Evaluating Machine Learning Models for Particulate Matter Prediction Under Climate Change Scenarios in Brazilian Capitals
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Procedure and Monitoring Period
2.3. Simulation of Predictive Scenarios and Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ML | Machine Learning |
SVM | Support Vector Machine |
KNN | K-Nearest Neighbors |
RF | Random Forest |
CAMS | Copernicus Atmosphere Monitoring Service |
IPCC | Intergovernmental Panel on Climate Change |
RMSE | Root-mean-square deviation |
ECMWF | Advancing global NWP through international collaboration |
CMAQ | The Community Multiscale Air Quality Modeling System |
PM | Particulate Matter |
CO | carbon monoxide |
NO2 | Nitrogen Dioxide |
SO2 | Sulfur dioxide |
O3 | Ozone |
ITCZ | Intertropical Convergence Zone |
References
- World Health Organization. Air Pollution. 2023. Available online: https://www.who.int/health-topics/air-pollution (accessed on 24 July 2025).
- Brauer, M.; Roth, G.A.; Aravkin, A.Y.; Zheng, P.; Abate, K.H.; Abate, Y.H.; Abbafati, C.; Abbasgholizadeh, R.; Abbasi, M.A.; Abbasian, M.; et al. Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2162–2203. [Google Scholar] [CrossRef]
- Health Effects Institute. State of Global Air 2024. Special Report; Health Effects Institute: Boston, MA, USA, 2024; Available online: https://www.stateofglobalair.org/resources/report/state-global-air-report-2024 (accessed on 24 July 2025).
- World Bank. The Global Health Cost of PM2.5 Air Pollution: A Case for Action Beyond 2021. World Bank Group. 2021. Available online: https://openknowledge.worldbank.org/entities/publication/c96ee144-4a4b-5164-ad79-74c051179eee (accessed on 24 July 2025).
- Im, U.; Brandt, J.; Geels, C.; Hansen, K.M.; Christensen, J.H.; Andersen, M.S.; Solazzo, E.; Kioutsioukis, I.; Alyuz, U.; Balzarini, A.; et al. Assessment and economic valuation of air pollution impacts on human health over Europe and the United States as calculated by a multi-model ensemble in the framework of AQMEII3. Atmos. Chem. Phys. 2018, 18, 5967–5989. [Google Scholar] [CrossRef]
- Tavella, R.A.; de Moura, F.R.; Miraglia, S.G.E.K.; da Silva Júnior, F.M.R. A New Dawn for Air Quality in Brazil. Lancet Planet. Health 2024, 8, e717–e718. [Google Scholar] [CrossRef]
- Brasil. Painel da Poluição Atmosférica e Saúde Humana. Secretaria de Vigilância em Saúde e Ambiente, Ministério da Saúde. 2024. Available online: https://www.gov.br/saude/pt-br/composicao/svsa/saude-ambiental/vigiar (accessed on 24 July 2025).
- Buralli, R.J.; Connerton, P. Air pollution, health and regulations in Brazil: Are we progressing? Cad. De Saúde Pública 2025, 41, e00172924. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Li, H.; Wang, S.; Van Halm-Lutterodt, N.; An, J.; Liu, Y.; Liu, M.; Wang, X.; Guo, X. Short-term PM10 and emergency department admissions for selective cardiovascular and respiratory diseases in Beijing, China. Sci. Total Environ. 2019, 657, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Ab Manan, N.; Aizuddin, A.N.; Hod, R. Effect of air pollution and hospital admission: A systematic review. Ann. Glob. Health 2018, 84, 670. [Google Scholar] [CrossRef]
- Bălă, G.P.; Râjnoveanu, R.M.; Tudorache, E.; Motișan, R.; Oancea, C. Air pollution exposure—The (in) visible risk factor for respiratory diseases. Environ. Sci. Pollut. Res. 2021, 28, 19615–19628. [Google Scholar] [CrossRef]
- Niu, Z.; Liu, F.; Yu, H.; Wu, S.; Xiang, H. Association between exposure to ambient air pollution and hospital admission, incidence, and mortality of stroke: An updated systematic review and meta-analysis of more than 23 million participants. Environ. Health Prev. Med. 2021, 26, 15. [Google Scholar] [CrossRef]
