Impact of Lens Angle and Nozzle Geometry on Aerodynamic Focusing: A Numerical Study
Abstract
1. Introduction
2. Model Descriptions and Methods
2.1. Converging and Diverging Lens Model
2.2. Nozzle Model
3. Results
3.1. Effects of Lens Half-Angle
3.2. Effect of Exit Nozzle Geometry
3.2.1. Nozzle Thickness
3.2.2. Step Length
3.2.3. Step Radius
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vaden, T.D.; Imre, D.; Beránek, J.; Zelenyuk, A. Extending the Capabilities of Single Particle Mass Spectrometry: I. Measurements of Aerosol Number Concentration, Size Distribution, and Asphericity. Aerosol Sci. Technol. 2011, 45, 113–124. [Google Scholar] [CrossRef]
- Su, Y.; Sipin, M.F.; Furutani, H.; Prather, K.A. Development and Characterization of an Aerosol Time-of-Flight Mass Spectrometer with Increased Detection Efficiency. Anal. Chem. 2004, 76, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.M. The design of single particle laser mass spectrometers. Mass Spectrom. Rev. 2007, 26, 150–165. [Google Scholar] [CrossRef]
- Zelenyuk, A.; Imre, D.; Wilson, J.; Zhang, Z.; Wang, J.; Mueller, K. Airborne Single Particle Mass Spectrometers (SPLAT II & miniSPLAT) and New Software for Data Visualization and Analysis in a Geo-Spatial Context. J. Am. Soc. Mass. Spectrom. 2015, 26, 257–270. [Google Scholar] [CrossRef]
- Israel, G.W.; Friedlander, S.K. High-Speed Beams of Small Particles. J. Colloid Interface Sci. 1967, 24, 330–337. [Google Scholar] [CrossRef]
- Dahneke, B.E.; Flachsbart, H. An Aerosol Beam Spectrometer. J. Aerosol Sci. 1972, 3, 345–349. [Google Scholar] [CrossRef]
- Mallina, R.V.; Wexler, A.S.; Johnston, M.V. High-Speed Particle Beam Generation: Simple Focusing Mechanisms. J. Aerosol Sci. 1999, 30, 719–738. [Google Scholar] [CrossRef]
- Mallina, R.V.; Wexler, A.S.; Rhoads, K.P.; Johnston, M.V. High Speed Particle Beam Generation: A Dynamic Focusing Mechanism for Selecting Ultrafine Particles. Aerosol Sci. Technol. 2000, 33, 87–104. [Google Scholar] [CrossRef]
- Liu, P.; Ziemann, P.J.; Kittelson, D.B.; McMurry, P.H. Generating Particle Beams of Controlled Dimensions and Divergence: I. Theory of Particle Motion in Aerodynamic Lenses and Nozzle Expansions. Aerosol Sci. Technol. 1995, 22, 293–313. [Google Scholar] [CrossRef]
- Liu, P.; Ziemann, P.J.; Kittelson, D.B.; McMurry, P.H. Generating Particle Beams of Controlled Dimensions and Divergence: II. Experimental Evaluation of Particle Motion in Aerodynamic Lenses and Nozzle Expansions. Aerosol Sci. Technol. 1995, 22, 314–324. [Google Scholar] [CrossRef]
- Wang, X.L.; McMurry, P.H. A Design Tool for Aerodynamic Lens Systems. Aerosol Sci. Technol. 2006, 40, 320–334. [Google Scholar] [CrossRef]
- Peck, J.; Gonzalez, L.A.; Williams, L.R.; Xu, W.; Croteau, P.L.; Timko, M.T.; Jayne, J.T.; Worsnop, D.R.; Miake-Lye, R.C.; Smith, K.A. Development of an aerosol mass spectrometer lens system for PM2.5. Aerosol Sci. Technol. 2016, 50, 781–789. [Google Scholar] [CrossRef]
- Cahill, J.F.; Darlington, T.K.; Wang, X.L.; Mayer, J.; Spencer, M.T.; Holecek, J.C.; Reed, B.E.; Prather, K.A. Development of a High-Pressure Aerodynamic Lens for Focusing Large Particles (4–10 µm) into the Aerosol Time-of-Flight Mass Spectrometer. Aerosol Sci. Technol. 2014, 48, 948–956. [Google Scholar] [CrossRef]
- Huang, J.; Li, L.; Li, X.; Huang, Z.; Cheng, Z. Design of a wide-particle-size-range aerodynamic injection system with a new pre-focus structure. Atmos. Meas. Tech. 2025, 18, 2739–2749. [Google Scholar] [CrossRef]
