Characterization of Secondary Aerosol Formation via HONO and HNO3 Reactions and Source Apportionment in Daejeon and Iksan, Republic of Korea
Abstract
1. Introduction
2. Materials and Methods
2.1. Measurement Sites and Campaign Period
2.2. PPDS-IC
2.3. PTR-ToF-MS
2.4. PMF Receptor Models
2.5. Methodological Framework for HONO and HNO3 Reaction
2.6. Photochemical Modeling Using F0AM
2.7. Thermodynamic Modeling Using ISORROPIA II
3. Results and Discussion
3.1. Temporal and Spatial Characteristics of Pollutant Concentrations
3.2. Source Apportionment of PM2.5 by PMF Model
3.3. Evaluation and Simulation Result from F0AM
3.4. Quantification of HONO Formation and Loss Pathways
3.5. Aerosol Conversion and Loss Pathways of HNO3
3.6. Estimation of Locally Formed and Externally Transported Nitrate
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akimoto, H.; Tanimoto, H. Review of Comprehensive Measurements of Speciated NOy and Its Chemistry: Need for Quantifying the Role of Heterogeneous Processes of HNO3 and HONO. Aerosol Air Qual. Res. 2021, 21, 200395. [Google Scholar] [CrossRef]
- Liu, C.; Liang, L.; Xu, W.; Ma, Q. A Review of Indoor Nitrous Acid (HONO) Pollution: Measurement Techniques, Pollution Characteristics, Sources, and Sinks. Sci. Total Environ. 2024, 921, 171100. [Google Scholar] [CrossRef]
- Rutter, A.P.; Malloy, Q.G.J.; Leong, Y.J.; Gutierrez, C.V.; Calzada, M.; Scheuer, E.; Dibb, J.E.; Griffin, R.J. The Reduction of HNO3 by Volatile Organic Compounds Emitted by Motor Vehicles. Atmos. Environ. 2014, 87, 200–206. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, T.; Wu, J.; Xue, L.; Chan, J.; Zha, Q.; Zhou, S.; Louie, P.K.K.; Luk, C.W.Y. Nitrous Acid (HONO) in a Polluted Subtropical Atmosphere: Seasonal Variability, Direct Vehicle Emissions and Heterogeneous Production at Ground Surface. Atmos. Environ. 2015, 106, 100–109. [Google Scholar] [CrossRef]
- Wang, L.; Wen, L.; Xu, C.; Chen, J.; Wang, X.; Yang, L.; Wang, W.; Yang, X.; Sui, X.; Yao, L.; et al. HONO and Its Potential Source Particulate Nitrite at an Urban Site in North China during the Cold Season. Sci. Total Environ. 2015, 538, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Alicke, B.; Geyer, A.; Hofzumahaus, A.; Holland, F.; Konrad, S.; Pätz, H.W.; Schäfer, J.; Stutz, J.; Volz-Thomas, A.; Platt, U. OH Formation by HONO Photolysis during the BERLIOZ Experiment. J. Geophys. Res. Atmos. 2003, 108, PHO 3-1–PHO 3-17. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Cheng, M.-T.; Ting, W.-Y.; Yeh, C.-R. Characteristics of Gaseous HNO2, HNO3, NH3 and Particulate Ammonium Nitrate in an Urban City of Central Taiwan. Atmos. Environ. 2006, 40, 4725–4733. [Google Scholar] [CrossRef]
- Saathoff, H.; Naumann, K.-H.; Riemer, N.; Kamm, S.; Möhler, O.; Schurath, U.; Vogel, H.; Vogel, B. The Loss of NO2, HNO3, NO3/N2O5, and HO2/HOONO2 on Soot Aerosol: A Chamber and Modeling Study. Geophys. Res. Lett. 2001, 28, 1957–1960. [Google Scholar] [CrossRef]
- Vlasenko, A.; Sjogren, S.; Weingartner, E.; Stemmler, K.; Gäggeler, H.W.; Ammann, M. Effect of Humidity on Nitric Acid Uptake to Mineral Dust Aerosol Particles. Atmos. Chem. Phys. 2006, 6, 2147–2160. [Google Scholar] [CrossRef]
- Abbatt, J.P.D.; Waschewsky, G.C.G. Heterogeneous Interactions of HOBr, HNO3, O3, and NO2 with Deliquescent NaCl Aerosols at Room Temperature. J. Phys. Chem. A 1998, 102, 3719–3725. [Google Scholar] [CrossRef]
- Heikes, B.G.; Thompson, A.M. Effects of Heterogeneous Processes on NO3, HONO, and HNO3 Chemistry in the Troposphere. J. Geophys. Res. Ocean. 1983, 88, 10883–10895. [Google Scholar] [CrossRef]