- Karimi, B.; Shokrinezhad, B. Air pollution and mortality among infant and children under five years: A systematic review and meta-analysis. Atmos. Pollut. Res. 2020, 11, 61–70. [Google Scholar] [CrossRef]
- Liu, S.; Wang, L.; Zhou, L.; Li, W.; Pu, X.; Jiang, J.; Chen, Y.; Zhang, L.; Qiu, H. Differential effects of fine and coarse particulate matter on hospitalizations for ischemic heart disease: A population-based time-series analysis in Southwestern China. Atmos. Environ. 2020, 224, 117366. [Google Scholar] [CrossRef]
- Tavella, R.A.; Penteado, J.O.; de Lima Brum, R.; da Silva Bonifácio, A.; San Martin, M.C.; Saes-Silva, E.; Brum, A.N.; Buffarini, R.; Filho, W.L.F.C.; Adamatti, D.F.; et al. An exploratory study on the association between air pollution and health problems (ICD-10) with an emphasis on respiratory diseases. Atmos. Pollut. Res. 2025, 16, 102377. [Google Scholar] [CrossRef]
- Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.M.; Guo, Y.; Tong, S.; Coelho, M.S.Z.S.; Saldiva, P.H.N.; Lavigne, E.; Matus, P.; et al. Ambient particulate air pollution and daily mortality in 652 cities. N. Engl. J. Med. 2019, 381, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Yin, P.; Meng, X.; Wang, L.; Liu, C.; Niu, Y.; Liu, Y.; Liu, J.; Qi, J.; You, J.; et al. Associations between coarse particulate matter air pollution and cause-specific mortality: A nationwide analysis in 272 Chinese cities. Environ. Health Perspect. 2019, 127, 017008. [Google Scholar] [CrossRef]
- Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C.A., III; Apte, J.S.; Brauer, M.; Cohen, A.; Weichenthal, S.; et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl. Acad. Sci. USA 2018, 115, 9592–9597. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Climate Change Impacts on Air Quality. 2025. Available online: https://www.epa.gov/climateimpacts/climate-change-impacts-air-quality (accessed on 24 July 2025).
- World Health Organization. Climate Impacts of Air Pollution. Air quality, Energy and Health. 2025. Available online: https://www.who.int/teams/environment-climate-change-and-health/air-quality-energy-and-health/health-impacts/climate-impacts-of-air-pollution (accessed on 24 July 2025).
- Kinney, P.L. Interactions of climate change, air pollution, and human health. Curr. Environ. Health Rep. 2018, 5, 179–186. [Google Scholar] [CrossRef]
- Williams, M. Tackling climate change: What is the impact on air pollution? Carbon Manag. 2012, 3, 511–519. [Google Scholar] [CrossRef]
- Pinho-Gomes, A.C.; Roaf, E.; Fuller, G.; Fowler, D.; Lewis, A.; ApSimon, H.; Noakes, C.; Johnstone, P.; Holgate, S. Air pollution and climate change. Lancet Planet. Health 2023, 7, e727–e728. [Google Scholar] [CrossRef]
- Arshad, K.; Hussain, N.; Ashraf, M.H.; Saleem, M.Z. Air pollution and climate change as grand challenges to sustainability. Sci. Total Environ. 2024, 928, 172370. [Google Scholar] [CrossRef]
- Lou, J.; Wu, Y.; Liu, P.; Kota, S.H.; Huang, L. Health effects of climate change through temperature and air pollution. Curr. Pollut. Rep. 2019, 5, 144–158. [Google Scholar] [CrossRef]
- Orru, H.; Ebi, K.L.; Forsberg, B. The interplay of climate change and air pollution on health. Curr. Environ. Health Rep. 2017, 4, 504–513. [Google Scholar] [CrossRef]
- Tran, H.M.; Tsai, F.J.; Lee, Y.L.; Chang, J.H.; Chang, L.T.; Chang, T.Y.; Chung, K.F.; Kuo, H.-P.; Lee, K.-Y.; Chuang, K.-J.; et al. The impact of air pollution on respiratory diseases in an era of climate change: A review of the current evidence. Sci. Total Environ. 2023, 898, 166340. [Google Scholar] [CrossRef]
- Kaur, R.; Pandey, P. Air pollution, climate change, and human health in Indian cities: A brief review. Front. Sustain. Cities 2021, 3, 705131. [Google Scholar] [CrossRef]
