yi, S.M.; Liu, W.; Pagano, J.; Falanga, L.; Milligan, M.; Andolina, C. Atmospheric gaseous mercury concentrations in New York State: Relationships with meteorological data and other pollutants. Atmos. Environ. 2004, 38, 6431–6446. [Google Scholar] [CrossRef]
- Lynam, M.M.; Keeler, G.J. Automated speciated mercury measurements in Michigan. Environ. Sci. Technol. 2005, 39, 9253–9262. [Google Scholar] [CrossRef] [PubMed]
- Temme, C.; Blanchard, P.; Steffen, A.; Banic, C.; Beauchamp, S.; Poissant, L.; Tordon, R.; Wiens, B. Trend, seasonal and multivariate analysis study of total gaseous mercury data from the Canadian Atmospheric Mercury Measurement Network (CAMNet). Atmos. Environ. 2007, 41, 5423–5441. [Google Scholar] [CrossRef]
- Ci, Z.J.; Zhang, X.S.; Wang, Z.W.; Niu, Z.C. Atmospheric gaseous elemental mercury (GEM) over a coastal/rural site. Atmos. Environ. 2011, 45, 2480–2487. [Google Scholar] [CrossRef]
- Mao, H.; Talbot, R. Long-term variation in speciated mercury at marine, coastal and inland sites in New England: Part I Temporal Variability. Atmos. Chem. Phys. 2012, 12, 5099–5112. [Google Scholar]
- Nair, U.S.; Wu, Y.L.; Walters, J.; Jansen, J.; Edgerton, E.S. Diurnal and seasonal variation of mercury species at coastal-suburban, urban, and rural sites in the southeastern United States. Atmos. Environ. 2012, 47, 499–508. [Google Scholar] [CrossRef]
- Kolker, A.; Engle, M.A.; Peucker-Ehrenbrink, B.; Geboy, N.J.; Krabbenhoft, D.P.; Bothner, M.H.; Tate, M.T. Atmospheric mercury and fine particulate matter in coastal New England: Implications for mercury and trace element sources in the northeastern United States. Atmos. Environ. 2013, 79, 760–768. [Google Scholar]
- Cheng, I.; Zhang, L.M.; Mao, H.T.; Blanchard, P.; Tordon, R.; Dalziel, J. Seasonal and diurnal patterns of speciated atmospheric mercury at a coastal-rural and a coastal-urban site. Atmos. Environ. 2014, 82, 193–205. [Google Scholar] [CrossRef]
- Capri, A.; Chen, Y.F. Gaseous elemental mercury fluxes in New York City. Water Air Soil Pollut. 2002, 140, 371–379. [Google Scholar] [CrossRef]
- Denis, M.S.; Song, X.; Lu, J.Y.; Feng, X. Atmospheric gaseous elemental mercury in downtown Toronto. Atmos. Environ. 2006, 40, 4016–4024. [Google Scholar] [CrossRef]
- Liu, B.; Keeler, G.J.; Dvonch, J.T.; Barres, J.A.; Lynam, M.M.; Marsik, F.J.; Morgan, J.T. Temporal variability of mercury speciation in urban air. Atmos. Environ. 2007, 41, 1911–1923. [Google Scholar] [CrossRef]
- Cheng, I.; Lu, J.; Song, X.J. Studies of potential sources that contributed to atmospheric mercury in Toronto, Canada. Atmos. Environ. 2009, 43, 6145–6158. [Google Scholar]
- Xu, X.; Akhtar, U.S. Identification of potential regional sources of atmospheric total gaseous mercury in Windsor, Ontario, Canada using hybrid receptor modeling. Atmos. Chem. Phys. 2010, 10, 7073–7083. [Google Scholar]
- Kim, K.H.; Shon, Z.H.; Nguyen, H.T.; Jung, K.; Park, C.G.; Bae, G.N. The effect of man made source processes on the behavior of total gaseous mercury in air: A comparison between four urban monitoring sites in Seoul Korea. Sci. Total Environ. 2011, 409, 3801–3811. [Google Scholar] [CrossRef] [PubMed]
- Parsons, M.T.; McLennan, D.; Lapalme, M.; Mooney, C.; Watt, C.; Mintz, R. Total gaseous mercury concentration measurements at Fort McMurray, Alberta, Canada. Atmosphere 2013, 4, 472–493. [Google Scholar] [CrossRef]
- Ministry of the Environment Ontario (MOE). Air Quality in Ontario 2011 Report. Available online: https://dr6j45jk9xcmk.cloudfront.net/documents/1118/70-air-quality-in-ontario-2011-report-en.pdf (accessed on 25 June 2014).
- Akhtar, U.S. Atmospheric Total Gaseous Mercury Concentration Measurement in Windsor: A Study of Variability and Potential Sources. Master’s Thesis, University of Windsor, Windsor, ON, Canada, 2008. [Google Scholar]
- Environment Canada. Climate Data. Available online: http://www.climate.weatheroffice.ec.gc.ca/climateData/hourlydata_e.html (accessed on 1 August 2013).
- Ministry of Environment Ontario (MOE). Historical Air Pollutant Data. Available online: http://www.airqualityontario.com/history/index.php. (accessed on 1 August 2013).
