Evaluation of Extreme Precipitation over East China in CMIP6 Models
Abstract
1. Introduction
2. Data and Methods
2.1. Data
2.2. Climate Indices
2.3. Evaluation Method
2.3.1. Taylor Diagram
2.3.2. Interannual Variability Skill Score
3. Results
3.1. Climatology Evolution
3.2. Interannual Variability Evolution
3.3. Overall Model Ordering
3.4. Comparison of Different Ensemble Simulations
3.5. The Possible Causes of Different Simulated Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. [Google Scholar]
- Chen, H.; Sun, J.; Lin, W.; Xu, H. Comparison of CMIP6 and CMIP5 models in simulating climate extremes. Sci. Bull. 2020, 65, 1415–1418. [Google Scholar] [CrossRef]
- Kim, Y.; Min, S.; Zhang, X.; Sillmann, J.; Sandstad. Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather. Clim. Extrem. 2020, 29, 100269. [Google Scholar] [CrossRef]
- Zhu, H.; Jiang, Z.; Li, L. Projection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6. Sci. Bull. 2021, 66, 2528–2537. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Li, W.; Xu, J.; Li, L. Extreme precipitation indices over China in CMIP5 models, part I: Model evaluation. J. Clim. 2015, 28, 8603–8617. [Google Scholar] [CrossRef]
- Amato, R.; Steptoe, H.; Buonomo, E.; Jones, R. High-resolution history: Downscaling China’s climate from the 20CRv2c reanalysis. J. Appl. Meteorol. Climatol. 2019, 58, 2141–2157. [Google Scholar] [CrossRef]
- Jiang, D.; Hu, D.; Tian, Z.; Lang, X. Differences between CMIP6 and CMIP5 models in simulating climate over China and the East Asian monsoon. Adv. Atmos. Sci. 2020, 37, 1102–1118. [Google Scholar] [CrossRef]
- Zhu, H.; Jiang, Z.; Li, J.; Li, W.; Sun, C.; Li, L. Does CMIP6 inspire more confidence in simulating climate extremes over China? Adv. Atmos. Sci. 2020, 37, 1119–1132. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, B.; Xu, Y.; Han, Z. CMIP6 evaluation and projection of temperature and precipitation over China. Adv. Atmos. Sci. 2021, 38, 817–830. [Google Scholar] [CrossRef]
- Dong, T.; Dong, W. Evaluation of extreme precipitation over Asia in CMIP6 models. Clim. Dyn. 2021, 57, 1751–1769. [Google Scholar] [CrossRef]
- Zhou, T.; Zou, L.; Chen, X. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6). Adv. Clim. Change Res. 2019, 15, 445–456. (In Chinese) [Google Scholar]
- Jiang, Z.; Song, J.; Li, L.; Chen, W.; Wang, Z.; Wang, J. Extreme climate events in China: IPCC-AR4 model evaluation and projection. Clim. Change 2012, 110, 385–401. [Google Scholar]
- Jiang, D.; Tian, Z.; Lang, X. Reliability of climate models for China through the IPCC Third to Fifth Assessment Reports. Int. J. Climatol. 2016, 36, 1114–1133. [Google Scholar]
- Ou, T.; Chen, D.; Linderholm, H.; Jeong, J. Evaluation of global climate models in simulating extreme precipitation in China. Tellus A Dyn. Meteorol. Oceanogr. 2013, 65, 19799. [Google Scholar] [CrossRef]
- Chen, X.; Xu, Y.; Xu, C.; Yao, Y. Assessment of precipitation simulations in China by CMIP5 multi-models. Adv. Clim. Change Res. 2014, 10, 217–225, (In Chinese with English abstract). [Google Scholar]