- Tavella, R.A.; Scursone, G.F.; dos Santos da Silva, L.; Nadaleti, W.C.; Adamatti, D.F.; El Khouri Miraglia, S.G.; da Silva, F.M.R., Jr. Predicting air pollution changes due to temperature increases in two Brazilian capitals using machine learning–a necessary perspective for a climate resilient health future. Int. J. Environ. Health Res. 2025, 1–15. [Google Scholar] [CrossRef]
- Rybarczyk, Y.; Zalakeviciute, R. Machine learning approaches for outdoor air quality modelling: A systematic review. Appl. Sci. 2018, 8, 2570. [Google Scholar] [CrossRef]
- Kang, G.K.; Gao, J.Z.; Chiao, S.; Lu, S.; Xie, G. Air quality prediction: Big data and machine learning approaches. Int. J. Environ. Sci. Dev 2018, 9, 8–16. [Google Scholar] [CrossRef]
- Masih, A. Machine learning algorithms in air quality modeling. Glob. J. Environ. Sci. Manag. (GJESM) 2019, 5, 515–534. [Google Scholar] [CrossRef]
- Baklanov, A.; Zhang, Y. Advances in air quality modeling and forecasting. Glob. Transit. 2020, 2, 261–270. [Google Scholar] [CrossRef]
- Liang, Y.C.; Maimury, Y.; Chen, A.H.L.; Juarez, J.R.C. Machine learning-based prediction of air quality. Appl. Sci. 2020, 10, 9151. [Google Scholar] [CrossRef]
- Subramaniam, S.; Raju, N.; Ganesan, A.; Rajavel, N.; Chenniappan, M.; Prakash, C.; Pramanik, A.; Basak, A.K.; Dixit, S. Artificial intelligence technologies for forecasting air pollution and human health: A narrative review. Sustainability 2022, 14, 9951. [Google Scholar] [CrossRef]
- Méndez, M.; Merayo, M.G.; Núñez, M. Machine learning algorithms to forecast air quality: A survey. Artif. Intell. Rev. 2023, 56, 10031–10066. [Google Scholar] [CrossRef] [PubMed]
- Ravindiran, G.; Hayder, G.; Kanagarathinam, K.; Alagumalai, A.; Sonne, C. Air quality prediction by machine learning models: A predictive study on the indian coastal city of Visakhapatnam. Chemosphere 2023, 338, 139518. [Google Scholar] [CrossRef]
- Mohammadi, F.; Teiri, H.; Hajizadeh, Y.; Abdolahnejad, A.; Ebrahimi, A. Prediction of atmospheric PM2. 5 level by machine learning techniques in Isfahan, Iran. Sci. Rep. 2024, 14, 2109. [Google Scholar] [CrossRef]
- Boateng, E.Y.; Otoo, J.; Abaye, D.A. Basic tenets of classification algorithms K-nearest-neighbor, support vector machine, random forest and neural network: A review. J. Data Anal. Inf. Process. 2020, 8, 341–357. [Google Scholar] [CrossRef]
- Singh, S.; Suthar, G.; Kulshreshtha, N.M.; Brighu, U.; Bezbaruah, A.N.; Gupta, A.B. A Futuristic Approach to Subsurface-Constructed Wetland Design for the South-East Asian Region Using Machine Learning. ACS EST Water 2024, 4, 4061–4074. [Google Scholar] [CrossRef]
- Singh, S.; Suthar, G.; Bhushan Gupta, A.; Bezbaruah, A.N. Machine Learning Approach for Predicting Perfluorooctanesulfonate Rejection in Efficient Nanofiltration Treatment and Removal. ACS EST Water 2025, 5, 1216–1228. [Google Scholar] [CrossRef]
- Suthar, G.; Kaul, N.; Khandelwal, S.; Singh, S. Predicting land surface temperature and examining its relationship with air pollution and urban parameters in Bengaluru: A machine learning approach. Urban Clim. 2024, 53, 101830. [Google Scholar] [CrossRef]
- Baran, B. Air quality Index prediction in besiktas district by artificial neural networks and k nearest neighbors. Mühendislik Bilim. Ve Tasarım Derg. 2021, 9, 52–63. [Google Scholar] [CrossRef]
- Tella, A.; Balogun, A.L.; Adebisi, N.; Abdullah, S. Spatial assessment of PM10 hotspots using random forest, K-nearest neighbour and Naïve Bayes. Atmos. Pollut. Res. 2021, 12, 101202. [Google Scholar] [CrossRef]
- Squizzato, R.; Nogueira, T.; Martins, L.D.; Martins, J.A.; Astolfo, R.; Machado, C.B.; Andrade, M.d.F.; de Freitas, E.D. Beyond megacities: Tracking air pollution from urban areas and biomass burning in Brazil. npj Clim. Atmos. Sci. 2021, 4, 17. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística. Cidades e Estados—Porto Alegre. 2022. Available online: https://www.ibge.gov.br/cidades-e-estados/rs/porto-alegre.html (accessed on 24 July 2025).