- Kim, K.; Han, K.M.; Song, C.H.; Lee, H.; Beardsley, R.; Yu, J.; Yarwood, G.; Koo, B.; Madalipay, J.; Woo, J.-H.; et al. An Investigation into Atmospheric Nitrous Acid (HONO) Processes in South Korea. EGUsphere 2024, 24, 12575–12593. [Google Scholar] [CrossRef]
- Karamchandani, P.; Emery, C.; Yarwood, G.; Lefer, B.; Stutz, J.; Couzo, E.; Vizuete, W. Implementation and Refinement of a Surface Model for Heterogeneous HONO Formation in a 3-D Chemical Transport Model. Atmos. Environ. 2015, 112, 356–368. [Google Scholar] [CrossRef]
- Lee, J.D.; Whalley, L.K.; Heard, D.E.; Stone, D.; Dunmore, R.E.; Hamilton, J.F.; Young, D.E.; Allan, J.D.; Laufs, S.; Kleffmann, J. Detailed Budget Analysis of HONO in Central London Reveals a Missing Daytime Source. Atmos. Chem. Phys. 2016, 16, 2747–2764. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Guo, J.; Wang, Z.; Zhang, M. Observation of Nitrous Acid (HONO) in Beijing, China: Seasonal Variation, Nocturnal Formation and Daytime Budget. Sci. Total Environ. 2017, 587–588, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Lee, C.; Choi, D.; Han, S.; Eom, J.; Han, J. A Study on the Formation Reactions and Conversion Mechanisms of HONO and HNO3 in the Atmosphere of Daejeon, Korea. Atmosphere 2024, 15, 267. [Google Scholar] [CrossRef]
- Kang, S.; Park, G.; Park, T.; Ban, J.; Kim, K.; Seo, Y.; Choi, J.; Seo, S.; Choi, J.; Bae, M.-S.; et al. Semi-Continuous Measurements of Water-Soluble Organic Carbon and Ionic Composition of PM2.5 in Baengnyeong Island during the 2016 KORUS-AQ (Korea-United States Air Quality Study). Asian J. Atmos. Environ. 2020, 14, 307–318. [Google Scholar] [CrossRef]
- Won, S.R.; Lee, K.; Song, M.; Kim, C.; Jang, K.-S.; Lee, J.Y. Characteristic of PM2.5 Concentration and Source Apportionment during Winter in Seosan, Korea. Asian J. Atmos. Environ. 2024, 18, 22. [Google Scholar] [CrossRef]
- Kim, C.H.; Kim, J.; Hwang, K.; Kim, P.; Shin, S.H.; Park, J.-S.; Park, S.; Lee, G.; Lee, J.Y.; Kim, J.B. Characteristics Analysis of PM2.5 in Industrial Complex Near Area According to Domestic and Foreign Influences in Case of High Concentration PM2.5 Episode Occurrence. KOSAE 2023, 39, 62–76. [Google Scholar] [CrossRef]
- Kim, J.-M.; Lee, H.-J.; Jo, H.-Y.; Jo, Y.-J.; Kim, C.-H. Vertical Characteristics of Secondary Aerosols Observed in the Seoul and Busan Metropolitan Areas of Korea during KORUS-AQ and Associations with Meteorological Conditions. Atmosphere 2021, 12, 1451. [Google Scholar] [CrossRef]
- NIER Air Pollution Monitoring Network Installation and Operation Guidelines. Available online: https://www.airkorea.or.kr/web/board/3/1051/?pMENU_NO=145 (accessed on 11 June 2025).
- Ministry of Environment (MOE) AirKorea: Hourly Trends. Available online: https://www.airkorea.or.kr/eng/hourlyTrends?pMENU_NO=151 (accessed on 31 October 2024).
- Pagonis, D.; Sekimoto, K.; de Gouw, J. A Library of Proton-Transfer Reactions of H3O+ Ions Used for Trace Gas Detection. J. Am. Soc. Mass Spectrom. 2019, 30, 1330–1335. [Google Scholar] [CrossRef] [PubMed]
- Jensen, N.R.; Gruening, C.; Goded, I.; Müller, M.; Hjorth, J.; Wisthaler, A. Eddy-Covariance Flux Measurements in an Italian Deciduous Forest Using PTR-ToF-MS, PTR-QMS and FIS. Int. J. Environ. Anal. Chem. 2018, 98, 758–788. [Google Scholar] [CrossRef]
- IONICON PTR-MS Viewer. Available online: https://www.ionicon.com/accessories/details/ptr-ms-viewer (accessed on 18 March 2025).