- Chen, H.; Sun, J. Robustness of precipitation projections in China: Comparison between CMIP5 and CMIP3 models. Atmos. Ocean. Sci. Lett. 2014, 7, 67–73. [Google Scholar]
- Chen, H.; Sun, J. Assessing model performance of climate extremes in China: An intercomparison between CMIP5 and CMIP3. Clim. Change 2015, 129, 197–211. [Google Scholar] [CrossRef]
- Chen, L.; Frauenfeld, O. A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections. J. Geophys. Res. Atmos. 2014, 119, 5767–5786. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.; Senior, C.; Stevens, B.; Stouffer, R.; Taylor, K. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Ha, K.; Moon, S.; Timmermann, A.; Kim, D. Future changes of summer monsoon characteristics and evaporative demand over Asia in CMIP6 simulations. Geophys. Res. Lett. 2020, 47, e2020GL087492. [Google Scholar] [CrossRef]
- Nie, S.; Fu, S.; Cao, W.; Jia, X. Comparison of monthly air and land surface temperature extremes simulated using CMIP5 and CMIP6 versions of the Beijing Climate Center climate model. Theor. Appl. Climatol. 2020, 140, 487–502. [Google Scholar] [CrossRef]
- Xin, X.; Wu, T.; Zhang, J.; Yao, J.; Fang, Y. Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon. Int. J. Climatol. 2020, 40, 6423–6440. [Google Scholar] [CrossRef]
- Srivastava, A.; Grotjahn, R.; Ullrich, P. Evaluation of historical CMIP6 model simulations of extreme precipitation over contiguous US regions. Weather. Clim. Extrem. 2020, 29, 100268. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X. A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys. 2013, 56, 1102–1111, (In Chinese with English abstract). [Google Scholar]
- Dong, S.; Xu, Y.; Zhou, B.; Shi, Y. Assessment of indices of temperature extremes simulated by multiple CMIP5 models over China. Adv. Atmos. Sci. 2015, 32, 1077–1091. [Google Scholar] [CrossRef]
- Zhu, H.; Jiang, Z.; Li, L.; Li, W.; Jiang, S.; Zhou, P.; Zhao, W.; Li, T. Intercomparison of multi-model ensemble-processing strategies within a consistent framework for climate projection in China. Sci. China Earth Sci. 2023, 66, 2125–2141. [Google Scholar] [CrossRef]
- Zhang, X.; Alexander, L.; Hegerl, G.; Jones, P.; Tank, A.; Peterson, T.; Trewin, B.; Zwiers, F. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Change 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Zhou, B.; Wen, Q.; Xu, Y.; Song, L.; Zhang, X. Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. J. Clim. 2014, 27, 6591–6611. [Google Scholar] [CrossRef]
- Taylor, K. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Chen, W.; Jiang, Z.; Li, L. Probabilistic projections of climate change over China under the SRES A1B scenario using 28 AOGCMs. J. Clim. 2011, 24, 4741–4756. [Google Scholar] [CrossRef]
- Yao, J.; Zhou, T.; Guo, Z.; Chen, X.; Zou, L.; Sun, Y. Improved performance of high-resolution atmospheric models in simulating the East Asian summer monsoon rain belt. J. Clim. 2017, 30, 8825–8840. [Google Scholar] [CrossRef]