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística. Cidades e Estados—Recife. 2022. Available online: https://www.ibge.gov.br/cidades-e-estados/pe/recife.html (accessed on 24 July 2025).
- Lima, R.F.D.; Aparecido, L.E.D.O.; Torsoni, G.B.; Rolim, G.D.S. Climate change assessment in Brazil: Utilizing the Köppen-Geiger (1936) climate classification. Rev. Bras. Meteorol. 2023, 38, e38230001. [Google Scholar] [CrossRef]
- Fonseca, A.F.; Rodrigues, D.T.; Gonçalves, W.A.; Cabral, J.B., Jr.; de Souza, D.O.; e Silva, C.S. Probability Of Sub-Hourly Extreme Precipitation Events In Recife, Brazil. J. South Am. Earth Sci. 2025, 164, 105670. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística. Cidades e Estados—Goiânia. Available online: https://www.ibge.gov.br/cidades-e-estados/go/goiania.html (accessed on 24 July 2025).
- Seibt, T.C.; Lins, G.A.; Rodrigues, M.G.; de Almeida, J.R. The Threat Of Global Dimming And The Pollution Of Atmospherich Air Case Study: Goiânia-Goiás-Brazil. Rev. Int. Ciências 2013, 3, 27–39. [Google Scholar] [CrossRef]
- Nascimento, D.; Lima, L.V.; Cruz, V. Episódios e gênese dos eventos climáticos extremos em Goiânia-GO/Episodes and genesis of extreme climate events in Goiânia-GO. Cad. Geogr. 2019, 29, 583–608. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística. Cidades e Estados—Belém. 2022. Available online: https://www.ibge.gov.br/cidades-e-estados/pa/belem.html (accessed on 24 July 2025).
- Moraes, B.C.; Sodré, G.R.C.; Cardoso, A.C.D.; Silva, A.R., Jr. Crescimento urbano e suas implicações para o tempo e clima da região metropolitana de Belém do Pará. Rev. Bras. Geogr. Física 2022, 15, 2045–2060. [Google Scholar] [CrossRef]
- Schneider, R.; Masselot, P.; Vicedo-Cabrera, A.M.; Sera, F.; Blangiardo, M.; Forlani, C.; Douros, J.; Jorba, O.; Adani, M.; Kouznetsov, R.; et al. Differential impact of government lockdown policies on reducing air pollution levels and related mortality in Europe. Sci. Rep. 2022, 12, 726. [Google Scholar] [CrossRef] [PubMed]
- Casciaro, G.; Cavaiola, M.; Mazzino, A. Calibrating the CAMS European multi-model air quality forecasts for regional air pollution monitoring. Atmos. Environ. 2022, 287, 119259. [Google Scholar] [CrossRef]
- Inness, A.; Ades, M.; Agustí-Panareda, A.; Barré, J.; Benedictow, A.; Blechschmidt, A.M.; Dominguez, J.J.; Engelen, R.; Eskes, H.; Flemming, J.; et al. The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. 2019, 19, 3515–3556. [Google Scholar] [CrossRef]
- Santos, J.E.K.; Tavella, R.A.; de Lima Brum, R.; Ramires, P.F.; da Silva, L.D.S.; Filho, W.L.F.C.; Nadaleti, W.C.; Correa, E.K.; da Silva, F.M.R., Jr. PM2. 5/PM10 ratios in southernmost Brazilian cities and its relation with economic contexts and meteorological factors. Environ. Monit. Assess. 2025, 197, 191. [Google Scholar] [CrossRef] [PubMed]
- Paiva, M.S.; Franco, M.A.; Rizzo, L.V. Evaluation of near-surface atmospheric composition reanalysis data in the metropolis of São Paulo, Brazil. J. South. Hemisph. Earth Syst. Sci. 2025, 75, ES24041. [Google Scholar] [CrossRef]
