Revisiting the Stratosphere–Troposphere Exchange of Air Mass and Ozone Based on Reanalyses and Observations
Abstract
1. Introduction
2. Data and Methods
2.1. Observational Datasets
2.2. Reanalysis Datasets
2.3. Modeling Data
2.4. Mass Budget Approach
3. Results
3.1. Ozone STEs from CCMI Models
3.2. Fitted Isentropic Surface
3.3. STE of Air Mass and Ozone
3.4. Cloud Heating at the Fitted Isentrope
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holton, J.R.; Haynes, P.H.; McIntyre, M.E.; Douglass, A.R.; Rood, R.B.; Pfister, L. Stratosphere-troposphere Exchange. Rev. Geophys. 1995, 33, 403–439. [Google Scholar] [CrossRef]
- Pan, L.L.; Honomichl, S.B.; Kinnison, D.E.; Abalos, M.; Randel, W.J.; Bergman, J.W.; Bian, J. Transport of Chemical Tracers from the Boundary Layer to Stratosphere Associated with the Dynamics of the Asian Summer Monsoon. J. Geophys. Res. Atmos. 2016, 121, 14–159. [Google Scholar] [CrossRef]
- Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.; Kuhn, W.; Lacis, A.; Luther, F.; Mahlman, J.; Reck, R.; et al. Climate-chemical Interactions and Effects of Changing Atmospheric Trace Gases. Rev. Geophys. 1987, 25, 1441–1482. [Google Scholar] [CrossRef]
- Ramaswamy, V.; Schwarzkopf, M.D.; Shine, K.P. Radiative Forcing of Climate from Halocarbon-Induced Global Stratospheric Ozone Loss. Nature 1992, 355, 810–812. [Google Scholar] [CrossRef]
- Škerlak, B.; Sprenger, M.; Wernli, H. A Global Climatology of Stratosphere–Troposphere Exchange Using the ERA-Interim Data Set from 1979 to 2011. Atmos. Chem. Phys. 2014, 14, 913–937. [Google Scholar] [CrossRef]
- Stohl, A.; Bonasoni, P.; Cristofanelli, P.; Collins, W.; Feichter, J.; Frank, A.; Forster, C.; Gerasopoulos, E.; Gäggeler, H.; James, P.; et al. Stratosphere-troposphere Exchange: A Review, and What We Have Learned from STACCATO. J. Geophys. Res. Atmos. 2003, 108, 8516. [Google Scholar] [CrossRef]
- Bates, K.H.; Jacob, D.J. An Expanded Definition of the Odd Oxygen Family for Tropospheric Ozone Budgets: Implications for Ozone Lifetime and Stratospheric Influence. Geophys. Res. Lett. 2020, 47, e2019GL084486. [Google Scholar] [CrossRef]
- Fiore, A.M.; Jacob, D.J.; Field, B.D.; Streets, D.G.; Fernandes, S.D.; Jang, C. Linking Ozone Pollution and Climate Change: The Case for Controlling Methane. Geophys. Res. Lett. 2002, 29, 25-1–25-4. [Google Scholar] [CrossRef]
- Geng, L.; Murray, L.T.; Mickley, L.J.; Lin, P.; Fu, Q.; Schauer, A.J.; Alexander, B. Isotopic Evidence of Multiple Controls on Atmospheric Oxidants over Climate Transitions. Nature 2017, 546, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Kentarchos, A.S.; Roelofs, G.J. A Model Study of Stratospheric Ozone in the Troposphere and Its Contribution to Tropospheric OH Formation. J. Geophys. Res. Atmos. 2003, 108, 8517. [Google Scholar] [CrossRef]
- Lin, M.; Fiore, A.M.; Horowitz, L.W.; Langford, A.O.; Oltmans, S.J.; Tarasick, D.; Rieder, H.E. Climate Variability Modulates Western US Ozone Air Quality in Spring via Deep Stratospheric Intrusions. Nat. Commun. 2015, 6, 7105. [Google Scholar] [CrossRef]