- Bador, M.; Boé, J.; Terray, L.; Alexander, L.; Baker, A.; Bellucci, A.; Haarsma, R.; Koenigk, T.; Moine, M.; Lohmann, K.; et al. Impact of higher spatial atmospheric resolution on precipitation extremes over land in Global Climate Models. J. Geophys. Res. 2020, 125, e2019JD032184. [Google Scholar] [CrossRef]
- Jiang, T.; Kundzewicz, Z. Changes in monthly precipitation and flood hazard in the Yangtze River Basin, China. Int. J. Climatol. 2008, 28, 1471–1481. [Google Scholar] [CrossRef]
- Senviratne, S. Changes in climate extremes and their impacts on the natural physical environment. In IPCC Special Report on Extremes; Cambridge University Press: Cambridge, UK, 2012; pp. 109–230. [Google Scholar]
- Sui, Y.; Jiang, D.; Tian, Z. Latest update of the climatology and changes in the seasonal distribution of precipitation over China. Theor. Appl. Climatol. 2013, 113, 599–610. [Google Scholar] [CrossRef]
- Lin, L.; Gettelman, A.; Xu, Y.; Wu, C.; Wang, Z.; Rosenbloom, N.; Bates, S.; Dong, W. CAM6 simulation of mean and extreme precipitation over Asia: Sensitivity to upgraded physical parameterizations and higher horizontal resolution. Geosci. Model Dev. 2019, 12, 3773–3793. [Google Scholar] [CrossRef]
- Ding, Y.; Chan, J. The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys. 2005, 89, 117–142. [Google Scholar]
- Li, G.; Xie, S.; He, C.; Chen, Z. Western Pacifc emergent constraint lowers projected increase in Indian summer monsoon rainfall. Nat. Clim. Change 2017, 7, 708–712. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, T.; Wu, P.; Guo, Z.; Wang, M. Emergent constraints on future projections of the western North Pacific Subtropical High. Nat. Commun. 2020, 11, 2802. [Google Scholar] [CrossRef]
- Zhao, C.; Jiang, Z.; Sun, X.; Li, W.; Li, L. How well do climate models simulate regional atmospheric circulation over East Asia? Int. J. Climatol. 2020, 40, 220–234. [Google Scholar] [CrossRef]
- Zhou, S.; Huang, P.; Huang, G.; Hu, K. Leading source and constraint on the systematic spread of the changes in East Asian and western North Pacific summer monsoon. Environ. Res. Lett. 2019, 14, 124059. [Google Scholar] [CrossRef]
- Lin, L.; Hu, C.; Wang, B.; Wu, R.; Wu, Z.; Yang, S.; Cai, W.; Li, P.; Xiong, X.; Chen, D. Atlantic origin of the increasing Asian westerly jet interannual variability. Nat Commun. 2024, 15, 2155. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Jiang, Z.; Ding, M.; Chen, W.; Li, L. Downscaling and projection of summer rainfall in Eastern China using a nonhomogeneous hidden Markov model. Int. J. Climatol. 2018, 39, 1319–1330. [Google Scholar] [CrossRef]
- Li, M.; Jiang, Z.; Zhou, P.; Treut, H.; Li, L. Projection and possible causes of summer precipitation in eastern China using self-organizing map. Clim. Dyn. 2020, 54, 2815–2830. [Google Scholar] [CrossRef]
- Hall, A.; Rahimi, S.; Norris, J.; Ban, N.; Siler, N.; Leung, L.; Ullrich, P.; Reed, K.; Prein, A.; Qian, Y. An Evaluation of Dynamical Downscaling Methods Used to Project Regional Climate Change. J. Geophys. Res. Atmos. 2024, 129, e2023JD040591. [Google Scholar] [CrossRef]