- Pedreira, A.L., Jr.; Curado, L.F.A.; Palácios, R.D.S.; dos Santos, L.O.F.; Querino, C.A.S.; Querino, J.K.A.D.S.; Rodrigues, T.R.; Marques, J.B. Evaluation of Aerosol Optical Depth (AOD) estimated by Copernicus Atmosphere Monitoring Service (CAMS) in Brazil. Theor. Appl. Climatol. 2025, 156, 116. [Google Scholar] [CrossRef]
- Mejía, D.; Faican, G.; Zalakeviciute, R.; Matovelle, C.; Bonilla, S.; Sobrino, J.A. Spatio-temporal evaluation of air pollution using ground-based and satellite data during COVID-19 in Ecuador. Heliyon 2024, 10, e28152. [Google Scholar] [CrossRef]
- Tavella, R.A.; das Neves, D.F.; Silveira, G.D.O.; Vieira de Azevedo, G.M.G.; Brum, R.D.L.; Bonifácio, A.D.S.; Machado, R.A.; Brum, L.W.; Buffarini, R.; Adamatti, D.F.; et al. The relationship between surface meteorological variables and air pollutants in simulated temperature increase scenarios in a medium-sized industrial city. Atmosphere 2025, 16, 363. [Google Scholar] [CrossRef]
- Instituto de Energia e Meio Ambiente. Plataforma da Qualidade do Ar. 2024. Available online: https://energiaeambiente.org.br/qualidadedoar (accessed on 24 July 2025).
- Vormittag, E.D.M.P.D.A.; Cirqueira, S.S.R.; Wicher, H.; Saldiva, P.H.N. Análise do monitoramento da qualidade do ar no Brasil. Estudos Avançados 2021, 35, 7–30. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ahmad, M.; Kamiński, P.; Olczak, P.; Alam, M.; Iqbal, M.J.; Ahmad, F.; Sasui, S.; Khan, B.J. Development of prediction models for shear strength of rockfill material using machine learning techniques. Appl. Sci. 2021, 11, 6167. [Google Scholar] [CrossRef]
- Palanichamy, N.; Haw, S.C.; Murugan, R.; Govindasamy, K. Machine learning methods to predict particulate matter PM 2.5. F1000Research 2022, 11, 406. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Liu, Y.; Zou, Q.; Ye, L.; Zhu, S.; Zhang, H. Study on optimization and combination strategy of multiple daily runoff prediction models coupled with physical mechanism and LSTM. J. Hydrol. 2023, 624, 129969. [Google Scholar] [CrossRef]
- Yaghoubi, E.; Yaghoubi, E.; Khamees, A.; Vakili, A.H. A systematic review and meta-analysis of artificial neural network, machine learning, deep learning, and ensemble learning approaches in field of geotechnical engineering. Neural Comput. Appl. 2024, 36, 12655–12699. Available online: https://link.springer.com/article/10.1007/s00521-024-09893-7 (accessed on 24 July 2025). [CrossRef]
- da Silva, F.M.R., Jr. “New Normal”: The Dynamics of Air Pollutants on the Interruption–Recovery Pattern Related to the COVID-19 Pandemic in Recife, Northeastern Brazil. Aerosol Sci. Eng. 2022, 6, 316–322. [Google Scholar] [CrossRef]
- Tavella, R.A.; El Koury Santos, J.; de Moura, F.R.; da Silva, F.M.R., Jr. Better understanding the behavior of air pollutants at shutdown times–results of a short full lockdown. Int. J. Environ. Health Res. 2023, 33, 1525–1532. [Google Scholar] [CrossRef]
- Brum, R.D.L.; Tavella, R.A.; Ramires, P.F.; Santos, J.E.K.; Klein, R.D.; Da Silva, F.M.R., Jr. Ozone and PM2.5 behavior in small cities in southern Brazil. Vittalle-Rev. Ciências Saúde 2023, 35, 62–72. [Google Scholar] [CrossRef]