- Fernández de la Mora, J.; Riesco-Chueca, P. Aerodynamic Focusing of Particles in a Carrier Gas. J. Fluid Mech. 1988, 195, 1–21. [Google Scholar] [CrossRef]
- Fernández de la Mora, J.; Rosell-Llompart, J.; Riesco-Chueca, P. Aerodynamic Focusing of Particles and Molecules in Seeded Supersonic Jets. In Rarefied Gas Dynamics: Physical Phenomena, Progress in Astronautics & Aeronautics; Muntz, E.P., Weaver, D.P., Campbell, D.H., Eds.; AIAA: Washington, DC, USA, 1989; Volume 117, pp. 247–277. [Google Scholar]
- Middha, P.; Wexler, A.S. Particle Focusing Characteristics of Sonic Jets. Aerosol Sci. Technol. 2003, 37, 907–915. [Google Scholar] [CrossRef]
- Wang, X.L.; Kruis, F.E.; McMurry, P.H. Aerodynamic Focusing of Nanoparticles: I. Guidelines for Designing Aerodynamic Lenses for Nanoparticles. Aerosol Sci. Technol. 2005, 39, 611–623. [Google Scholar] [CrossRef]
- Wang, X.L.; Gidwani, A.; Girshick, S.L.; McMurry, P.H. Aerodynamic Focusing of Nanoparticles: II. Numerical Simulation of Particle Motion through Aerodynamic Lenses. Aerosol Sci. Technol. 2005, 39, 624–636. [Google Scholar] [CrossRef]
- Zhang, L.; Shao, J.; Chen, X.; Zhang, J.; Si, Q. Design and evaluation of aerodynamic lens system for focusing sub-10 nm nanoparticles. Appl. Phys. A 2016, 122, 953. [Google Scholar] [CrossRef]
- Zhang, X.; Smith, K.A.; Worsnop, D.R.; Jimenez, J.; Jayne, J.T.; Kolb, C.E. A Numerical Characterization of Particle Beam Collimation by an Aerodynamic Lens-Nozzle System: Part I. An Individual Lens or Nozzle. Aerosol Sci. Technol. 2002, 36, 617–631. [Google Scholar] [CrossRef]
- Zhang, X.; Smith, K.A.; Worsnop, D.R.; Jimenez, J.L.; Jayne, J.T.; Kolb, C.E.; Morris, J.; Davidovits, P. Numerical Characterization of Particle Beam Collimation: Part II. Integrated Aerodynamic-Lens-Nozzle System. Aerosol Sci. Technol. 2004, 38, 619–638. [Google Scholar] [CrossRef]
- Jayne, J.T.; Leard, D.C.; Zhang, X.; Davidovits, P.; Smith, K.A.; Kolb, C.E.; Worsnop, D.R. Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles. Aerosol Sci. Technol. 2000, 33, 49–70. [Google Scholar] [CrossRef]
- ANSYS, Inc. Ansys Fluent User’s Guide, Release: 2022R2; ANSYS, Inc.: Canonsburg, PA, USA, 2022. [Google Scholar]
- Sutherland, W. The viscosity of gases and molecular force. Philos. Mag. 1893, 36, 507–531. [Google Scholar] [CrossRef]
- Slater, J.W. Examining Spatial (Grid) Convergence; Northern Peninsula Area Regional Council (NPARC) Alliance Verification and Validation Web Site: 2021. Available online: https://www.grc.nasa.gov/www/wind/valid/tutorial/spatconv.html (accessed on 10 February 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vannavong, A.; Griffin, H.; Wang, X.; Hadj-Nacer, M. Impact of Lens Angle and Nozzle Geometry on Aerodynamic Focusing: A Numerical Study. Atmosphere 2025, 16, 1049. https://doi.org/10.3390/atmos16091049
Vannavong A, Griffin H, Wang X, Hadj-Nacer M. Impact of Lens Angle and Nozzle Geometry on Aerodynamic Focusing: A Numerical Study. Atmosphere. 2025; 16(9):1049. https://doi.org/10.3390/atmos16091049
Chicago/Turabian StyleVannavong, Apolo, Harrison Griffin, Xiaoliang Wang, and Mustafa Hadj-Nacer. 2025. "Impact of Lens Angle and Nozzle Geometry on Aerodynamic Focusing: A Numerical Study" Atmosphere 16, no. 9: 1049. https://doi.org/10.3390/atmos16091049
APA StyleVannavong, A., Griffin, H., Wang, X., & Hadj-Nacer, M. (2025). Impact of Lens Angle and Nozzle Geometry on Aerodynamic Focusing: A Numerical Study. Atmosphere, 16(9), 1049. https://doi.org/10.3390/atmos16091049