- Ordóñez, C.; Brunner, D.; Staehelin, J.; Hadjinicolaou, P.; Pyle, J.A.; Jonas, M.; Wernli, H.; Prévôt, A.S.H. Strong Influence of Lowermost Stratospheric Ozone on Lower Tropospheric Background Ozone Changes over Europe. Geophys. Res. Lett. 2007, 34, L07805. [Google Scholar] [CrossRef]
- Zeng, G.; Pyle, J.A.; Young, P.J. Impact of Climate Change on Tropospheric Ozone and Its Global Budgets. Atmos. Chem. Phys. 2008, 8, 369–387. [Google Scholar] [CrossRef]
- Levy, H. Global Transport of Ozone. In Tropospheric Ozone; Isaksen, I.S.A., Ed.; Springer: Dordrecht, The Netherlands, 1988; pp. 319–325. ISBN 978-94-010-7811-5. [Google Scholar]
- Xie, F.; Tian, W.; Chipperfield, M.P. Radiative Effect of Ozone Change on Stratosphere-troposphere Exchange. J. Geophys. Res. 2008, 113, D00B09. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (Ed.) Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2014; ISBN 978-1-107-05799-9. [Google Scholar]
- Olsen, M.A.; Schoeberl, M.R.; Douglass, A.R. Stratosphere-troposphere Exchange of Mass and Ozone. J. Geophys. Res. Atmos. 2004, 109, D24114. [Google Scholar] [CrossRef]
- Appenzeller, C.; Holton, J.R.; Rosenlof, K.H. Seasonal Variation of Mass Transport across the Tropopause. J. Geophys. Res. Atmos. 1996, 101, 15071–15078. [Google Scholar] [CrossRef]
- Olsen, M.A.; Douglass, A.R.; Kaplan, T.B. Variability of Extratropical Ozone Stratosphere–Troposphere Exchange Using Microwave Limb Sounder Observations. J. Geophys. Res. Atmos. 2013, 118, 1090–1099. [Google Scholar] [CrossRef]
- Schoeberl, M.R. Extratropical Stratosphere-troposphere Mass Exchange. J. Geophys. Res. Atmos. 2004, 109, D13303. [Google Scholar] [CrossRef]
- Yang, H.; Chen, G.; Tang, Q.; Hess, P. Quantifying Isentropic Stratosphere-troposphere Exchange of Ozone. J. Geophys. Res. Atmos. 2016, 121, 3372–3387. [Google Scholar] [CrossRef]
- Wang, M.; Fu, Q. Stratosphere-Troposphere Exchange of Air Masses and Ozone Concentrations Based on Reanalyses and Observations. J. Geophys. Res. Atmos. 2021, 126, e2021JD035159. [Google Scholar] [CrossRef]
- Wang, M.; Fu, Q. Changes in Stratosphere-Troposphere Exchange of Air Mass and Ozone Concentration in CCMI Models From 1960 to 2099. J. Geophys. Res. Atmos. 2023, 128, e2023JD038487. [Google Scholar] [CrossRef]
- Wang, M.; Fu, Q.; Solomon, S.; Alexander, B.; White, R.H. Stratosphere-Troposphere Exchanges of Air Mass and Ozone Concentration in the Last Glacial Maximum. J. Geophys. Res. Atmos. 2022, 127, e2021JD036327. [Google Scholar] [CrossRef]
- Gettelman, A.; Birner, T.; Eyring, V.; Akiyoshi, H.; Bekki, S.; Brühl, C.; Dameris, M.; Kinnison, D.E.; Lefevre, F.; Lott, F.; et al. The Tropical Tropopause Layer 1960–2100. Atmos. Chem. Phys. 2009, 9, 1621–1637. [Google Scholar] [CrossRef]
- Gettelman, A.; Forster, P.M.D.F. A Climatology of the Tropical Tropopause Layer. J. Meteorol. Soc. Jpn. 2002, 80, 911–924. [Google Scholar] [CrossRef]