- da Silva Bonifácio, A.; de Lima Brum, R.; Tavella, R.A.; They, N.H.; Nadaleti, W.C.; Coronas, M.V.; Saes-Silva, E.; Brum, A.N.; Buffarini, R.; Filho, W.L.F.C.; et al. Health impact assessment of air pollutants in simulated temperature scenarios in the largest coal mining region of Brazil. Case Stud. Chem. Environ. Eng. 2024, 10, 100923. [Google Scholar] [CrossRef]
- Kim, B.Y.; Lim, Y.K.; Cha, J.W. Short-term prediction of particulate matter (PM10 and PM2. 5) in Seoul, South Korea using tree-based machine learning algorithms. Atmos. Pollut. Res. 2022, 13, 101547. [Google Scholar] [CrossRef]
- Alhathloul, S.H.; Mishra, A.K.; Khan, A.A. Low visibility event prediction using random forest and K-nearest neighbor methods. Theor. Appl. Climatol. 2024, 155, 1289–1300. [Google Scholar] [CrossRef]
- Evitania, C.G. Implementation of the K-Nearest Neighbor Algorithm to Predict Air Pollution. Inf. Technol. Syst. 2023, 1, 45–54. [Google Scholar] [CrossRef]
- Leong, W.C.; Kelani, R.O.; Ahmad, Z.J.J.O.E.C.E. Prediction of air pollution index (API) using support vector machine (SVM). J. Environ. Chem. Eng. 2020, 8, 103208. [Google Scholar] [CrossRef]
- Bhuvaneshwari, K.S.; Uma, J.; Venkatachalam, K.; Masud, M.; Abouhawwash, M.; Logeswaran, T. Gaussian Support Vector Machine Algorithm Based Air Pollution Prediction. Comput. Mater. Contin. 2022, 71, 683–695. [Google Scholar] [CrossRef]
- Zhang, F.; Yan, R.; Ye, X.; Fei, L.; Zhu, Y.; Chen, X.; Zhu, S.; Qi, B.; Xu, D.; Li, W. Machine Learning and Causal Inference for Disentangling Air Pollution Reduction During the Asian Games in Megacity Hangzhou. Environ. Pollut. 2025, 382, 126775. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonifácio, A.d.S.; Tavella, R.A.; Brum, R.d.L.; Silveira, G.d.O.; Fernandes, R.C.; Scursone, G.F.; Machado, R.A.; Adamatti, D.F.; da Silva Júnior, F.M.R. Evaluating Machine Learning Models for Particulate Matter Prediction Under Climate Change Scenarios in Brazilian Capitals. Atmosphere 2025, 16, 1052. https://doi.org/10.3390/atmos16091052
Bonifácio AdS, Tavella RA, Brum RdL, Silveira GdO, Fernandes RC, Scursone GF, Machado RA, Adamatti DF, da Silva Júnior FMR. Evaluating Machine Learning Models for Particulate Matter Prediction Under Climate Change Scenarios in Brazilian Capitals. Atmosphere. 2025; 16(9):1052. https://doi.org/10.3390/atmos16091052
Chicago/Turabian StyleBonifácio, Alicia da Silva, Ronan Adler Tavella, Rodrigo de Lima Brum, Gustavo de Oliveira Silveira, Ronabson Cardoso Fernandes, Gabriel Fuscald Scursone, Ricardo Arend Machado, Diana Francisca Adamatti, and Flavio Manoel Rodrigues da Silva Júnior. 2025. "Evaluating Machine Learning Models for Particulate Matter Prediction Under Climate Change Scenarios in Brazilian Capitals" Atmosphere 16, no. 9: 1052. https://doi.org/10.3390/atmos16091052
APA StyleBonifácio, A. d. S., Tavella, R. A., Brum, R. d. L., Silveira, G. d. O., Fernandes, R. C., Scursone, G. F., Machado, R. A., Adamatti, D. F., & da Silva Júnior, F. M. R. (2025). Evaluating Machine Learning Models for Particulate Matter Prediction Under Climate Change Scenarios in Brazilian Capitals. Atmosphere, 16(9), 1052. https://doi.org/10.3390/atmos16091052