- Knutti, R. 2010: The end of model democracy? An editorial comment. Clim. Change 2010, 102, 395–404. [Google Scholar] [CrossRef]
- Knutti, R.; Sedláček, J.; Sanderson, B.; Lorenz, R.; Fischer, E.; Eyring, V. A climate model projection weighting scheme accounting for performance and interdependence. Geophys. Res. Lett. 2017, 44, 1909–1918. [Google Scholar] [CrossRef]
- Li, T.; Jiang, Z.; Zhao, L.; Li, L. Multi-model ensemble projection of precipitation changes over China under global warming of 1.5 and 2 °C with consideration of model performance and independence. J. Meteorol. Res. 2021, 35, 184–197. [Google Scholar] [CrossRef]
- Zhu, H.; Jiang, Z.; Li, L.; Li, W.; Jiang, S. Improve the projection of East China summer precipitation with emergent constraints. npj Clim. Atmos. Sci. 2024, 7, 298. [Google Scholar] [CrossRef]










| Number | Name | Rank | Group | Atmospheric Resolution (lat × lon) |
|---|---|---|---|---|
| 1 | ACCESS-CM2 | 22 | B | 1.25° × 1.875° |
| 2 | ACCESS-ESM1-5 | 11 | A | 1.25° × 1.875° |
| 3 | BCC-CSM2-MR | 8 | A | 1.125° × 1.125° |
| 4 | CanESM5 | 18 | B | 2.8° × 2.8° |
| 5 | CESM2-WACCM | 19 | B | 0.9375° × 1.25° |
| 6 | CMCC-CM2-SR5 | 20 | B | 0.9375° × 1.25° |
| 7 | CMCC-ESM2 | 15 | B | 0.9375° × 1.25° |
| 8 | CNRM-CM6-1 | 10 | A | 1.4° × 1.4° |
| 9 | CNRM-ESM2-1 | 9 | A | 1.4° × 1.4° |
| 10 | EC-Earth3 | 4 | A | 0.7° × 0.7° |
| 11 | EC-Earth3-CC | 5 | A | 0.7° × 0.7° |
| 12 | EC-Earth3-Veg | 3 | A | 0.7° × 0.7° |
| 13 | EC-Earth3-Veg-LR | 13 | B | 1.125° × 1.125° |
| 14 | FGOALS-g3 | 33 | C | 2.25° × 2° |
| 15 | GFDL-CM4 | 1 | A | 1° × 1.25° |
| 16 | GFDL-ESM4 | 6 | A | 1° × 1.25° |
| 17 | HadGEM3-GC31-LL | 16 | B | 1.25° × 1.875° |
| 18 | HadGEM3-GC31-MM | 26 | C | 0.56° × 0.83° |
| 19 | IITM-ESM | 17 | B | 1.9° × 1.875° |
| 20 | INM-CM4-8 | 32 | C | 1.5° × 2° |
| 21 | INM-CM5-0 | 25 | C | 1.5° × 2° |
| 22 | IPSL-CM6A-LR | 24 | C | 1.26° × 2.5° |
| 23 | KACE-1-0-G | 23 | C | 1.25° × 1.875° |
| 24 | KIOST-ESM | 27 | C | 1.875° × 1.875° |
| 25 | MIROC6 | 2 | A | 1.4° × 1.4° |
| 26 | MIROC-ES2L | 31 | C | 2.8° × 2.8° |
| 27 | MPI-ESM-1-2-HR | 30 | C | 0.9375° × 0.9375° |
| 28 | MPI-ESM-1-2-LR | 34 | C | 1.875° × 1.875° |
| 29 | MRI-ESM2-0 | 14 | B | 1.125° × 1.125° |
| 30 | NESM3 | 29 | C | 1.875° × 1.875° |
| 31 | NorESM2-LM | 28 | C | 1.875° × 2.5° |
| 32 | NorESM2-MM | 12 | A | 0.94° × 1.25° |
| 33 | TaiESM1 | 7 | A | 0.9375° × 1.25° |
| 34 | UKESM1-0-LL | 21 | B | 1.25° × 1.875° |
| Name | Abbreviation | Definition | Units |
|---|---|---|---|
| Total precipitation | Prcptot | Annual total precipitation in wet days (RR ≥ 1 mm) | mm |
| Heavy precipitation | R95p | Annual total precipitation from days > 95th percentile | mm |
| Max 1-day precipitation amount | Rx1day | Annual maximum 1-day precipitation | mm |
| Max 5-day precipitation amount | Rx5day | Annual maximum consecutive 5-day precipitation | mm |
| Name | TSS | IVS | ||||||
|---|---|---|---|---|---|---|---|---|
| Prcptot | R95P | Rx1day | Rx5day | Prcptot | R95P | Rx1day | Rx5day | |
| ACCESS-CM2 | 0.75 | 0.64 | 0.63 | 0.64 | 0.35 | 0.44 | 0.79 | 0.9 |