- Reid, G.C.; Gage, K.S. On the Annual Variation in Height of the Tropical Tropopause. J. Atmos. Sci. 1981, 38, 1928–1938. [Google Scholar] [CrossRef]
- Wang, M.; Fu, Q.; Hall, A.; Sweeney, A. Stratosphere-Troposphere Exchanges of Air Mass and Ozone Concentrations from ERA5 and MERRA2: Annual-Mean Climatology, Seasonal Cycle, and Interannual Variability. J. Geophys. Res. Atmos. 2023, 128, e2023JD039270. [Google Scholar] [CrossRef]
- L’Ecuyer, T.S.; Wood, N.B.; Haladay, T.; Stephens, G.L.; Stackhouse, P.W. Impact of Clouds on Atmospheric Heating Based on the R04 CloudSat Fluxes and Heating Rates Data Set. J. Geophys. Res. 2008, 113, D00A15. [Google Scholar] [CrossRef]
- Henderson, D.S.; L’Ecuyer, T.; Stephens, G.; Partain, P.; Sekiguchi, M. A Multisensor Perspective on the Radiative Impacts of Clouds and Aerosols. J. Appl. Meteorol. Climatol. 2013, 52, 853–871. [Google Scholar] [CrossRef]
- McGill, M.J.; Vaughan, M.A.; Trepte, C.R.; Hart, W.D.; Hlavka, D.L.; Winker, D.M.; Kuehn, R. Airborne Validation of Spatial Properties Measured by the CALIPSO Lidar. J. Geophys. Res. 2007, 112, D20201. [Google Scholar] [CrossRef]
- Anthes, R.A.; Bernhardt, P.A.; Chen, Y.; Cucurull, L.; Dymond, K.F.; Ector, D.; Healy, S.B.; Ho, S.-P.; Hunt, D.C.; Kuo, Y.-H.; et al. The COSMIC/FORMOSAT-3 Mission: Early Results. Bull. Am. Meteorol. Soc. 2008, 89, 313–334. [Google Scholar] [CrossRef]
- Kuo, Y.-H.; Wee, T.-K.; Sokolovskiy, S.; Rocken, C.; Schreiner, W.; Hunt, D.; Anthes, R.A. Inversion and Error Estimation of GPS Radio Occultation Data. J. Meteorol. Soc. Jpn. 2004, 82, 507–531. [Google Scholar] [CrossRef]
- Pirscher, B.; Foelsche, U.; Borsche, M.; Kirchengast, G.; Kuo, Y.-H. Analysis of Migrating Diurnal Tides Detected in FORMOSAT-3/COSMIC Temperature Data. J. Geophys. Res. 2010, 115, D14108. [Google Scholar] [CrossRef]
- Sweeney, A.J.; Fu, Q. Diurnal Cycles of Synthetic Microwave Sounding Lower-Stratospheric Temperatures from Radio Occultation Observations, Reanalysis, and Model Simulations. J. Atmos. Ocean. Technol. 2021, 38, 2045–2059. [Google Scholar] [CrossRef]
- Livesey, N.J.; Read, W.G.; Wagner, P.A.; Froidevaux, L.; Santee, M.L.; Schwartz, M.J.; Lambert, A.; Millán Valle, L.F.; Pumphrey, H.C.; Manney, G.L.; et al. Earth Observing System (EOS), Aura Microwave Limb Sounder (MLS), Version 4.2x Level 2 Data Quality and Description Document; Jet Propulsion Laboratory: La Cañada Flintridge, CA, USA, 2015. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.-F.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; et al. The RCP Greenhouse Gas Concentrations and Their Extensions from 1765 to 2300. Clim. Change 2011, 109, 213–241. [Google Scholar] [CrossRef]
- Morgenstern, O.; Hegglin, M.I.; Rozanov, E.; O’Connor, F.M.; Abraham, N.L.; Akiyoshi, H.; Archibald, A.T.; Bekki, S.; Butchart, N.; Chipperfield, M.P.; et al. Review of the Global Models Used within Phase 1 of the Chemistry–Climate Model Initiative (CCMI). Geosci. Model Dev. 2017, 10, 639–671. [Google Scholar] [CrossRef]
