Next Article in Journal
Temporal Variability of Atmospheric Total Gaseous Mercury in Windsor, ON, Canada
Next Article in Special Issue
A Modelling Study of the Impact of On-Road Diesel Emissions on Arctic Black Carbon and Solar Radiation Transfer
Previous Article in Journal
A Comparative Study of B-, Γ- and Log-Normal Distributions in a Three-Moment Parameterization for Drop Sedimentation
Open AccessArticle

Atmospheric Ozone and Methane in a Changing Climate

Department of Geosciences, University of Oslo, N-0315 Oslo, Norway
Center for International Climate and Environmental Research—Oslo (CICERO), N-0318 Oslo, Norway
Department of Geology and Geoenvironment, University of Athens, 15784 Athens, Greece
NORWEGIAN Institute for Air Research (NILU), N-2027 Kjeller, Norway
Academy of Athens, 10680 Athens, Greece
University of California, Irvine, CA 92697, USA
Author to whom correspondence should be addressed.
Atmosphere 2014, 5(3), 518-535;
Received: 13 September 2013 / Revised: 19 March 2014 / Accepted: 17 June 2014 / Published: 29 July 2014
(This article belongs to the Special Issue Climate-Chemistry Interactions)
Ozone and methane are chemically active climate-forcing agents affected by climate–chemistry interactions in the atmosphere. Key chemical reactions and processes affecting ozone and methane are presented. It is shown that climate-chemistry interactions have a significant impact on the two compounds. Ozone, which is a secondary compound in the atmosphere, produced and broken down mainly in the troposphere and stratosphre through chemical reactions involving atomic oxygen (O), NOx compounds (NO, NO2), CO, hydrogen radicals (OH, HO2), volatile organic compounds (VOC) and chlorine (Cl, ClO) and bromine (Br, BrO). Ozone is broken down through changes in the atmospheric distribution of the afore mentioned compounds. Methane is a primary compound emitted from different sources (wetlands, rice production, livestock, mining, oil and gas production and landfills).Methane is broken down by the hydroxyl radical (OH). OH is significantly affected by methane emissions, defined by the feedback factor, currently estimated to be in the range 1.3 to 1.5, and increasing with increasing methane emission. Ozone and methane changes are affected by NOx emissions. While ozone in general increase with increases in NOx emission, methane is reduced, due to increases in OH. Several processes where current and future changes have implications for climate-chemistry interactions are identified. It is also shown that climatic changes through dynamic processes could have significant impact on the atmospheric chemical distribution of ozone and methane, as we can see through the impact of Quasi Biennial Oscillation (QBO). Modeling studies indicate that increases in ozone could be more pronounced toward the end of this century. Thawing permafrost could lead to important positive feedbacks in the climate system. Large amounts of organic material are stored in the upper layers of the permafrost in the yedoma deposits in Siberia, where 2 to 5% of the deposits could be organic material. During thawing of permafrost, parts of the organic material that is deposited could be converted to methane. Furthermore, methane stored in deposits under shallow waters in the Arctic have the potential to be released in a future warmer climate with enhanced climate impact on methane, ozone and stratospheric water vapor. Studies performed by several groups show that the transport sectors have the potential for significant impacts on climate-chemistry interactions. There are large uncertainties connected to ozone and methane changes from the transport sector, and to methane release and climate impact during permafrost thawing. View Full-Text
Keywords: ozone; methane; atmospheric processes; chemistry; dynamics; Quasi Biennial Oscillation (QBO); permafrost ozone; methane; atmospheric processes; chemistry; dynamics; Quasi Biennial Oscillation (QBO); permafrost
Show Figures

Figure 1

MDPI and ACS Style

Isaksen, I.S.A.; Berntsen, T.K.; Dalsøren, S.B.; Eleftheratos, K.; Orsolini, Y.; Rognerud, B.; Stordal, F.; Søvde, O.A.; Zerefos, C.; Holmes, C.D. Atmospheric Ozone and Methane in a Changing Climate. Atmosphere 2014, 5, 518-535.

AMA Style

Isaksen ISA, Berntsen TK, Dalsøren SB, Eleftheratos K, Orsolini Y, Rognerud B, Stordal F, Søvde OA, Zerefos C, Holmes CD. Atmospheric Ozone and Methane in a Changing Climate. Atmosphere. 2014; 5(3):518-535.

Chicago/Turabian Style

Isaksen, Ivar S.A.; Berntsen, Terje K.; Dalsøren, Stig B.; Eleftheratos, Kostas; Orsolini, Yvan; Rognerud, Bjørg; Stordal, Frode; Søvde, Ole A.; Zerefos, Christos; Holmes, Chris D. 2014. "Atmospheric Ozone and Methane in a Changing Climate" Atmosphere 5, no. 3: 518-535.

Find Other Styles

Article Access Map by Country/Region

Only visits after 24 November 2015 are recorded.
Search more from Scilit
Back to TopTop