- Cole, A.S.; Steffen, A.; Pfaffhuber, K.A.; Berg, T.; Pilote, M.; Poissant, L.; Tordon, R.; Hung, H. Ten-year trends of atmospheric mercury in the high Arctic compared to Canadian sub-Arctic and mid-latitude sites. Atmos. Chem. Phys. 2013, 13, 1535–1545. [Google Scholar] [Green Version]
- Slemr, F.; Brunke, E.G.; Ebinghaus, R.; Kuss, J. Worldwide trend of atmospheric mercury since 1995. Atmos. Chem. Phys. 2011, 11, 4779–4787. [Google Scholar]
- Zhang, Y.; Jaeglé, L. Decreases in mercury wet deposition over the United States during 2004–2010: Roles of domestic and global background emission reductions. Atmosphere 2013, 4, 113–131. [Google Scholar] [CrossRef]
- Environment Canada. NPRI. Heavy Metals and Persistent Organic Pollutants (National: 1990–2012). Available online: http://www.ec.gc.ca/inrp-npri/default.asp?lang=en\&n=0EC58C98 (accessed on 1 December 2013).
- Mao, H.; Talbot, R.; Hegarty, J.; Koermer, J. Long-term variation in speciated mercury at marine, coastal and inland sites in New England: Part II Relationships with atmospheric physical parameters. Atmos. Chem. Phys. 2012, 12, 4181–4206. [Google Scholar]
- Gabriel, M.C.; Williamson, D.G.; Zhang, H.; Brooks, S.; Lindberg, S. Diurnal and seasonal trends in total gaseous mercury flux from three urban ground surfaces. Atmos. Environ. 2006, 40, 4269–4284. [Google Scholar] [CrossRef]
- United States Department of Energy (USDOE). Table 32. USA Coal Consumption by End-Use Sector, 2007–2013. Available online: http://www.eia.gov/coal/production/quarterly/pdf/t32p01p1.pdf (accessed on 25 June 2014).
- Keating, M. Mercury and Midwest Power Plants; Clean Air Task Force: Boston, MA, USA, 2003. [Google Scholar]
- Ontario Clean Air Alliance. An OCAA Air quality Report, OPC: Ontario’s Pollution Giant. Available online: http://www.cleanairalliance.org/resource/opgiant.pdf (accessed on 25 June 2014).
- Stamenkovic, J.; Lyman, S.; Gustin, M.S. Seasonal and diel variation of atmospheric mercury concentrations in the Reno (NV, USA) Airshed. Atmos. Environ. 2007, 41, 6662–6672. [Google Scholar] [CrossRef]
- Brooks, S.; Luke, W.; Cohen, M.; Kelly, P.; Lefer, B.; Rappenglück, B. Mercury species measured atop the Moody Tower TRAMP site, Houston, Texas. Atmos. Environ. 2010, 44, 4045–4055. [Google Scholar] [CrossRef]
- Durnford, D.; Dastoor, A.; Figueras-Nieto, D.; Ryjkov, A. Long range transport of mercury to the Arctic and across Canada. Atmos. Chem. Phys. 2010, 10, 6063–6086. [Google Scholar]
- Kellerhals, M.; Beauchamp, S.; Belzer, W.; Blanchard, P.; Froude, F.; Harvey, B.; McDonald, K.; Pilote, M.; Poissant, L.; Puckett, K.; et al. Temporal and spatial variability of total gaseous mercury in Canada: Results from the Canadian Atmospheric Mercury Measurement Network (CAMNet). Atmos. Environ. 2003, 37, 1003–1011. [Google Scholar] [CrossRef]
- Lindberg, S.E.; Stratton, W.J. Atmospheric mercury speciation: Concentrations and behaviour of reactive gaseous mercury in ambient air. Environ. Sci. Technol. 1998, 32, 49–57. [Google Scholar] [CrossRef]
- Huang, J.Y.; Choi, H.D.; Hopke, P.K.; Holsen, T.M. Ambient mercury sources in Rochester, NY: Results from Principle Components Analysis (PCA) of mercury monitoring network data. Environ. Sci. Technol. 2010, 44, 8441–8445. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Talbot, R.; Sigler, J.M.; Sive, B.C.; Hegarty, J.D. Seasonal and diurnal variation in Hg° over New England. Atmos. Chem. Phys. 2008, 8, 1403–1421. [Google Scholar]
- Kim, K.H.; Kim, M.Y. Some insights into short-term variability of total gaseous mercury in urban air. Atmos. Environ. 2001, 35, 49–59. [Google Scholar]
- Lynam, M.M.; Keeler, G.J. Source-receptor relationships for atmospheric mercury in urban Detroit, Michigan. Atmos. Environ. 2006, 40, 3144–3155. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Xu, X.; Akhtar, U.; Clark, K.; Wang, X. Temporal Variability of Atmospheric Total Gaseous Mercury in Windsor, ON, Canada. Atmosphere 2014, 5, 536-556. https://doi.org/10.3390/atmos5030536
Xu X, Akhtar U, Clark K, Wang X. Temporal Variability of Atmospheric Total Gaseous Mercury in Windsor, ON, Canada. Atmosphere. 2014; 5(3):536-556. https://doi.org/10.3390/atmos5030536
Chicago/Turabian StyleXu, Xiaohong, Umme Akhtar, Kyle Clark, and Xiaobin Wang. 2014. "Temporal Variability of Atmospheric Total Gaseous Mercury in Windsor, ON, Canada" Atmosphere 5, no. 3: 536-556. https://doi.org/10.3390/atmos5030536
APA StyleXu, X., Akhtar, U., Clark, K., & Wang, X. (2014). Temporal Variability of Atmospheric Total Gaseous Mercury in Windsor, ON, Canada. Atmosphere, 5(3), 536-556. https://doi.org/10.3390/atmos5030536