- Munchak, L.A.; Pan, L.L. Separation of the Lapse Rate and the Cold Point Tropopauses in the Tropics and the Resulting Impact on Cloud Top-Tropopause Relationships. J. Geophys. Res. Atmos. 2014, 119, 7963–7978. [Google Scholar] [CrossRef]
- Fu, Q.; Hu, Y.; Yang, Q. Identifying the Top of the Tropical Tropopause Layer from Vertical Mass Flux Analysis and CALIPSO Lidar Cloud Observations. Geophys. Res. Lett. 2007, 34, L14813. [Google Scholar] [CrossRef]
- Wang, T.; Dessler, A.E. Analysis of Cirrus in the Tropical Tropopause Layer from CALIPSO and MLS Data: A Water Perspective. J. Geophys. Res. 2012, 117, D04211. [Google Scholar] [CrossRef]
NH Extratropics | SH Extratropics | Tropics | Extratropics | Global | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ANN | −278.7 | (0.2, 3.0) | −195.5 | (−2.5, 4.2) | 137.8 | (3.4, 0.8) | −474.2 | (−0.9, 3.5) | −336.5 | (−2.7, 4.6) |
−282.3 | (0.3, 3.0) | −195.6 | (−2.7, 4.3) | 137.6 | (3.4, 0.8) | −477.9 | (−0.9, 3.5) | −340.3 | (−2.7, 4.7) | |
DJF | −287.6 | (−0.4, 1.9) | −141.7 | (−9.1, 6.2) | 152.1 | (2.7, 0.6) | −429.4 | (−3.3, 3.3) | −277.3 | (−6.6, 4.8) |
−323.8 | (1.0, 2.6) | −122.6 | (−12.3, 6.7) | 151.9 | (3.1, 0.7) | −446.5 | (−2.6, 3.7) | −294.5 | (−5.6, 5.3) | |
MAM | −419.3 | (0.5, 2.6) | −161.6 | (−5.7, 6.4) | 131.4 | (3.3, 0.7) | −580.8 | (−1.2, 3.6) | −449.4 | (−2.6, 4.5) |
−474.0 | (0.5, 3.0) | −158.1 | (−5.3, 6.9) | 131.2 | (3.3, 0.7) | −632.1 | (−1.0, 4.0) | −500.9 | (−2.1, 4.8) | |
JJA | −258.4 | (−0.6, 4.0) | −251.8 | (0.2, 3.1) | 145.6 | (3.1, 1.2) | −510.2 | (−0.2, 3.6) | −364.7 | (−1.5, 4.5) |
−253.2 | (−0.0, 2.0) | −270.3 | (0.5, 2.7) | 145.4 | (3.1, 1.2) | −523.5 | (−0.3, 2.4) | −378.1 | (−0.8, 2.8) | |
SON | −149.4 | (−0.8, 4.0) | −227.0 | (1.1, 2.7) | 122.0 | (4.4, 0.5) | −376.4 | (0.3, 3.2) | −254.4 | (−1.6, 4.5) |
−78.0 | (−2.3, 7.9) | −231.4 | (0.5, 3.2) | 121.9 | (4.4, 0.5) | −309.4 | (−0.2, 4.4) | −187.5 | (−3.2, 6.9) |
ERA5 | MERRA2 | OBS | |
---|---|---|---|
Air Mass (109 kg/s) | |||
NH Extratropics | −10.4 | −9.7 | −10.2 |
−11.5 (−1.1), −11.8 (−0.3) | −10.0 (−0.3), −10.7 (−0.7) | −11.8 (−1.6), −12.7 (−0.9) | |
SH Extratropics | −8.9 | −9.6 | −11.8 |
−9.8 (−0.9), −10.1 (−0.3) | −9.9 (−0.3), −10.2 (−0.3) | −13.0 (−1.2), −13.6 (−0.6) | |
Tropics | 19.3 | 19.3 | 22.0 |
21.3 (2.0), 21.9 (0.6) | 19.9 (0.6), 20.9 (1.0) | 24.8 (2.8), 26.3 (1.5) | |
Ozone (Tg/yr) | |||
NH Extratropics | −322.1 | −310.1 | −286.7 |
−323.7 (−1.6), −327.3 (−3.6) | −306.7 (3.4), −314.2 (−7.5) | −305.3 (−18.6), −314.8 (−9.5) | |
SH Extratropics | −216.0 | −232.4 | −241.1 |
−209.1 (6.9), −212.0 (−2.9) | −223.3 (9.1), −227.1 (−3.8) | −244.9 (−3.8), −250.7 (−5.8) | |
Tropics | 192.4 | 183.0 | 192.2 |
185.2 (−7.2), 191.7 (6.5) | 167.6 (−15.4), 178.8 (11.2) | 181.8 (−10.4), 197.1 (15.3) | |
Extratropics | −538.1 | −542.5 | −527.8 |
−532.8 (5.3), −539.3 (−6.5) | −530.1 (12.4), −541.3 (−11.2) | −550.2 (−22.4), −565.5 (−15.3) | |
Global | −345.7 | −359.5 | −335.6 |
−347.6 (−1.9), −347.6 (0.0) | −362.5 (−3.0), −362.5 (0.0) | −368.4 (−32.8), −368.4 (0.0) |