- Gueneron, M.; Erickson, M.H.; VanderSchelden, G.S.; Jobson, B.T. PTR-MS Fragmentation Patterns of Gasoline Hydrocarbons. Int. J. Mass Spectrom. 2015, 379, 97–109. [Google Scholar] [CrossRef]
- Kim, K.; Oh, B.-H.; Baek, J.-D.; Lee, C.-S.; Lim, Y.-J.; Joo, H.-S.; Han, J.-S. Characteristics and Source Profiles of Volatile Organic Compounds (VOCs) by Several Business Types in an Industrial Complex Using a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS). Atmosphere 2024, 15, 1156. [Google Scholar] [CrossRef]
- Oh, B.; Jeong, J.Y.; Shin, J.; Kim, B. A Field Study on Volatile Organic Compounds Generated During Cooking in a Large Pot Using PTR ToF MS. J. Environ. Anal. Health Toxicol. 2022, 25, 32–42. [Google Scholar] [CrossRef]
- US EPA Positive Matrix Factorization Model for Environmental Data Analyses. Available online: https://www.epa.gov/air-research/positive-matrix-factorization-model-environmental-data-analyses (accessed on 30 October 2024).
- Han, S.-W.; Joo, H.-S.; Song, H.-J.; Lee, S.-B.; Han, J.-S. Source Apportionment of PM2.5 in Daejeon Metropolitan Region during January and May to June 2021 in Korea Using a Hybrid Receptor Model. Atmosphere 2022, 13, 1902. [Google Scholar] [CrossRef]
- NIER. Establishment of Guidelines for the PMF Modeling and Applications; National Institute of Environmental Research: Singapore, 2021. [Google Scholar]
- Zhang, L.; He, Z.; Wu, Z.; Macdonald, A.M.; Brook, J.R.; Kharol, S. A Database of Modeled Gridded Dry Deposition Velocities for 45 Gaseous Species and Three Particle Size Ranges across North America. J. Environ. Sci. 2023, 127, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Liessmann, M.; Miller, Y.; Gerber, B.; Abel, B. Reaction of OH and NO at Low Temperatures in the Presence of Water: The Role of Clusters. Z. Für Phys. Chem. 2011, 225, 1129–1144. [Google Scholar] [CrossRef]
- Chan, W.H.; Nordstrom, R.J.; Calvert, J.G.; Shaw, J.H. Kinetic Study of Nitrous Acid Formation and Decay Reactions in Gaseous Mixtures of Nitrous Acid, Nitrogen Oxide (NO), Nitrogen Oxide (NO2), Water, and Nitrogen. ACS Publ. 1976, 10, 674–682. [Google Scholar] [CrossRef]
- Tyndall, G.S.; Orlando, J.J.; Calvert, J.G. Upper Limit for the Rate Coefficient for the Reaction HO2 + NO2 → HONO + O2. Environ. Sci. Technol. 1995, 29, 202–206. [Google Scholar] [CrossRef]
- England, C.; Corcoran, W.H. Kinetics and Mechanisms of the Gas-Phase Reaction of Water Vapor and Nitrogen Dioxide. Ind. Eng. Chem. Fund. 1974, 13, 373–384. [Google Scholar] [CrossRef]
- Acker, K.; Febo, A.; Trick, S.; Perrino, C.; Bruno, P.; Wiesen, P.; Möller, D.; Wieprecht, W.; Auel, R.; Giusto, M.; et al. Nitrous Acid in the Urban Area of Rome. Atmos. Environ. 2006, 40, 3123–3133. [Google Scholar] [CrossRef]
- Wolfe, G.M.; Marvin, M.R.; Roberts, S.J.; Travis, K.R.; Liao, J. The Framework for 0-D Atmospheric Modeling (F0AM) v3.1. Geosci. Model Dev. 2016, 9, 3309–3319. [Google Scholar] [CrossRef]
- Burkholder, J.B.; Mellouki, A.; Talukdar, R.; Ravishankara, A.R. Rate Coefficients for the Reaction of OH with HONO between 298 and 373 K. Int. J. Chem. Kinet. 1992, 24, 711–725. [Google Scholar] [CrossRef]
- Carter, W.P.L. Development of the SAPRC-07 Chemical Mechanism. Atmos. Environ. 2010, 44, 5324–5335. [Google Scholar] [CrossRef]