| ACCESS-ESM1-5 | 0.77 | 0.81 | 0.91 | 0.82 | 0.45 | 0.42 | 0.57 | 0.87 |
| BCC-CSM2-MR | 0.79 | 0.90 | 0.87 | 0.89 | 0.30 | 0.39 | 1.21 | 0.85 |
| CanESM5 | 0.88 | 0.85 | 0.79 | 0.77 | 0.69 | 0.58 | 0.90 | 1.17 |
| CESM2-WACCM | 0.87 | 0.80 | 0.74 | 0.89 | 0.80 | 0.84 | 0.91 | 1.08 |
| CMCC-CM2-SR5 | 0.85 | 0.80 | 0.78 | 0.84 | 0.75 | 0.98 | 0.81 | 0.96 |
| CMCC-ESM2 | 0.84 | 0.80 | 0.82 | 0.85 | 0.46 | 0.70 | 0.65 | 0.99 |
| CNRM-CM6-1 | 0.86 | 0.87 | 0.80 | 0.83 | 0.47 | 0.45 | 0.81 | 0.63 |
| CNRM-ESM2-1 | 0.88 | 0.87 | 0.82 | 0.82 | 0.56 | 0.50 | 0.72 | 0.68 |
| EC-Earth3 | 0.96 | 0.87 | 0.60 | 0.84 | 0.14 | 0.25 | 0.93 | 0.57 |
| EC-Earth3-CC | 0.96 | 0.89 | 0.58 | 0.82 | 0.18 | 0.28 | 0.85 | 0.63 |
| EC-Earth3-Veg | 0.96 | 0.88 | 0.58 | 0.83 | 0.17 | 0.27 | 0.79 | 0.58 |
| EC-Earth3-Veg-LR | 0.95 | 0.84 | 0.46 | 0.78 | 0.14 | 0.33 | 1.81 | 0.88 |
| FGOALS-g3 | 0.65 | 0.60 | 0.59 | 0.66 | 0.89 | 1.48 | 1.22 | 1.67 |
| GFDL-CM4 | 0.94 | 0.92 | 0.86 | 0.86 | 0.27 | 0.32 | 0.50 | 0.77 |
| GFDL-ESM4 | 0.89 | 0.87 | 0.81 | 0.82 | 0.25 | 0.37 | 0.54 | 0.78 |
| HadGEM3-GC31-LL | 0.87 | 0.78 | 0.79 | 0.82 | 0.41 | 0.49 | 1.44 | 1.23 |
| HadGEM3-GC31-MM | 0.89 | 0.79 | 0.71 | 0.81 | 0.54 | 0.71 | 2.85 | 2.01 |
| IITM-ESM | 0.92 | 0.89 | 0.62 | 0.79 | 0.22 | 0.73 | 3.23 | 2.09 |
| INM-CM4-8 | 0.79 | 0.87 | 0.20 | 0.69 | 0.66 | 0.73 | 1.58 | 1.10 |
| INM-CM5-0 | 0.83 | 0.90 | 0.43 | 0.78 | 0.65 | 0.81 | 1.05 | 0.91 |
| IPSL-CM6A-LR | 0.89 | 0.74 | 0.68 | 0.67 | 0.69 | 0.79 | 0.73 | 1.04 |
| KACE-1-0-G | 0.80 | 0.71 | 0.66 | 0.70 | 0.39 | 0.37 | 1.22 | 1.09 |
| KIOST-ESM | 0.63 | 0.68 | 0.76 | 0.76 | 0.39 | 0.55 | 1.20 | 1.08 |
| MIROC6 | 0.93 | 0.89 | 0.81 | 0.85 | 0.33 | 0.45 | 0.70 | 0.69 |
| MIROC-ES2L | 0.86 | 0.72 | 0.27 | 0.72 | 0.35 | 0.52 | 7.45 | 3.37 |
| MPI-ESM-1-2-HR | 0.89 | 0.64 | 0.46 | 0.64 | 0.34 | 0.66 | 1.55 | 3.37 |
| MPI-ESM-1-2-LR | 0.85 | 0.52 | 0.19 | 0.49 | 0.51 | 0.94 | 4.58 | 1.56 |
| MRI-ESM2-0 | 0.91 | 0.70 | 0.60 | 0.80 | 0.30 | 0.53 | 0.75 | 0.70 |
| NESM3 | 0.92 | 0.77 | 0.30 | 0.63 | 0.32 | 0.61 | 3.61 | 2.15 |
| NorESM2-LM | 0.85 | 0.69 | 0.34 | 0.75 | 0.42 | 0.51 | 2.31 | 0.85 |
| NorESM2-MM | 0.93 | 0.82 | 0.59 | 0.85 | 0.41 | 0.52 | 0.88 | 0.87 |
| TaiESM1 | 0.90 | 0.84 | 0.82 | 0.89 | 0.50 | 0.53 | 0.45 | 0.50 |
| UKESM1-0-LL | 0.86 | 0.77 | 0.72 | 0.76 | 0.51 | 0.47 | 1.13 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhu, H.; Yang, J. Evaluation of Extreme Precipitation over East China in CMIP6 Models. Atmosphere 2026, 17, 136. https://doi.org/10.3390/atmos17020136
Zhu H, Yang J. Evaluation of Extreme Precipitation over East China in CMIP6 Models. Atmosphere. 2026; 17(2):136. https://doi.org/10.3390/atmos17020136
Chicago/Turabian StyleZhu, Huanhuan, and Jiani Yang. 2026. "Evaluation of Extreme Precipitation over East China in CMIP6 Models" Atmosphere 17, no. 2: 136. https://doi.org/10.3390/atmos17020136
APA StyleZhu, H., & Yang, J. (2026). Evaluation of Extreme Precipitation over East China in CMIP6 Models. Atmosphere, 17(2), 136. https://doi.org/10.3390/atmos17020136