NH | SH | Tropics | Extratropics | Globe | |
---|---|---|---|---|---|
Air Mass (109 kg/s) | |||||
FI diab. flux | −10.7 | −10.2 | 20.9 | −20.9 | 0.0 |
380 K diab. flux | −9.7 | −9.6 | 19.3 | −19.3 | 0.0 |
dM/dt | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Tropp. net flux | −10.7 | −10.2 | 20.9 | −20.9 | 0.0 |
−9.7 | −9.6 | 19.3 | −19.3 | 0.0 | |
Tropp. diab. flux | −33.5 | −31.3 | 20.9 | −64.8 | −43.9 |
−43.0 | −40.2 | 21.4 | −83.2 | −61.8 | |
Tropp adiab. flux | 22.8 | 21.1 | 0.0 | 43.9 | 43.9 |
33.3 | 30.5 | −2.1 | 63.9 | 61.8 | |
Ozone (Tg/yr) | |||||
FI diab. flux | −314.2 | −227.1 | 178.8 | −541.3 | −362.5 |
380 K diab. flux | −310.1 | −232.4 | 183.0 | −542.5 | −359.5 |
dMO3/dt | 0.3 | 0.6 | 0.0 | 1.0 | 1.0 |
1.8 | 0.2 | 0.2 | 2.0 | 2.3 | |
−CTO3 | −0.6 | −7.8 | 0.0 | −8.5 | −8.5 |
−1.9 | −10.0 | 1.0 | −12.0 | −11.0 | |
Tropp. net flux | −314.4 | −234.3 | 178.8 | −548.8 | −370.0 |
−310.2 | −242.2 | 184.2 | −552.4 | −368.3 | |
Tropp. diab. flux | −272.4 | −194.2 | 178.8 | −466.6 | −287.8 |
−318.4 | −230.5 | 135.8 | −548.9 | −413.1 | |
Tropp. adiab. flux | −42.0 | −40.2 | 0.0 | −82.2 | −82.2 |
8.2 | −11.7 | 48.4 | −3.6 | 44.8 |
ERA5 | MERRA2 | Observations | |
---|---|---|---|
Air Mass (109 kg/s) | |||
NH Extratropics | −1.2 (10.4%) | −1.8 (17.0%) | −2.5 (19.3%) |
−1.2 (11.6%) | −2.0 (21.1%) | −2.0 (19.4%) | |
SH Extratropics | −1.3 (13.1%) | −1.6 (15.6%) | −2.0 (14.6%) |
−1.3 (15.1%) | −1.7 (17.2%) | −1.8 (15.5%) | |
Tropics | −1.5 (−6.7%) | −2.8 (−13.2%) | 2.2 (8.2%) |
−1.3 (−6.8%) | −2.2 (−11.2%) | 0.4 (2.0%) | |
Ozone (Tg/yr) | |||
NH Extratropics | −30.2 (9.2%) | −44.7 (14.2%) | −51.5 (16.4%) |
−31.7 (9.8%) | −48.5 (15.6%) | −48.5 (16.9%) | |
SH Extratropics | −26.8 (12.7%) | −33.3 (14.7%) | −34.9 (13.9%) |
−29.9 (13.8%) | −35.4 (15.2%) | −35.7 (14.8%) | |
Tropics | −13.5 (−7.0%) | −25.8 (−14.4%) | 16.0 (8.1%) |
−13.6 (−7.1%) | −21.6 (−11.8%) | 3.5 (1.8%) | |
Extratropics | −57.0 (10.6%) | −78.0 (14.4%) | −86.4 (15.3%) |
−61.6 (11.4%) | −83.9 (15.5%) | −84.3 (16.0%) | |
Global | −70.5 (20.3%) | −103.8 (28.6%) | −70.4 (19.1%) |
−75.2 (21.7%) | −105.5 (29.3%) | −80.7 (24.1%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hall, A.; Fu, Q.; Dong, C. Revisiting the Stratosphere–Troposphere Exchange of Air Mass and Ozone Based on Reanalyses and Observations. Atmosphere 2025, 16, 1050. https://doi.org/10.3390/atmos16091050
Hall A, Fu Q, Dong C. Revisiting the Stratosphere–Troposphere Exchange of Air Mass and Ozone Based on Reanalyses and Observations. Atmosphere. 2025; 16(9):1050. https://doi.org/10.3390/atmos16091050
Chicago/Turabian StyleHall, Anna, Qiang Fu, and Cong Dong. 2025. "Revisiting the Stratosphere–Troposphere Exchange of Air Mass and Ozone Based on Reanalyses and Observations" Atmosphere 16, no. 9: 1050. https://doi.org/10.3390/atmos16091050
APA StyleHall, A., Fu, Q., & Dong, C. (2025). Revisiting the Stratosphere–Troposphere Exchange of Air Mass and Ozone Based on Reanalyses and Observations. Atmosphere, 16(9), 1050. https://doi.org/10.3390/atmos16091050