- Wahner, A.; Mentel, T.F.; Sohn, M. Gas-Phase Reaction of N2O5 with Water Vapor: Importance of Heterogeneous Hydrolysis of N2O5 and Surface Desorption of HNO3 in a Large Teflon Chamber. Geophys. Res. Lett. 1998, 25, 2169–2172. [Google Scholar] [CrossRef]
- Hack, W.; Preuss, A.W.; Temps, F.; Wagner, H.G.; Hoyermann, K. Direct Determination of the Rate Constant of the Reaction NO + HO2 → NO2 + OH with the LMR. Int. J. Chem. Kinet. 1980, 12, 851–860. [Google Scholar] [CrossRef]
- Becker, E.; Rahman, M.M.; Schindler, R.N. Determination of the Rate Constants for the Gas Phase Reactions of NO3 with H, OH and HO2 Radicals at 298 K. Berichte Der Bunsenges. Für Phys. Chem. 1992, 96, 776–783. [Google Scholar] [CrossRef]
- Jenkin, M.E.; Saunders, S.M.; Pilling, M.J. The Tropospheric Degradation of Volatile Organic Compounds: A Protocol for Mechanism Development. Atmos. Environ. 1997, 31, 81–104. [Google Scholar] [CrossRef]
- Saunders, S.M.; Jenkin, M.E.; Derwent, R.G.; Pilling, M.J. Protocol for the Development of the Master Chemical Mechanism, MCM v3 (Part A): Tropospheric Degradation of Non-Aromatic Volatile Organic Compounds. Atmos. Chem. Phys. 2003, 3, 161–180. [Google Scholar] [CrossRef]
- Jenkin, M.E.; Saunders, S.M.; Wagner, V.; Pilling, M.J. Protocol for the Development of the Master Chemical Mechanism, MCM v3 (Part B): Tropospheric Degradation of Aromatic Volatile Organic Compounds. Atmos. Chem. Phys. 2003, 3, 181–193. [Google Scholar] [CrossRef]
- Carter, W.P.L.; Pierce, J.A.; Luo, D.; Malkina, I.L. Environmental Chamber Study of Maximum Incremental Reactivities of Volatile Organic Compounds. Atmos. Environ. 1995, 29, 2499–2511. [Google Scholar] [CrossRef]
- Venecek, M.A.; Carter, W.P.L.; Kleeman, M.J. Updating the SAPRC Maximum Incremental Reactivity (MIR) Scale for the United States from 1988 to 2010. J. Air Waste Manag. Assoc. 2018, 68, 1301–1316. [Google Scholar] [CrossRef]
- Vodacek, A.; Kremens, R.L.; Fordham, A.J.; Vangorden, S.C.; Luisi, D.; Schott, J.R.; Latham, D.J. Remote Optical Detection of Biomass Burning Using a Potassium Emission Signature. Int. J. Remote Sens. 2002, 23, 2721–2726. [Google Scholar] [CrossRef]
- Kim, S.C. Study on the Health Effects of PM2.5 Constituents and Source Contributions in Major Metropolitan Cities (Seoul, Daejeon, Gwangju, and Ulsan), South Korea. Ph.D. Thesis, Seoul National University, Seoul, Korea, 2023. [Google Scholar]
- Wang, X.; Bai, F.-Y.; Sun, Y.-Q.; Wang, R.-S.; Pan, X.-M.; Tao, F.-M. Theoretical Study of the Gaseous Hydrolysis of NO2 in the Presence of NH3 as a Source of Atmospheric HONO. Environ. Chem. 2016, 13, 611. [Google Scholar] [CrossRef]
- Indarto, A. Heterogeneous Reactions of HONO Formation from NO2 and HNO3: A Review. Res. Chem. Intermed. 2012, 38, 1029–1041. [Google Scholar] [CrossRef]
- Guimbaud, C.; Arens, F.; Gutzwiller, L.; Gäggeler, H.W.; Ammann, M. Uptake of HNO3 to Deliquescent Sea-Salt Particles: A Study Using the Short-Lived Radioactive Isotope Tracer 13N. Atmos. Chem. Phys. 2002, 2, 249–257. [Google Scholar] [CrossRef]
- Smyshlyaev, S.P.; Mareev, E.A.; Galin, V.Y. Simulation of the Impact of Thunderstorm Activity on Atmospheric Gas Composition. Izv. Atmos. Ocean. Phys. 2010, 46, 451–467. [Google Scholar] [CrossRef]
Seasons | Date | Sites | |
---|---|---|---|
1 | Summer | 18 May 2021–16 Jun 2021 | Central region ARC (Daejeon) |
2 | Fall | 19 Oct 2021–23 Nov 2021 | Jeon-buk region ARC (Iksan) |
3 | Spring | 15 Feb 2022–14 Mar 2022 | |
4 | Summer | 02 May 2022–10 Jun 2022 |
Category | Reaction | Abbreviation | Reaction Constants | Units | Ref. |
---|---|---|---|---|---|
Production | NO + OH→HONO | 0.93 × 10−30 [N2] | cm6/molecules2 s | [33] | |
NO + NO2 + H2O→2HONO | 2.2 × 10−9 | /ppm2 min | [34] | ||
NO2 + HO2→HONO + O2 | 5 × 10−16 | cm3/molecules s | [35] | ||
2NO2 + H2O→HONO + HNO3 | 5.5 × 104 | L2/molecules2 s | [36] | ||
The emission from mobile sources (emission rate × [NOx]) | The emission rate was assumed to be 0.65% | [4] | |||
The heterogeneous reaction of HONO (conversion rate × [NO2]) | The conversion rates were calculated via equation in reference | [37] | |||
Loss | The photolysis of HONO (photolysis frequency × [HONO]) | The photolysis frequencies were calculated via equation in reference | [38] | ||
2HONO→NO + NO2 + H2O | 0.0014 | /ppm min | [34] | ||
HONO + OH→NO2 + H2O | 7.05 × 10−12 | cm3/molecules s | [39] | ||
The dry deposition (deposition velocity × [HONO]/height) | The deposition velocity and height were assumed to be 0.873 cm/s and 40 m | [32] |
Category | Reaction | Abbreviation | Reaction Constants | Units | Ref. |
---|---|---|---|---|---|
Production | NO2 + OH→HNO3 | 0.15 × 10−11 | cm3/molecules s | [40] | |
N2O5 + H2O→2HNO3 | 2.2 × 10−9 | cm3/molecules s | [41] | ||
NO + HO2→HNO3 | 5 × 10−16 | cm3/molecules s | [42] | ||
NO3 + HO2→HNO3 + HO2 | 1.9 × 10−12 | cm3/molecules s | [43] | ||
2NO2 + H2O→HONO + HNO3 | 5.5 × 104 | L2/molecules2 s | [36] | ||
Vaporation from aerosols | The decrements of nitrate | ||||
Loss | The photolysis of HNO3 (photolysis frequency × [HNO3]) | The photolysis frequencies were calculated via equation in reference | [38] | ||
HNO3 + OH→H2O + NO3 | 1.51 × 10−13 | cm3/molecules s | [40] | ||
Aerosolization to aerosols | The increments of nitrate | ||||
The dry deposition (deposition velocity × [HNO3]/height) | The deposition velocity and height were assumed to be 1.431 cm/s and 40 m | [32] |
Daejeon | Iksan | |||
---|---|---|---|---|
Unit: µg/m3 | AVG | STD | AVG | STD |
SAS | 3.5 | 4.3 | 4.5 | 3.5 |
SAN * | 3.6 | 5.8 | 5.6 | 5.5 |
SANLF ** | 0.2 | 0.4 | 0.7 | 1.1 |
SANEXT ** | 3.4 | 5.7 | 4.9 | 5.1 |
SANLF/SAN | 6.6% | 11.0% | ||
SIOA (1) | 7.2 | 8.4 | 10.1 | 8.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.-C.; Lim, Y.-J.; Han, J.-S. Characterization of Secondary Aerosol Formation via HONO and HNO3 Reactions and Source Apportionment in Daejeon and Iksan, Republic of Korea. Atmosphere 2025, 16, 1067. https://doi.org/10.3390/atmos16091067
Kim K-C, Lim Y-J, Han J-S. Characterization of Secondary Aerosol Formation via HONO and HNO3 Reactions and Source Apportionment in Daejeon and Iksan, Republic of Korea. Atmosphere. 2025; 16(9):1067. https://doi.org/10.3390/atmos16091067
Chicago/Turabian StyleKim, Kyoung-Chan, Yong-Jae Lim, and Jin-Seok Han. 2025. "Characterization of Secondary Aerosol Formation via HONO and HNO3 Reactions and Source Apportionment in Daejeon and Iksan, Republic of Korea" Atmosphere 16, no. 9: 1067. https://doi.org/10.3390/atmos16091067
APA StyleKim, K.-C., Lim, Y.-J., & Han, J.-S. (2025). Characterization of Secondary Aerosol Formation via HONO and HNO3 Reactions and Source Apportionment in Daejeon and Iksan, Republic of Korea. Atmosphere, 16(9), 1067. https://doi.org/10.3390/atmos16091067